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Abstract

Previous work on visual SLAM has shown that indexing on space and scale
facilitates the use of feature descriptors for matching in real-time systems and
that this can significantly increase robustness. However, the performance
gains necessarily diminish as uncertainty about camera position increases.
In this paper we address this issue by introducing a further level of indexing
based on appearance, using low order Haar wavelet coefficients. This enables
fast look up of descriptors even when the camera is lost, hence allowing effi-
cient relocalisation. Results of experiments on a range of real world test cases
demonstrate that the method is effective, including single frame relocalisa-
tion rates up to 90% using relatively low numbers of descriptor comparisons.

1 Introduction

Recent years has seen the emergence of real-time vision systems capable of tracking 3-D
camera pose whilst simultaneously mapping the surrounding environment. Of particular
note are those based on the probabilistic formulations which underlie the simultaneous
localisation and mapping (SLAM) techniques used in robotics [4, 7]. These have demon-
strated the benefit of harnessing the uncertainty relationships encoded in such formula-
tions for focusing image processing operations when and where required, hence enabling
real-time operation. Add to this their natural online processing structure and their ability
to maintain covariance relationships across estimated parameters, and it is clear that these
systems have the potential to provide effective mechanisms for real-time location sensing.

Nevertheless, achieving robust performance during erratic non-smooth camera motion
or in visually difficult environments remains a challenge for such systems. A key element
is the data association, or feature matching, problem. If uncertainty is low, then image
search regions derived from a probabilistic filter will be small, constraining the spatial
search for matches and hence reducing computation and likelihood of mismatch. This in
turn allows the use of weaker matching techniques, e.g. template matching, in order to
further reduce computational load. Of course, it also runs the risk of losing track should
uncertainty increase - search regions grow and the probability of mismatch increases,
resulting in bad data association and filter instability.

An effective way of gaining improved robustness is to base matching on more dis-
tinctive descriptors, such as those developed in recent years for object recognition [6, 10].
This is the approach adopted by Chekhlov ez al. [5], who utilise the spatial gradient de-
scriptors which form the basis of the Scale-Invariant Feature Transform (SIFT) [6]. They
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combine this with indexing on space and scale, gating image regions and descriptor scales
using the pose and uncertainty estimates from the filter. This achieves efficient matching
and permits real-time operation. The more distinctive matching properties of the descrip-
tors provides greater robustness during short periods of uncertainty caused by camera
shake, for example. However, the approach is necessarily limited; if uncertainty contin-
ues to increase, as is the case when the camera is lost, for example, then the search over
space and scale increases to the extent that real-time operation is no longer possible.

We address this limitation by introducing an additional level of indexing based on the
appearance of image patches associated with features. For this we use low order Haar
wavelet coefficients in a similar manner to Brown et al. [14]. These correspond to coarse
estimates of spatial gradients and provide a fast means of categorising features prior to
full matching with descriptors. This enables efficient matching even when uncertainty
in pose becomes large. Importantly, when combined with RANSAC outlier rejection,
it facilitates rapid relocalisation of the camera. The result is a robust system, capable
not only of tolerating short-lived uncertainty in camera pose, but also of recovering from
tracking failure caused by sustained motion blur or occlusion, for example.

Following a brief review of related work, Section 2 gives an overview of visual SLAM,
and in particular the descriptor matching technique used in [5]. Section 3 describes the
appearance indexing method and results of experiments on real world test cases are pre-
sented in Section 4. These demonstrate that the approach is effective, achieving single
frame relocalisation rates of up to 90%, whilst using below 5% of the descriptor compar-
isons required for exhaustive search matching.

1.1 Related Work

Se et al. [16] and Gordon and Lowe [11] use the SIFT, and hence the same form of
descriptors, for feature matching when localising a camera within a pre-built map. They
also use RANSAC outlier rejection when computing the camera pose in each frame. In
these respects the methods are similar to that described here when in relocalisation mode,
i.e. a known map and a lost camera. However, the SIFT is significantly more demanding
in terms of computation (frame rates of 4 fps are reported in [11] for localisation alone),
and its use is unnecessary during normal operation in SLAM when using scale indexing
[5]. In this work we show that it is also unnecessary for relocalisation, and that this can
be achieved efficiently using appearance indexing.

Williams et al. [2] have also recently developed a method for relocalisation in visual
SLAM and report impressive results. They use template matching during normal opera-
tion and then switch to a fast version of the randomised trees classifier [13] for matching
features during relocalisation. This classification approach contrasts with the descrip-
tor matching strategy used here. Our results presented in Section 4 suggest that the two
methods are similar in terms of performance and that their relative merits are also com-
parable. On the one hand, classification via randomised trees is almost certainly faster
than descriptor comparisons, but on the other hand requires significantly greater memory
resources. Also, the increased robustness provided by descriptors means that our method
is less sensitive to relocalisation delays, i.e. it is able to tolerate greater uncertainty in the
relocalised pose. Our results also suggest that the use of descriptors gives greater levels
of precision in feature matching prior to using RANSAC, at around 50%-65% compared
with the 20% reported in [2], giving faster convergence to consensus.



2 Visual SLAM Using Descriptors

In this section we provide a brief overview of visual SLAM and the specific case of using
feature descriptors for matching as described in [5]. Readers are referred to the now
extensive literature on such systems for more detailed information, see e.g. [1].

Our objective is to determine the 3-D pose of a moving camera whilst at the same time
mapping the surrounding environment based on observations within the video stream.
We represent the camera pose, v = (q,t), in terms of its orientation, defined by the
quaternion ¢, and its position vector t. Scene structure is defined by a map of N fea-
tures, (F1,F,...,Fy), which we assume here to be points in the scene with 3-D posi-
tions m = (mj, my,...,my). This gives a system state vector x = (v,m) with dimension
7+ 3N. In a probabilistic formulation, given observations &, we seek to determine the
posterior density p(x|¢). Assuming Gaussian statistics and Markov state evolution, then
mean and covariance estimates can be obtained using the Kalman filter (KF) and its vari-
ants [17]. This requires the definition of a process model and an observation model. The
former defines the state evolution through time, i.e. X" = f(x, e), where e is a zero mean
Gaussian vector representing our uncertainty about the camera motion. Options for f in-
clude constant velocity or constant position models. We use the latter in this work. The
observation model defines the relationship between the system state and observations in
the current frame. We assume that each frame yields M observations, (O1,0>,...,0u),
and in the case of point maps, these will be defined by 2-D points (z;,2y,...,Zy), each
potentially corresponding to the perspective projection of a 3-D map point. Denoting the
position of one such point w.r.t the camera by y(v,m,), this gives a set of observation
models of the form

zj, = (y(v,my,)) +w, (D

where the indices (ji, jo,. .., jnv) define the correspondence between the map features and
a subset of observations, IT denotes pin hole projection for a calibrated camera and w,, is
a zero mean Gaussian vector representing the uncertainty in the observation. Both these
models and the process model are non-linear and hence we obtain sub-optimal estimates
of the state mean and covariance using the extended KF (EKF) [17]. The filter is initialised
using a calibrated pattern of points in the scene and map points are initialised using the
inverse depth formulation described in [15].

2.1 Data Association

A critical issue in all SLAM systems, and one that is central to this work, is the data
association problem, i.e. determining the indices j, in eqn (1). Poor assignment of obser-
vations to features leads to inconsistent estimation and ultimately filter instability. Ideally
we would wish to optimise assignments over all frames, but online operation requires that
we fix them for each iteration of the filter. The common approach to this is to adopt a
nearest neighbour strategy such that for each map feature F;,, we assign the closest obser-
vation according to a distance metric, i.e. set j, to the j that minimises DIST(F;,, O;). For
example, many existing systems base this on template matching [1].

A more robust approach is to base data association on more distinctive patch descrip-
tors, as described by Chekhlov er al. [5]. Their method makes use of multiresolution
descriptors and can be formally defined as follows. Given an image point u, we define a
function PATCH,,,( I,u), which extracts from the frame I an image patch of size a X a



pixels about the point u, i.e. PATCH,x, : (L,u) — P € R**?. We define a further func-
tion SCALE, ., : R?*? — R?*“ which takes an input patch of size b x b and converts it
to one of size a X a using subsampling or upsampling methods as appropriate. Finally,
based on the pixel values within a patch P of size a x a, we build an r element descriptor
d = DESC( P), where DESC : P € R**¢ — R". In [5], this is based on the distribution of
spatial gradients within sub-blocks as in the descriptors used for the SIFT [6]. These have
proved to have good invariance properties w.r.t affine transformations of the patch [12].

The method then proceeds as follows. At the initialisation of a new map feature F,
in frame I, say, with associated image point u,,, a set of L multiresolution descriptors
d, = (d,1,d,2,...,d,) are built as follows

d,; = DESC(SCALE,,(PATCHj,, axs,;.a( Io,w,))) 2)

where (su1,512, - - - ,S,) denotes the set scales for the representation. The generation of de-
scriptors at multiple resolutions enables subsequent matching to take account of changes
in scale, avoiding the computational overhead of determining local maxima in scale space
as is done in the SIFT [6]. Given a set of observations in a subsequent frame I, the data
association problem for the map feature F,, then becomes

Jn = argmin [mlin p(du; ’,-)} (3)
J

where d’; = DESC(PATCH,x4( I, 2;)) is the descriptor for the jth observation computed
within a patch of size a x a about the point z; and p(d;,d,) is a distance metric between
descriptors, e.g. normalised Euclidean distance [6]. As an additional guard against mis-
match, we also require that p(d,,;, d;n) is below a suitable threshold 7;;. Thus, amongst the
observations, we seek the one whose descriptor is closest to one of those within the mul-
tiresolution set associated with the map feature. In practice, it is necessary to normalise
descriptors w.r.t the dominant orientation within a patch and also to allow for multiple
descriptors per patch as described in [6].

2.2 Space and Scale Indexing

The above formulation of the data association problem takes no account of the fact that
given we have knowledge of the camera pose, we can constrain the possible observations
to associate with a given map feature. In the extreme case, if a feature projects outside
of the image frame given a confident estimate of the pose, then we may conclude that we
have no observation for that feature in the current frame. More generally, using predicted
mean observations and their associated covariances provided by the filter, we can gate, or
index, observations in terms of spatial position: for a given feature, we need only consider
matching to those observations within the region about its predicted mean projection as
defined by the predicted covariance, as illustrated in Fig. 1a. This spatial indexing reduces
both the search space, over j in eqn (3), and the number of image processing operations,
and is central to the emergence of real-time visual SLAM systems over recent years.

An additional indexing strategy is used by Chekhlov et al. to also enable efficient
search over scale in eqn (3). Given knowledge of the camera pose, an estimate of the
change in scale that has occurred since a feature was first observed can be obtained. This
is based on the estimated change in distance between the camera and the feature point in
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Figure 1: Indexing for efficient descriptor matching: (a) space and scale indexing during
normal operation; (b) appearance indexing during relocalisation.

the map [5], with the uncertainty in both pose and the 3-D position of the feature defining
a search window about the predicted scale as shown in Fig. 1a. It is this guided search
strategy which enables use of the multiresolution descriptors within a real-time system.
Data association with both space and scale indexing can thus be formulated as follows.
Let A, denote the subset of observations within the current frame whose 2-D positions
are within the ’covariance bounding box’ about the mean projection of feature F;, and let
I', denote the range of spatial scales within which feature F;, is expected to be observed.
Efficient data association can then be achieved using

Jn = argmin [min p(dnhd;.)} @)
jEAn lely

where again we further reduce the chance of mismatch by requiring p (d,, d;.n) < Ty. This
formulation gives reduced search, and hence reduced image processing operations, as the
certainty in camera pose increases.

3 Appearance Indexing and Relocalisation

The difficulty with the data association in eqn (4) is its reliance on good pose estimates.
As uncertainty increases, then the search over space and scale increases. In systems using
weak matching techniques, this increases the likelihood of mismatch and hence bad data
association. For descriptor based matching, mismatches are considerably less likely, but
the increased search results in significant reductions in frame rate. In the case of tracking
failure, caused by sustained motion blur or visual occlusion, for example, then the time
required to achieve good data association is likely to exceed video frame rate significantly,
hence prohibiting relocalisation.

We address this problem by introducing a further level of indexing based on the ap-
pearance of image patches associated with map features and observations. This enables
efficient searching on descriptors when pose information is not available or is unreliable,
hence facilitating fast relocalisation. The indexing is based on low order Haar wavelet co-
efficients [3] and is motivated by work of Brown et al. [14]. These correspond to coarse
estimates of the spatial gradients in an image patch. For a patch P of size a x a, the first



4 Haar coefficients can be computed using Hy = H P H” such that

1
hohl}H_ [11 11 11 )

H4:|:h2 h3 _% 11 -~ 1 =1 - =1 =1

where the matrix H is of size 2 x a. For indexing we only use the 3 coefficients h =
(h1,ha,h3); the coefficient iy being unsuitable for discrimination since it corresponds to
the scaled mean of the patch. To account for the lack of rotation invariance, we also
need to normalise patches w.r.t their dominant orientation prior to computing the Haar
coefficients in a similar manner to that used when generator descriptors.

Indexing is based on a quantisation table Q = {b;} consisting of a set of bins b;. We
define a quantisation function QUANT : R3 — B C Q, which produces a mapping between
the Haar index h and a subset of bins B. For a mapped feature F,, we assign pairs (n,1)
to bins according to the quantisation of the Haar coefficients for each patch at scale s,,,
i.e. if h,; denotes the Haar coefficients for the patch at scale s, then b; = {(n,l)|b; €
QUANT (h,;)}. Data association is then achieved by only considering those observations
whose appearance indexing maps to a bin associated with F,

jp, = argmin min d,.d 6
] gj 1,(n,l)Eb1,biEBj p( nl j) ( )

where B; = QUANT(h;) and h; are the Haar coefficients for the patch surrounding the
Jjth observation located at point z;.

In practice, we switch to the above data association in the event of tracking failure,
as indicated by sustained inability to associate observations with mapped features via eqn
(4). The resulting matched observations are then used to relocalise. However, the lack
of pose information does mean that matching is less reliable, especially when dealing
with large maps. Consequently, there are likely to be significant numbers of outliers (in
the experiments we recorded levels of around 35%-50%) and thus further processing is
required for reliable relocalisation. For this we use RANSAC in a similar manner to
that in [16, 11, 2], based on the original formulation by Fischler and Bolles [9]. Briefly,
for each match, we have a mean 3-D position for the map feature. Given three such
matches, we can obtain a pose estimate [9]. Thus, using RANSAC, we seek a consensus
set and the associated pose by testing multiple hypotheses using the 3 point algorithm.
For relocalisation, we take the same approach as Williams et al. [2], reinitialising the
filter with the pose returned by RANSAC and a large artificial covariance, and using the
consensus set as the observations for the next update. On successful data association in
subsequent frames the filter then returns to normal operation.

4 Experimental Results

We analysed performance by running the system live in the laboratory and offline on sev-
eral real world test sequences. The latter were captured in an office environment using
smooth ’trackable’ motion, enabling us to compare frame by frame relocalisation perfor-
mance with a ground-truth provided by normal SLAM running alongside. Two of the
sequences were captured using simple translational or rotational motion, whilst the others
were captured using general motion in order to build a reasonably sized feature map. Map



Sequence | Method Frames Comps, %
Success, % | Wrong, % | No Result, % | Mean=+ Std Dev
‘Wall Trans Ext 97.27 0.16 2.56 100+0
Ind 96.70 0 3.2967 3.14+0.32
Wall Rot Ext 95.56 0.42 4.00 10040
Ind 93.34 0.03 6.61 2.58+0.24
Office 1 Ext 94.66 1.54 3.78 10040
Ind 91.53 0.89 7.57 4.114+0.54
Office 2 A Ext 70.96 2.24 26.79 10040
Ind 59.84 1.03 39.12 2.66+0.25
Office 2 B Ext 89.77 1.00 9.18 10040
Ind 74.02 0.40 25.56 3.24+0.33
Office 2 C Ext 90.59 1.09 8.30 10040
Ind 78.96 0.69 20.33 2.86+0.19

Table 1: Relocalisation success rates for exhaustive and appearance indexing search. The
right-hand column shows the average percentage ratio of descriptor comparisons made
per frame using indexing to that made using exhaustive search.

sizes were approximately 20-25 features for the former and between 40-70 for the latter.
The sequences consisted of between 2000 to 2500 frames. We used a calibrated hand-
held camera with 320 x 240 pixels and both narrow-angled (43° FOV) and wide-angled
(81° degrees FOV) lens. Observations were obtained using a fast saliency operator [8],
giving on average 300-400 detected observations per frame for 5 of the sequences and
around 700 per frame for the sequence ’Office 2C’. Descriptors and Haar coefficients
were computed within regions of size 23 x 23 pixels around an observation point.

Results of frame by frame relocalisation are shown in Table 1. This compares the per-
formance for two cases: using exhaustive search to match descriptors as in eqn (3); and
using appearance indexing as in eqn (6). Note the high rate of successful relocalisation
and the closeness of the indexing performance to that of exhaustive search. The last col-
umn shows the average percentage ratio of descriptor comparisons made per frame using
indexing to that made using exhaustive search. For indexing this is consistently below
5% and since the additional computational overhead of computing Haar coefficients for
indexing is relatively low, this demonstrates that we can significantly reduce computa-
tional cost whilst maintaining comparable performance. This is further illustrated in Fig.
2a, which shows the average percentage ratios per frame for two of the sequences. The
plot in Fig. 2b shows the average percentage ratio of descriptors created per frame using
indexing to that created using exhaustive search. Note the initial increase in the number
of descriptors created as the map is built and that once the map has stabilised the rate at
which descriptors are built is similar for both indexing and exhaustive search. This indi-
cates that indexing gains us efficiency primarily through reducing the search space, rather
than avoiding the creation of descriptors.

As further evidence of the effectiveness of the descriptors for relocalisation, Table
2 shows precision and recall rates achieved prior to using RANSAC for both indexing
and exhaustive search. These results also illustrate an additional benefit of indexing -
by providing a further level of coarse classification, it reduces the level of mismatch as
indicated by the significant increase in precision when using indexing compared to that
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Figure 2: Average percentage ratio of descriptors compared (left) and created (right) per
frame using indexing to that compared (created) using exhaustive search.

Sequence Indexing Exhaustive
Precision, % | Recall, % | Precision, % | Recall, %
Wall Trans 63 +8 80 + 17 61 +9 95+9
Wall Rot 67 11 84 + 17 53+ 10 87+ 12
Office 1 51+13 80 + 18 39+ 14 85+ 14

Office 2 A 66 + 18 76 £ 20 35+ 15 87+ 15
Office 2 B 60 + 18 70 £ 19 40 £ 15 89+ 15
Office 2 C 70 £ 18 75 £22 39+ 18 94+ 9

Table 2: Precision and recall rates prior to using RANSAC for descriptor matching using
indexing and exhaustive search.

for exhaustive search. Moreover, it does this with only a small reduction in recall rates.
These results contrast with the low levels of precision (20%) reported by Williams et al.
for their system based on randomised trees [2]. This will have the effect of giving quicker
convergence to consensus within RANSAC when computing the relocalised pose.

Examples of relocalisation performance achieved during live tests are shown in Fig.
3. This shows the camera view indicating spatial search regions, matched (green) and
unmatched (red) features and feature searching for relocalisation (orange). Also shown
is the external view of the camera pose and map estimates, with associated uncertainty.
In the top example, after the map has been built, the camera is suddenly occluded and
moved to a different part of the map. This causes the method to switch to relocalisation
mode as indicated in the middle frames. Note the increase in pose uncertainty. After
several frames of motion blur the system is able to quickly relocalise and resume normal
tracking operation (right-hand frame). The second example shows even more impressive
relocalisation capability, with the camera initially rotated by 180° and then suddenly ro-
tated back at the same time as moving to a different part of the map. Again successful and
fast relocalisation is achieved.

5 Conclusions

We have presented a new approach to achieving relocalisation and hence greater robust-
ness in real-time visual SLAM. The key contribution is the introduction of appearance
indexing alongside indexing on space and scale, which allows efficient use of highly
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Figure 3: Examples of successful relocalisation during live tests in the laboratory, showing
the views through the camera with matched and unmatched features and the external views
of the estimated camera pose and map with associated uncertainties.

discriminatory descriptors and hence fast relocalisation. Initial results obtained on test
sequences and during live runs in the laboratory suggest that the method is effective and
has significant potential. It compares well with the other relocalisation method recently
reported in [2]. In future work we intend to further develop the use of indexing strategies,
particularly in terms of achieving robust relocalisation within very large maps and under
severe changes in viewing perspective.
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