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Abstract

This paper presents an efficient feature-based nonrigid registration method
for multiphase liver CT volumes. While radiologists routinely examine mul-
tiphase liver CT to detect hepatic diseases, they usually search corresponding
points between 3D CT volumes by visual inspections using 2D slice images.
As the liver is a deformable organ, there exist complex nonrigid transforma-
tions between liver CT volumes obtained at difference time points (phases).
We introduce a fully automatic registration application for multiphase liver
CT volumes. For two given liver CT volumes, we extract 3D features with
their descriptors, and estimate correspondences by finding nearest neighbor
in descriptor space. An energy function is constructed using the correspon-
dence information and the smoothness measure of free-form deformation
model based on B-splines. We integrate an approximated smoothness en-
ergy function and a robust correspondence energy estimator controlled by the
confidence radius of the matching distance in this energy model. The energy
function is optimized by sequentially reducing the confidence radius, and out-
lier correspondences are discarded systematically during convergence. We
propose a highly efficient optimization procedure using the preconditioned
nonlinear conjugate gradient method. In the experiments, we will provide
quantitative and qualitative results on synthetic and clinical data sets.

1 Introduction
Multiphase liver CT is a standard-of-practice in hepatic imaging, which exploits the tem-
poral difference in the contrast material delivery to the liver between arterial and portal
phases. We show a multiphase liver CT example in Figure 1. By obtaining CT volumes
at different phases after intravenous bolus injection of contrast material, this technique
depicts the hemodynamic characteristics of different hepatic focal lesions, such as hep-
atocellular carcinoma (HCC) and metastases [5]. In this technique, radiologists’ task is
identifying a lesion that shows a dynamic enhancement pattern different from that of the
background liver (lesion detection), and then classifying this enhancement pattern (lesion
characterization). In general, this interpretation process involves a series of searching 2D
slice images for the correspondences of different phases showing the same hepatic region,
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(a) Arterial Phase (b) Portal Phase

Figure 1: A Multiphase liver CT example. The liver CT volumes obtained at arterial
and portal phases are shown in (a) and (b), respectively. The figures show the intensity
differences between phases of the liver (arrowhead), the heart (open arrow), the aorta
(arrow), and so on. The volumes are displayed using maximum intensity projection.

and then visually comparing them. If this process is automated by a registration method,
it would significantly enhance the radiologists’ performance.

However, the registration for multiphase liver CT images has following difficulties:
The liver is a highly deformable organ and deformed passively by complex movements
of the heart and the lung on top, the rib cage on side, and the other abdominal organs
on bottom. Furthermore, intensity difference on the liver between phases is large and
diseased hepatic texture is usually noisy. One can clearly see intensity differences of
hepatic regions between phases in Figure 1.

In this paper, we will propose an efficient feature-based registration method for mul-
tiphase liver CT volumes to solve above problems. As pointed out by Masutani et al. [8],
one of the most critical problems for nonrigid registration method is cost for computa-
tional time. So we lay weight on the efficiency of registration methods, and we decided
to follow feature-based registration approaches. The summary of the proposed method is
following: The features are detected using 3D Förstner corner detector [3], and descrip-
tors are constructed using locally structured gradient histogram [7]. To find the sufficient
number of features in the liver area, we apply adaptive thresholding for the cornerness
weights considering the liver Hounsfield Unit (HU) statistics. The correspondences be-
tween two feature sets are obtained by finding the nearest neighbor in the descriptor space.
Since there exist similar structures or textures in the abdominal region, the correspon-
dences usually have a significant number of outliers. To discard outliers systematically,
we integrate a robust estimator [9] to the energy function, and optimize the energy by se-
quentially reducing the confidence radius of the robust estimator. The deformation pattern
of the whole abdominal region including the liver is represented by the free-form defor-
mation (FFD) model based on B-splines [6], and an efficient approximated deformation
energy is incorporated in the energy function. For energy optimization, we propose a
highly efficient optimization method using the preconditioned nonlinear conjugate gradi-
ent method [13] utilizing exact derivative equations tailored to our energy function. The
registration procedure is illustrated in Figure 2.

In the literature, there are many papers describing medical image registration meth-
ods [15]. Rueckert et al. [12] used normalized mutual information for the similarity mea-
sure and FFD model based on B-splines for modeling the deformation pattern. Rohlfing et
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Figure 2: The registration procedure for multiphase liver CT volumes. In the feature ex-
traction results, we show only feature locations while features consist of locations and de-
scriptors. In the feature correspondence results, we show correspondences as green lines
and marks brighter color for higher weight. In the mesh optimization results, we show
optimized mesh for the portal phase CT. For visualization purpose, results are generated
using quarter sized volumes. The results for original size volumes have more features and
finer meshes.

al. [10] presented a technique for modeling liver motion during the respiratory cycle using
a modified implementation of [12]. The execution time of [12] takes about several hours
for the data sets we interested [8], however our target method requires only few minutes on
the same data. As we are interested to fast methods to register multiphase CT volumes, we
do not experiment using intensity-based methods in this paper. Chui and Rangarajan [1]
developed a nonrigid point matching algorithm named TPS-RPM (thin-plate spline - ro-
bust point matching) which estimates correspondence and the spatial mapping jointly. As
they only consider feature location to find correspondences, their method would not be an
effective approach for our application. However we adopt an iterative optimization strat-
egy similar to their deterministic annealing procedure. Urschler et al. [14] used local and
global 3D descriptors for robust feature matching and calculated a dense displacement
field using a thin-plate spline (TPS) model. As their method would be potentially suitable
for our application and we will compare the proposed method to this one.

2 Registration Algorithm

2.1 Feature Extraction
Feature Location: The 3D interest point detector is a well established research topic in
medical imaging, and comparative experimental results of various detecting methods are
provided in [4]. We select 3D Förstner corner detector [3] for finding features as it shows
good empirical performance. As we always know the exact physical dimension of CT
volumes, we do not need to consider scale invariant detector in this case. The cornerness
F of a given volume g at (x,y,z) is defined by following equation:

F(x,y,z) = det(C)/trace(Cad j) with C = ∇g(∇g)T (1)

where Cad j is adjugate matrix of C, ∇g is the gradient of g obtained using the 3D Sobel



operator, and ∇g(∇g)T represents the average of ∇g(∇g)T in a 3×3×3 voxel window
centered at (x,y,z). We define the location of a feature as the point with the local maxi-
mum of F within a 5×5×5 window. Here, we point out that points with maxima F below
the given cornerness threshold Fth are discarded. In the abdominal region, F of the bone
and lung has usually higher values than the liver area, so a single Fth value limiting the
total number of features can remove many useful features in the liver area. We resolved
this problem by applying a different threshold Fthliver in the candidate liver area found
by comparing the empirical liver HU statistics. For multiphase liver CT, the liver HU is
ranging from 0 HU to 150 HU. Finally we can obtain a sufficient number of features that
spread out evenly. In the experiments, Fth = 1000 and Fthliver = 50 are empirically chosen.

Feature Descriptor: For given feature locations, we construct the descriptor using locally
structured 3D gradient histogram which is a well established method in 2D images [7].
Firstly, we find the maximum gradient orientation using a 3D gradient vector histogram
constructed in the 16×16×16 window centered at the feature location. Then we make
gradient histogram having 4×4×4 grid rotated to the maximum of orientation, each bin
has 4×4×4 window. The gradient orientation (θ ,φ) in the spherical coordinate (ρ,θ ,φ)
is quantized to 4×8 histogram bins (considering 0≤ θ ≤ π,0≤ φ ≤ 2π , bin size is π/4×
π/4) and Gaussian weighted ρ is added to each corresponding bin. Above window and
bin sizes are chosen based on an analysis on 2D images [7]. Finally a 2048-dimensional
descriptor (grid size× histogram bin number) is constructed after L2-norm normalization.

Correspondences: The correspondences between two feature sets are established by find-
ing nearest neighbor (NN) in the 2048-dimensional descriptor space. We compare all the
candidate features in a given distance boundary and the corresponding feature with mini-
mum distance dmin in the descriptor space is selected. Additionally we reject all matches
when the distance ratio (first over second closest distance) is greater than dr and dmin is
larger than the maximum possible distance dth. We used dr = 0.8 based on an analysis on
2D images [7]. Although conventional feature-based approaches minimize the number of
outlier correspondences by using a distance threshold, the threshold value and its deter-
mination depends on applications. We use all NN information in the energy construction.
In the following, one of two given volumes is called as reference and the other as input.
We define C as a set of correspondences c = (ci,cr) between the reference cr and input ci
features. The weight of each correspondence wc ∈ [0,1] is defined as 1−dmin/dth, and a
larger value means a higher reliable matching.

2.2 Deformable Mesh
For an input volume, we construct a control point grid Φ, which is a lattice of control
points φ with uniform spacing δ . If S represents a state of all mesh vertices at some time,
a transformed point TS(x) of point x is represented by the following conventional FFD
model based on B-splines [6]:

TS(x) =
3

∑
l=0

3

∑
m=0

3

∑
n=0

Bl(u)Bm(v)Bn(w)φ S
i+l, j+m,k+n (2)

where φ S are control points at state S, i = bx/δc+ 1, j = by/δc+ 1, k = bz/δc+ 1,
u = x/δ −bx/δc, v = y/δ −by/δc, w = z/δ −bz/δc, and Bl is the lth basis function of



the uniform cubic B-spline [12].

2.3 Energy Function
For a given state S and correspondences C, we define the energy E as

E(S,C,r) = λDED(S)+EC(S,C,r) (3)

where ED is the deformation energy, EC is the correspondence energy, λD is the control
parameter of the regularity of the mesh, and r is the confidence radius.

Deformation Energy: We define the deformation energy as the approximation of the sum
of squared second derivatives of the x, y, z coordinates. If we define L as an index set of
successive collinear three vertices, the deformation energy can be defined as

ED(S) = ∑
(i, j,k)∈L

(−xi +2x j− xk)2 +(−yi +2y j− yk)2 +(−zi +2z j− zk)2

= XTKX+YTKY+ZTKZ≈
∫

D

(∥∥∥∥
∂ 2TS

∂x2

∥∥∥∥
2

+
∥∥∥∥

∂ 2TS

∂y2

∥∥∥∥
2

+
∥∥∥∥

∂ 2TS

∂ z2

∥∥∥∥
2
)

dx
(4)

where X, Y, Z are row ordered matrices of the x, y, z coordinates of the mesh control
points at state S, respectively. K is constructed from K̃TK̃ where K̃ is a matrix containing
one row per triplet in L and one column per mesh vertex. In detail, the rth row of K̃
corresponding to triplet (i, j,k) is defined as follows:

K̃ri =−1, K̃r j = 2, K̃rk =−1,K̃rc = 0 for c 6= i, j,k . (5)

Correspondence Energy: We define the correspondence energy as

EC(S,C,r) =−∑
c∈C

wcρ (d,r) with ρ (d,r) =

{
3(r2−d2)

4r3 d < r
0 otherwise

(6)

where d = ‖cr−TS(ci)‖, and ρ is the robust estimator [9]. The robust estimator has
following characteristics: If r is large, the weights of most of the correspondences will be
summed in the energy; if r is small, the weights of only selected correspondences will be
used. Given C and r, minimizing EC represents the mesh being deformed so that input
feature locations coincide with the corresponding reference feature locations.

2.4 Optimization
Efficient Optimization Method: For minimizing E for fixed r, we propose to use the pre-
conditioned nonlinear conjugate gradient method [13]. The complete pseudo code of the
optimization procedure is shown in Algorithm 1. In this procedure, the Newton-Raphson
method is used for the general line search (lines 5∼8), and the Polak-Ribière scheme
(line 11) is used for quick convergence [13]. As the first and second partial derivatives
of the energy (3) can be calculated analytically, the optimization can be implemented ef-
ficiently. The preconditioner matrix M uses second partial derivatives (lines 2,10). The



Algorithm 1 Optimize E(S,C,r) Using Nonlinear Conjugate Gradient Method
1: r = (−∂E/∂X,−∂E/∂Y,−∂E/∂Z)
2: s = M−1r, d = s, δ new = rTd, δ 0 = δ new . We let M = ∂ 2E/∂X2.
3: while δ new

x > ε2δ 0
x and δ new

y > ε2δ 0
y and δ new

z > ε2δ 0
z do

4: δ d = dTd
5: repeat
6: α = (− [∂E/∂X]T dX

dT
X[∂ 2E/∂X2]dX

,− [∂E/∂Y]T dY
dT

Y[∂ 2E/∂Y2]dY
,− [∂E/∂Z]T dZ

dT
Z[∂ 2E/∂Z2]dZ

)

7: (X,Y,Z) = (X,Y,Z)+α ·d
8: until α2

x δ d
x > ε2 and α2

y δ d
y > ε2 and α2

z δ d
z > ε2

9: r = (−∂E/∂X,−∂E/∂Y,−∂E/∂Z)
10: δ old = δ new, δ mid = rTs, s = M−1r, δ new = rTs
11: β = ( δ new

x −δ mid
x

δ old
x

,
δ new

y −δ mid
y

δ old
y

,
δ new

z −δ mid
z

δ old
z

)

12: d = s+β ·d
13: end while

Algorithm 2 Optimize E(S,C) Using Confidence Radius Scheduling
1: r = r0
2: while r ≥ re do
3: Optimize E(S,C,r) . Algorithm 1.
4: r = η · r . η is an attenuation constant in (0,1).
5: end while

first derivative of the x coordinate are computed using the following equations:

∂E
∂X

= λDKX+
∂EC

∂X
, (7)

∂EC

∂xφl,m,n

=
3

2r3 ∑
c∈C

wc(xTS(ci)− xcr)Bl−i(u)Bm− j(v) ·Bn−k(w) . (8)

And the second derivative of the x coordinate are computed using the following equations:

∂ 2E
∂X2 = λDK+

∂ 2EC

∂X2 , (9)

∂ 2EC

∂xφp,q,r ∂xφl,m,n

=
3

2r3 ∑
c∈C

wcBl−i(u)Bm− j(v) ·Bn−k(w)Bp−i(u)Bq− j(v)Br−k(w) . (10)

In above equations, the summation is taken on the condition of d < r and 0≤ l− i, m− j,
n− k, p− i, q− j, r− k ≤ 3. The derivatives for y and z coordinate can be similarly
calculated.

Optimization Strategy: The whole optimization procedure for minimizing the energy (3)
is shown in Algorithm 2. When r is large, ED has a larger effect than EC, so the mesh
deforms rigidly. As r decreases, EC becomes progressively more effective than ED and
the mesh bends to the correct matches. The effect of outliers diminishes as r decreases.
In the experiments, r0 = 512, re = 0.5, η = 0.5 is used.



Table 1: Results on synthetic data sets
Measure \ Data Set SA1 SP1 SA2 SP2 SA3 SP3 SA4 SP4 SA5 SP5

RMSDinit [HU] 291.4 275.8 240.5 245.7 247.1 264.9 179.2 179.2 330.5 381.3
RMSD fT PS [HU] 55.1 54.7 62.3 54.4 59.3 72.1 60.2 66.3 60.4 48.8
RMSD fprop [HU] 49.0 41.5 40.2 36.4 46.8 45.0 50.4 51.6 36.0 34.9
RMSdisp, fT PS [mm] 5.57 5.85 12.27 9.72 7.27 8.37 6.19 6.78 8.16 5.78
RMSdisp, fprop [mm] 1.08 1.18 1.80 1.54 2.44 2.34 1.59 1.43 1.11 1.15
MAXdisp, fT PS [mm] 61.53 61.33 65.54 65.64 49.92 52.48 52.97 52.20 48.82 54.78
MAXdisp, fprop [mm] 8.64 8.48 13.48 10.98 26.13 23.72 16.22 14.61 6.90 8.69
# correspondences 2883 3047 4663 4810 3960 3690 3116 3143 2472 2398

(a) (b) (c)

Figure 3: Intensity difference images (|A3−Areg
3 |) in synthetic data set SA3: (a) before

registration, (b) after registration using fT PS, and (c) after registration using fprop. The
upper row is axial sections and the lower is coronal sections.

3 Experiments
To verify robustness, the proposed method, denoted fprop, is compared with another fea-
ture based method, denoted fT PS, which uses the same feature extraction and correspon-
dences result with fprop while the dense deformation field is estimated using the approx-
imated thin-plate spline (TPS) method [11]. The test CT volumes are scanned at the
arterial (Ai) and the portal (Pi) phase in the same patient having index i during dynamic
contrast enhancement, and a total of five A and P sets are used. The volume size of test
CT volumes are 512×512×Sz where Sz ranges 176 to 343. For mesh sizes, δ = 32 (voxel
unit, 17∼22 mm depends on data sets) is used, and radiologists confirm that it is suffi-
ciently fine to our application. For regularization parameters, fprop uses λD = 0.002 and
fT PS uses 0.005 which are performed best. All experiments are performed on an Intel
Pentium 4, 3.6 GHz machine with 3.12 GB RAM.

3.1 Synthetically Deformed Data
Since it is very difficult to model the complex organ movements in the abdomen, we
created synthetically deformed data using the following method: For two given CT vol-



Table 2: Results on clinical data sets
Measure \ Data Set C1 C2 C3 C4 C5

RMSdispland , fT PS [mm] 8.35 7.90 8.85 6.67 6.43
RMSdispland , fprop [mm] 3.28 3.62 5.09 3.94 3.74
MAXdispland , fT PS [mm] 46.85 39.88 29.09 25.99 34.13
MAXdispland , fprop [mm] 11.23 12.95 24.36 18.00 15.19
# manual landmarks 230 300 283 205 254
# correspondences 1408 2184 1648 1355 956

(a) (b) (c)

Figure 4: Registration results of (a) arterial A2 and (b) portal phase P2 volumes in clinical
data set C2 using fprop. (c) The signed difference image A2−Preg

2 depicts a hypervascular
hepatocellular carcinoma (arrow) with better visual contrast.

umes Ai and Pi, a radiologist manually marks 205∼ 300 evenly distributed corresponding
landmarks by visual inspection. Using these correspondences, the dense synthetic de-
formation field Ai → Pi and Pi → Ai is calculated from the TPS interpolation assuming
isotropic landmark errors [11]. We generate synthetically deformed volumes Asyn

i from Ai
using Ai → Pi and Psyn

i from Pi using Pi → Ai, and make two test sets SAi = {Ai,A
syn
i } and

SPi = {Pi,P
syn
i }. From test set SAi (SPi), we generate registered volume Areg

i (Preg
i ) from

Asyn
i (Psyn

i ) after constructing the deformation field Asyn
i → Areg

i (Psyn
i → Preg

i ) using each
algorithm.

The experimental results are shown in Table 1 where the measuring quantity is adopted
from [14]. In Table 1, RMSDinit , RMSD fT PS , and RMSD fprop are the root mean square
(RMS) of the intensity difference before registration, after registration using fT PS, and
after using fprop, respectively. RMSdisp and MAXdisp for each method are RMS and max-
imum of the lengths of displacement difference vectors between ground truth vectors
P→ A (A→ P) and generated vectors Asyn → Areg (Psyn → Preg) using each algorithm. In
Figure 3, we show intensity difference images to comparing qualitative results.

3.2 Clinical Data
In clinical tests, we applied the proposed method to register the liver area scanned at the
arterial (Ai) and the portal (Pi) phase volumes. From test set Ci = {Ai,Pi}, we generate
registered volume Preg

i from Pi after constructing the deformation field Pi → Preg
i using

each algorithm. Compared to the synthetic data tests, the intensity difference measure is
meaningless in this case, because the intensity significantly changes for a corresponding



region between different contrast enhancement phases. Therefore, we measured only
the statistics of landmark positions which were manually marked by a radiologist for
correspondence information.

The results are shown in the Table 2, where RMSdispland and MAXdispland for each
method are RMS and maximum of the lengths of the displacement difference vectors
between manual landmark correspondence vectors P→ A and generated vectors P→ Preg

calculated on manual landmark positions in P only. In Figure 4, we show qualitative visual
inspection.

4 Discussion
The mean values of RMSdisp, fT PS and RMSdisp, fprop are 7.60mm and 1.57mm in synthetic
tests, and 7.64mm and 3.93mm in clinical tests. The proposed method fprop performed
better than the TPS-based registration approach fT PS in every performance measure.
Since the TPS model is basically a surface interpolation scheme using the basis func-
tion having infinite response, wrong correspondences always distort deformation patterns
erroneously and have global influences. So outlier correspondences should be minimized
before the TPS warping. However eliminating outliers by thresholding correspondence
weights wc is a heuristic procedure that depends on the correctness of the weight measure,
and a high threshold value will also eliminate informative correspondences. MAXdisp, fT PS
values in synthetic and clinical tests show the TPS-based registration approach can not
handle outliers appropriately, so erroneous deformation patterns are obtained. The pro-
posed method is systematically robust for correspondences including outliers using the
energy minimization approach on the FFD model incorporating the robust estimator.

The proposed method can be implemented very efficiently since all matrices includ-
ing M and K are sparse. Every matrix calculation is executed in the sparse form such
as compressed column representation and M−1 in Algorithm 1 is implemented using a
direct sparse matrix solver [2]. In clinical tests, the total execution time of the proposed
method fprop ranges 218s to 448s where approximately 30% of time is consumed in fea-
ture extraction, and 50% for matching and optimization, and 20% for transformed volume
generation. The execution time of the TPS-based method fT PS ranges 701s to 2265s. For
mesh optimization, the time complexity of the proposed method is mainly depends on
the size of mesh vertices, however the time complexity of TPS-based method is largely
depends on the number of correspondences. For transformed volume generation, TPS-
based method is slower than the proposed method as it has to calculate weights from
basis functions using all correspondences.

5 Conclusions
In this paper, we introduced an automatic registration application for the multiphase liver
CT and presented an efficient feature-based nonrigid registration method for this applica-
tion. By experimental results using synthetic and clinical data sets, we discuss robustness
and efficiency of the proposed method. Although we provided the experimental data on
the multiphase liver CT registration, the proposed method is general and can be easily
extended to another target organs. As the proposed method runs very fast compared to
intensity-based methods, the deformation pattern from the proposed method might be



used to an initial transformation for the more time-consuming intensity-based methods to
achieve better qualitative results.
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