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Abstract

Image quality metrics have been widely used in imaging systems to main-
tain and improve the quality of images being processed and transmitted.
Due to the close relationship between image quality perception and the hu-
man visual system, the development of image quality metrics has been con-
tributed to by both psychologists and computer scientists. In this paper, three
novel image quality metrics are proposed by improving the well-known im-
age quality metric structural similarity index (SSIM). In this new approach,
images are not compared directly, but their feature maps are (preprocessing
is incorporated to extract the corner, edge and symmetry maps). The sim-
ilarity measured (by SSIM) between corner, edge and symmetry maps of
images being compared is used as an indicator of image quality, and named
C SSIM, E SSIM and S SSIM respectively. The experiments show that all
the proposed image quality metrics have a better performance than SSIM,
and E SSIM has the best performance among them.

1 Introduction
Image quality assessment provides a useful tool for evaluating the visual effect of a wide
range of artifacts imposed on digital images in the process of image acquisition, pro-
cessing, transportation, compression, storage. Because humans are considered to be the
observers and consumers of most imaging systems and products, the most reliable method
to evaluate image quality is by subjective assessment. However its complication and in-
convenience to implement has prevented its application in real-time experiments and its
use as a systematic performance evaluator of image processing algorithms.

Therefore objective methods have attracted more attentions in recent years. Depend-
ing on the existence of reference images, there are three categories of image quality met-
rics (IQMs): Full reference (FR) Image Quality Metrics, Reduced reference (RR) Image
Quality Metrics, and No reference (NR) Image Quality Metrics, where full, partial, and
no information of reference images is available, respectively. This paper will mainly deal
with full reference image quality metrics.

Traditionally, there are two approaches taken to quantify the similarity between im-
ages. One of them predicts the image quality by modelling the human vision system

BMVC 2008 doi:10.5244/C.22.38



(HVS), and the other considers images as 2D and 3D signals, where image quality metrics
are proposed, according to assumptions about the source where image quality degradation
comes from.

2 Background
In recent years, many image quality metrics have been proposed. Here we will only
introduce two widely-used ones, PSNR and SSIM.

2.1 PSNR
Based on the assumption that image quality degradation comes from the error between
image pixels, the Peak Signal to Noise Ratio (PSNR) is one of the most widely-used
image quality metrics and defined as the ratio of the signal (the reference image) to the
noise (the error between two images X and Y of size M×N pixels):

PS NR(X,Y) = MN max
m,n

(
X2

m,n

)/∑

m,n

(
Xm,n−Ym,n

)2

2.2 SSIM
Wang’s structural similarity index (SSIM)[13] has been constructed on another assump-
tion, which presumes that image quality degradation is often caused by the loss of under-
lying structured information in images .

Figure 1: The scheme of HVS modeling in SSIM

Derived from this simple assumption, SSIM attempts to decompose the human vision
system into independent visual pathways: Luminance, Contrast and Structure (shown in
Figure. 1).

Given x = {x1, x2, ..., xN} and y = {y1,y2, ...,yN} are the signals extracted from image
patches (taken from the same locations in an original image X and distorted image Y), the
similarity between Luminance, Contrast and Structure of two signal x and y is defined as
follows:

l(x,y) =
2µxµy + c1

(µx)2 + (µy)2 + c1
(1)



c(x,y) =
2δxδy + c2

(δx)2 + (δy)2 + c2
(2)

s(x,y) =
δxy + c3

δxδy + c3
(3)

where the mean value µx, the standard variation δx of the signal x, and the correlation
coefficient δxy between signals x and y are defined as:

µx =

∑N
i=1 xi

|x| (4)

δx = (
1
N

N∑

i=1

(xi−µx)2)
1
2 (5)

δxy =
1

N −1

N∑

i=1

(xi−µx)(yi−µy) (6)

where the mean value µy, the standard variation δy of the signal y are defined similarly. It
is worth noting that, the luminance comparison in equation (1) has satisfies Weber’s law
inherently, one of the most important properties of HVS (Weber’s Law: The magnitude
of a just-noticeable luminance change is approximately proportional to the background
luminance for a wide range of luminance values). The Structural SIMilarity (SSIM) index
is defined as:

SSIM(x,y) = l(x,y)α · c(x,y)β · s(x,y)γ (7)

3 Image Quality Metric Based on Corner, Edge and
Symmetry Maps

In this paper, a novel scheme of constructing the IQMs on the basis of SSIM is proposed
(shown in Fig.2). The image quality assessment consists of three steps: preprocessing,
HVS modelling & similarity estimation.

3.1 Preprocessing
Corner, edge and symmetry are important features in computer vision. Corners are points
where slope changes abruptly [2] and used in matching, tracking and motion estimation
[1]; Edges characterize the intensity discontinuity of an image and are used many appli-
cations, for example image retrieval in [8]; Symmetries indicate the invariance of objects
under some geometrical transformations [5]. The detection of corner, edge and symmetry
maps follows the methods in [5, 7, 6].

3.2 HVS Modeling & Similarity Estimation
SSIM is used to estimate the similarity between corner, edge and symmetry maps of
the images being compared, where we suppose that the HVS is still composed of three
independent visual pathways (Luminance, Contrast and Structure).



Figure 2: The proposed algorithmic scheme

Based on the different feature maps (corner, edge and symmetry maps), the resulting
measures are named as C SSIM, E SSIM and S SSIM, respectively. Note that, the default
parameters of SSIM[11] are still used here: c1 = k1 ∗ L, c2 = k2 ∗ L (,where k1=0.01,
k2=0.03, L=255), and α = β = γ = 1. Because SSIM has been proved to be a metric in
[13], C SSIM, E SSIM and S SSIM are metrics as well.

4 Experiments

4.1 Image Database
The database used here is the LIVE Quality Assessment Database developed by University
of Texas at Austin, Texas, USA[3, 13, 9, 10, 12, 4]. The database is developed from a set
of 29 source images which are quite representative in the content, structure, lighting con-
dition, viewing distance, viewing angle, etc. The distortion types in the image database
include: JPEG2000 compression (JPEG2000), JPEG compression (JPEG), white noise
(WN), Gaussian Blur (Gblur), Simulated Fast Fading Rayleigh (wireless) channel (Fast-
Fading). All these distortions represent a wide range of impairments which images might
suffer from.

In developing of the LIVE database, psychological experiments are set up to measure
the subjective similarity assessment using the single-stimulus methodology. After the
removal of unqualified subjective observations and possible outliers, all the raw data are
transformed into subjective scores (MOS, mean opinion scores) ranging between 0 and
100. In details, subjective are asked to drag a slider on a quality scale (that is divided
into five equal sections labelled by “Bad”, “Poor”,“Fair”, “Good”, and “Excellent”), to
express their perception of image quality. The position of the slider is then converted
into a quality score by linearly mapping the whole scale to the interval [1,100], which is
known as raw scores. The raw scores are transform to Z-scores and rescaled within each
database to the range [1,100]. Mean opinion scores are then computed for each image.



4.2 Methodology
To verify the validity and usefulness of the proposed image quality metric, the experi-
ments are designed to follow a procedure described in [9]:

• Step 1: Objective measures obtained from image quality metrics are transformed
to predicted subjective scores (predicted MOS) via a nonlinear regression, and the
fitting function used here is also used in [9], and optimized using MATLAB’s fmi-
nunc.

Quality(x) = β1logistic(β2, (x−β3)) +β4x +β5 (8)

logistic(τ, x) =
1
2
− 1

1 + exp(τx)
(9)

• Step 2: After the nonlinear regression of objective measures, the performance of
IQMs is indicated by several statistical measures (performance metrics), includ-
ing Pearson correlation coefficient (CC), Spearman Rank Order Correlation co-
efficient (SROCC), Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE). Performance metrics CC and SROCC indicate the consistency with subjec-
tive scores (perfect match = 1), and MAE and RMSE indicate a statistical distance
to subjective scores (perfect match = 0). Given two arrays a = {a1,a2, ...,aN} and
b = {b1,b2, ...,bN}, CC, SROCC, RMSE and MAE are defined as follows:

CC =

∑N
i=1(ai−a)(bi−b)

√∑N
i=1(ai−a)2 ·

√∑N
i=1(bi−b)2

(10)

SROCC =

∑N
i=1(ui−u)(vi− v)√∑N

i=1(ui−u)2 ·
√∑N

i=1(vi− v)2
(11)

RMSE =

√√√ N∑

i=1

(ai−bi)2/N (12)

MAE =
1
N

N∑

i=1

|ai−bi| (13)

where a and b are the mean value of a and b respectively, while u = {r(a1),r(a2), ...,
r(aN)} and v = {r(b1),r(b2), ...,r(bN)} and r is a mapping function which transforms
a real-value element of an array (a or b), to its corresponding rank in this array.

Note that nonlinear regression is used here, because it is generally accepted in the com-
munity of image quality assessment, that objective measures can predict subjective scores
stably, only if the objective measures can be mapped into the subjective scores via a mono-
tonic correspondence curve, despite objective measures and subjective scores (MOS) nor-
mally having different values.



5 Results and Discussion
In this section, the performance of the newly-proposed IQMs (C SSIM, E SSIM and
S SSIM), their prototype SSIM and PSNR, will be analyzed in terms of their ability to
predict quality in a manner that agrees with human ratings. There are two experiments
conducted: (1) experiment1 to evaluate the general performance of IQMs statistically on a
fair basis, and (2) experiment2 to check their performance on individual distortion types.

5.1 General Performance
Firstly, objective measures of these IQMs are transformed to subjective scores, using the
fitted curves between objective measures and subjective scores (MOS), which are shown
in Figure 3. In Figure 3, each datapoint represents a test image in LIVE database, where
the algorithmic estimation of the quality and MOS are indicated by the horizontal and
vertical axis respectively.

a) b)

c) d)

Figure 3: The fitting curve between MOS and the IQMs: a) SSIM b) C SSIM c) E SSIM
d) S SSIM.

It is observed from Figure 3, that the fitting curves of C SSIM, E SSIM, S SSIM are
almost the same. All the datapoints of C SSIM, E SSIM, S SSIM are densely scattered
around their fitted curves, while the datapoints of SSIM are more sparsely scattered.

Then the performance metrics (CC, SROCC, RMSE and MAE) are measured between
the objective scores and subjective scores (MOS), which are predicted by the algorithms
and human beings (shown in Table 1). There are several observations from Table 1.



First of all, all performance metrics indicate that, any of the proposed metric has a better
performance than SSIM. Secondly, among the proposed metrics, E SSIM performs better
than the others.

Model CC SROC RMSE MAE
PSNR 0.8088 0.8017 9.4709 7.6672
SSIM 0.8575 0.8442 8.2848 6.3978
C SSIM 0.8891 0.8882 7.3718 5.708
E SSIM 0.9012 0.9 6.9809 5.3741
S SSIM 0.8787 0.8769 7.687 5.8066

Table 1: The general performance of PSNR, SSIM, C SSIM, E SSIM and S SSIM

5.2 Performance over distortion types

SSIM C SSIM
Type CC SROC RMSE MAE CC SROC RMSE MAE

JPEG2000 0.9247 0.9211 7.1141 5.5928 0.9175 0.9152 6.6429 5.1775
JPEG 0.9123 0.8905 7.0207 5.1887 0.9144 0.8934 6.8771 4.7886
WN 0.8201 0.9663 12.2107 10.87 0.8918 0.9169 8.654 7.5121

Gblur 0.8695 0.8975 7.9531 6.0214 0.8509 0.8737 8.436 6.4852
FastFading 0.9291 0.941 6.1582 4.6995 0.929 0.9341 6.1143 4.8547

E SSIM S SSIM
Type CC SROC RMSE MAE CC SROC RMSE MAE

JPEG2000 0.9202 0.9183 6.5618 5.117 0.9078 0.9116 7.0683 5.5492
JPEG 0.9097 0.8897 6.9324 4.8602 0.8829 0.883 8.6843 5.831
WN 0.8936 0.9119 8.4431 7.1779 0.8824 0.9108 9.9083 8.3281

Gblur 0.9069 0.929 7.018 5.2188 0.9281 0.9379 6.6544 5.3045
Fastfading 0.9376 0.9408 5.7526 4.6457 0.9514 0.9455 5.0749 4.0579

Table 2: The peformance of SSIM, C SSIM, E SSIM and S SSIM over different distor-
tion types

The performance of the proposed metrics (C SSIM, E SSIM and S SSIM) on individ-
ual distortion types is also investigated (shown in Table 2 and Figure 4). From Table 2, we
can observe that, although E SSIM statistically performs better than other IQMs (over all
the distortion types), SSIM, C SSIM and S SSIM have their own advantage on individual
distortion types. Note that, in this paper, the performance metric CC is considered to be
more important than RMSE. Some comments about their relative importance are given in
[10]. Although RMSE can give a more intuitive impression of the relative improvement
of one IQM over another, the quality assessment community is more accustomed to us-
ing the correlation coefficient. Besides, SROCC operates only on the ranking of the data
points (i.e., the relative distance between the data points is ignored), while MAE is just a
beneficial supplement to RMSE.



Following this criterion, we can draw some conclusions about the relative perfor-
mance of these IQMs: (1) SSIM, C SSIM and E SSIM perform best on the distortion
types JPEG2000, JPEG and white noise in RGB space respectively, while S SSIM per-
forms best on both the distortion type Gaussian blur and transmission errors in JPEG2000
stream over fast-fading Rayleigh channel. 2) the improvement of E SSIM over SSIM is
mostly contributed to by having an outstanding performance on the distortion types white
noise in RGB space, Gaussian blur and transmission errors in JPEG2000 stream over
fast-fading Rayleigh channel, but maintaining a similar performance on the distortion
types JPEG2000 and JPEG.

a) b)

c) d)

Figure 4: Scatter plots for the image quality predictions by four IQMs after compensat-
ing for quality calibration: a) SSIM b) C SSIM c) E SSIM d) S SSIM. The distortion
types are: JPEG2000(×), JPEG(+), white noise in RGB space(�), Gaussian blur(�) and
transmission errors in JPEG2000 stream over fast-fading Rayleigh channel(^).

6 Conclusions
This paper provides a novel approach for image quality assessment, i.e., measuring the
image quality on feature (corner, edge and symmetry) maps rather than the images them-
selves. Although these features are believed to contain the information about the fore-
ground/background configuration, structure and content of images, they are usually used
only for object recognition. The experiments have shown that, although all the pro-
posed metrics have a better performance than the well-known SSIM, E SSIM is the



best one. Besides, further analysis of their relative performance shows that: (1) The
IQMs (SSIM, C SSIM, E SSIM and S SSIM) perform best only on specific distortion
types; (2) E SSIM has a better performance than SSIM because, compared with SSIM,
E SSIM not only has a outstanding performance on the distortion types white noise in
RGB space, Gaussian blur and transmission errors in JPEG2000 stream over fast-fading
Rayleigh channel, but also maintains a similar performance to SSIM on the distortion
types JPEG2000 and JPEG.

In the future, more effort will be made to optimize the parameters for C SSIM, E SSIM
and S SSIM (at the current stage, the default parameters of SSIM are used). Besides, it is
also very important to merge the proposed metrics C SSIM, E SSIM and S SSIM, into a
new, uniform image quality metric.
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