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Abstract

Determining the motion consistency between two video clips is a key com-
ponent for many applications such as video event detection and human pose
estimation. Shechtman and Irani recently proposed a method for measuring
the motion consistency between two videos by representing the motion about
each point with a space-time Harris matrix of spatial and temporal deriva-
tives. A motion-consistency measure can be accurately estimated without
explicitly calculating the optical flow from the videos, which could be noisy.
However, the motion consistency calculation is computationally expensive
and it must be evaluated between all possible pairs of points between the two
videos. We propose a novel quantization method for the space-time Harris
matrices that reduces the consistency calculation to a fast table lookup for
any arbitrary consistency measure. We demonstrate that for the continuous
rank drop consistency measure used by Shechtman and Irani, our quantiza-
tion method is much faster and achieves the same accuracy as the existing
approximation.

1 Introduction
The motion field is a fundamental feature that many algorithms use to analyze video.
Determining whether two videos exhibit the same motion field is a key component in a
wide range of applications such as event detection [7,8,10,15], action classification [3,4],
human pose estimation [5], and occlusion boundary detection [18]. Motion consistency
between videos has traditionally been computed by first calculating the optical flow of the
two videos and then determining whether the flows match. Optical flow is difficult to com-
pute accurately and is notoriously noisy on motion boundaries. Shechtman and Irani (S-I)
recently demonstrated the feasibility of determining whether two videos could have been
generated by the same motion field without explicitly calculating the optical flow [15].
However, many optimizations are required for the algorithm to run in real time because
one must correlate a spatio-temporal volume through all locations in the video. Instead of
representing the motion field as a real valued matrix as S-I do, we propose a method for
quantizing the motion-based feature matrices into a set of discrete prototypes. By using
these “motion words” our method dramatically reduces computation needed to calculate
motion consistency with minimal loss in accuracy. Motion consistency calculations be-
tween two space-time patches are reduced to table lookups. Since naive quantizations of
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space-time Harris matrices could introduce unacceptable errors, we perform a principled
analysis of the space of these matrices to derive our quantization method.

Vector quantization is commonly employed to reduce the computation time required
to search for the nearest neighbors of a vector or to directly look up the result of a function
on that vector [11,13,14,19]. The mapping of continuous feature spaces into a dictionary
of prototypes results in more than just a computational speedup; it changes the way we
view the problem and enables us to use fundamentally different approaches to solving the
problem [6,20]. For example, by quantizing SIFT features [12] into visual words, Sivic et
al.were able to use text retrieval algorithms for image and video retrieval [16]. We observe
that similar techniques can be applied to the motion domain and more specifically to the
motion consistency measure proposed by S-I. Choosing the appropriate values to quan-
tize and the right quantization function is a challenging process that demands a deeper
understanding of both the algorithm and the space of matrices.

The original algorithm proposed by S-I computes the motion consistency between ev-
ery point in the three dimensional template volume and the target video. While this is the
most accurate method, it is also the slowest because the motion consistency needs to be
recalculated at every location in the target video. Processing a 50× 25× 20 query on a
144× 180× 200 video using a 3 GHz Intel R© Pentium R©4 machine is 270 times slower
than real-time [15]. By reducing the number of points at which to compute motion con-
sistency, such as employing a hierarchical decomposition, processing only every other
frame, and scanning only a few points in the template, S-I were able to reduce the com-
putation time to near real-time (20 frames a second). However, we argue that orders of
magnitude increases in the speed are still needed for the algorithm to work in production
systems. We present a fast multi-level approach and demonstrate that it is sufficiently
flexible to approximate S-I’s method with a dramatic speedup.

2 Flow Consistency
Shechtman and Irani showed that by calculating the motion consistency between a tem-
plate video and a test video, one can find actions such as diving, clapping, and spinning
in real-world videos. This is done by finding the motion consistency between all points
in the template video and the test video. The template is then scanned across all locations
in both space and time, and all peaks where the consistency is greater than a specified
threshold are flagged as containing the action of interest. Using a similar notation as S-I,
we review the details of their algorithm. Let P be a small, e.g., 7×7×3 space-time patch
in the video. We define the space-time gradient as ∆Pi = (Pxi ,Pyi ,Pti) for each point in
P(i = 1 . . .n). and we similarly define the space-time Harris matrix M as follows (see
S-I [15] for further details):

M =

 ∑P2
x ∑PxPy ∑PxPt

∑PyPx ∑P2
y ∑PyPt

∑PtPx ∑PtPy ∑P2
t

 . (1)

We further define M♦ to be the upper left minor on M:

M♦ =
[

∑P2
x ∑PxPy

∑PyPx ∑P2
y

]
. (2)

A space-time patch P contains multiple motions if there is a rank increase between M♦

and M, or a single motion if there is no rank increase. Because the local space-time



patches are small, we can assume that most patches have only one motion. Consider two
space-time patches P1 and P2, where M1 and M2 denote their space-time Harris matrices,
respectively. Determining whether the two patches have inconsistent motion is equivalent
to determining whether the concatenated patch P12 has multiple motions. This is straight-
forward since M12 = M1 + M2. Ideally, one would like to calculate the rank-increase
measure ∆r, where

∆r = rank(M)− rank(M♦), (3)
which one can do by calculating the number of non-zero eigenvalues of the matrices. Due
to noise, the eigenvalues are never exactly zero, and therefore S-I defined a continuous
rank-increase measure ∆r̃ where

∆r̃ =
λ2 ·λ3

λ
♦
1 ·λ♦

2

=
det(M)

det(M♦) ·λ1
≈ det(M)

det(M♦) · ‖M‖F
, (4)

and λi is the ith largest eigenvalue of M. Since finding the eigenvalues of a matrix is time
consuming, S-I approximate λ1 by the Frobenius norm of M. The local inconsistency
measure is defined as

m12 =
∆r12

min(∆r1,∆r2)+ ε
, (5)

and its inverse, the consistency measure is defined as

c12 = 1/m12. (6)

To calculate the consistency for a template at a specific location in a video, the template
is translated to that location and the pairwise consistencies between the template and
video are summed over the entire template volume. To produce a consistency map, the
consistency between the template and video is calculated for every possible location of
the template. As calculating the full consistency map requires computing consistencies
between all points in the template and video, this calculation is very expensive. Quanti-
zation of these matrices would enable us to avoid the calculations and look up the results
directly. Additionally, precomputation allows us to use any flow consistency measure that
is a function on M, rather than only those that can be efficiently computed.

3 Space of S-T Harris Matrices
We now analyze the space of S-T Harris matrices to gain a better understanding of its
structure. This matrix has been studied in other contexts, for example in computing op-
tical flow [1, 17] and space-time interest points [9]. As seen from Eqn. 1, S-T Harris
matrices (M) are 3× 3 symmetric positive-semidefinite matrices embedded within a six
dimensional space. The basic structure of the matrices within this space is a polygonal
cone in six dimensions, which we visualize using a cone in a three dimensional space
(Figure 1). The positive semi-definite cone can be seen as a polygonal cone whose inte-
rior is composed of rank-3 matrices, whose faces are rank-2 matrices, and whose edges
are rank-1 matrices. The cone interior represents matrices that are inconsistent by the
rank increase measure, since the upper left minor must have rank at most two while the
full matrix has rank three. The space outside the cone is composed of matrices which,
while symmetric, are not positive semi-definite. The faces and edges may or may not be
consistent, depending upon the ranks of their upper left minors (M♦). However, since the
space of rank-1 and rank-0 2×2 matrices is a lower dimensional space than rank-2 3×3
matrices, inconsistent matrices occupy zero “volume” on the faces and edges of the cone.



Figure 1: Space-time Harris matrices are 3×3 symmetric positive-semidefinite matrices,
which we visualize using a cone. This conic structure suggests that the matrices could be
quantized with predictable error bounds.
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Figure 2: System overview. Given two patches and their corresponding ST-Harris ma-
trices, we first quantize them and then assign a label according to the nearest prototype
matrix. The labels are used to index into a pre-computed table that enables us to efficiently
look up the motion consistency between the matrices.

4 Approach
Our approach to making the continuous rank-increase measure more efficient to compute
is to look up ∆r̃ directly given the space-time Harris matrices M. Given two space-time
patches P1 and P2 and their corresponding space-time Harris matrices M1 and M2, we
propose a two-level lookup table to find the motion consistency between the patches. We
first convert the matrices into a small, finite set of prototype matrices so that that space of
matrices can be represented using discrete labels. We then use the labels to look up the
motion consistency between the patches. The overview of the algorithm is illustrated in
Figure 2.



4.1 Matrix Quantization
The simplest approach to the problem would be to simply quantize matrices according to
a uniform grid. Using n divisions on each axis of the six-dimensional grid, this results in
n6 prototypes. As the ultimate goal is to generate a lookup table for all possible pairs of
prototypes, the consistency table would need n12 entries, which is impractically large for
all but the coarsest grids. However, any more sophisticated method of assigning proto-
types could be itself very expensive. To resolve both these issues, we propose a two-level
quantization method in which a uniform grid is used to precompute the prototype assign-
ments according to any arbitrary scheme and consistencies are precalculated between all
pairs of the greatly reduced number of prototypes.

We first describe how we convert the space-time Harris matrices to their prototype
matrices. Since the cone of symmetric positive semi-definite matrices is relatively small
proportion of the entire matrix space, we can represent this space using a sparse set of
prototypes.

Consider two space-time Harris matrices M1 and M2. The first lookup table is a finely-
divided quantization table that takes Mi and returns a label li for its prototype matrix M̄i.
The sparse set of prototype matrices S = {M̄1, . . . ,M̄p} is chosen to maximize the coverage
of the matrix space. Note that there is a one-to-one correspondence between l and M̄ and
there are p possible labels. We use l1 and l2 to index into the second consistency table to
look up the precomputed motion consistency c12 between M̄1 and M̄2.

Consider a symmetric semi-positive definite matrix M. We first normalize it so that
the L∞ norm, |M|∞, has a maximum of 1.0 (described in Section 4.3) and call it M̂:

M̂ =

 d0 f0 f1
f0 d1 f2
f1 f2 d2

 . (7)

After normalization, the entries in the matrix are in specific ranges such that the diagonals
are in di ∈ [0,1) and the non-diagonals are in fi ∈ (−1,1). The space of the matrix lies
in a (−1,1)6 hypercube. We quantize this space using D divisions per dimension. The
quantization table Q is of size D6 and each entry contains the prototype label for M̂. The
larger the number of divisions D, the more accurate the quantization is at the expense of
a larger lookup table Q. The table can be indexed by quantizing the elements of M̂ to D
levels in the standard way (ḋi = bdi ·Dc, ḟi = b fi+1

2 ·Dc). The label assigned to M̂ is given
by a simple table lookup

l = Q[ḋ0, ḋ1, ḋ2, ḟ0, ḟ1, ḟ2]. (8)

We construct the quantization table as follows. Suppose f (M) is some arbitrary as-
signment function from matrices to (labels of) prototype matrices. Recall that the quan-
tization table Q has D6 cells and each cell represents a small volume in the quantized
matrix space (−1,1)6. We build the quantization table so that, for a given cell center Mc,
the cell’s value is f (Mc). In our implementation, the prototype matrices are randomly
and uniformly distributed in the matrix space and we assign the label of Mc to its nearest
neighbor in the set of of prototypes. The connected nature and relatively small dimen-
sionality (6) of the space suggest that a uniform random distribution is likely to be near
optimal. An alternative method of selecting prototypes would be to sample matrices from
a set of training videos, but experiments suggest that the distribution of prototypes has
only a minor effect.



4.2 Computing Motion Consistencies
We use the labels l1 and l2 to efficiently look up the motion consistencies between Ṁ1 and
Ṁ2 in a precomputed table. This is an approximation of the motion consistency measure
for the space-time patches P1 and P2 and their corresponding space-time Harris matrices
M1 and M2. The precomputed consistency table C is a p× p matrix, where p is the number
of prototype matrices. The motion consistency between M1 and M2 is given by

c12(M1,M2) = C[l1, l2]. (9)

We populate this table by calculating the consistency measure c(Ṁi,Ṁ j) = 1/m(Ṁi,Ṁ j)
(Eqn. 6) between all pairs of prototype matrices (Ṁi,Ṁ j) ∈ S2.

A further optimization could be used: if a given prototype produces the same (or
nearly the same) consistency for any given comparison prototype, then these comparisons
could be premptively avoided. For our selected consistency measure, however, the vast
majority of prototypes do not have constant consistencies, so the improvement in a small
minority of cases is outweighed by the additional overhead of testing for them.

4.3 Bounding Quantization Error
When a matrix M is discretized for lookup in the quantization table Q, we introduce an
error that is proportional to the discretization step size. This may not be a problem if
the dynamic range of the matrices in the data is small. Empirically, however, we observe
over five orders of magnitude in difference between the largest and smallest matrices in
our video data. To minimize the quantization error for small-normed matrices, a naive
approach of finely discretizing the space would require 105 divisions per axis and a cor-
responding table with 1030 entries. A better approach is to use a hierarchy of nested
quantization tables. This allows us to maintain a constant relative quantization error with
only a linear (as opposed to exponential) increase in table size for the expected dynamic
range of the matrices.

In practice, the hierarchical quantization table can be represented with only one table
with a uniform grid size. Due to the recursive definition of the table, a sub-table at level
i in the hierarchy is equal to the sub-table at level i−1 scaled by a ratio r. We normalize
an input matrix M as follows. First, we find the hierarchy level of M, given by

k = dlogr |M|∞e. (10)

M̂ is defined as M̂ = M/rk, which ensures that 1
r < |M̂|∞ < 1.0. Similarly, all prototype

matrices would have norms between 1
r and 1.0 as well. The only exception is the zeroth

prototype matrix representing the zero matrix. Once we have found the level k and com-
puted M̂, we look up label l̂ from the quantization table Q as described in Section 4.1.
Since the nearest neighbor to M̂ could be from a prototype in a different scale, we also
search the adjacent levels of M̂. The assigned label l is the tuple (l̂,k). As the assignment
of matrices to their prototypes is template-independent, this only needs to be done once
as a preprocessing step.

We augment the motion consistency table C described in Section 4.2 as follows. In-
stead of storing motion consistencies between two prototype matrices of the same scale,
it must be expanded for all pairs of prototype matrices in all scales. Given p prototype
matrices and n levels, the expanded consistency table C would contain (p×n)2 entries.
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Figure 3: Graphs in (a) and (b) compare matrix quantization (MQ) to S-I in an action
recognition task. (c) compares the Euclidean distance between the per-frame most con-
sistent locations of MQ and S-I. (d) considers how close the location of S-I’s maximum
is to a maximum in MQ; e.g., a percentile rank of 90 would indicate that the location of
S-I’s maximum in MQ is larger (more consistent) than 90 percent of the locations within
the frame. In the ideal case, the histogram would have a single peak at 100.

5 Evaluation
Using the following set experiments, we show that the quantized S-T Harris matrix repre-
sentation is equivalent to its continuous form when used to measure motion consistency.
We also show that the computation time can be dramatically improved. The discrete rep-
resentation can be used in conjunction with the optimizations that S-I proposed for further
performance improvements. Note that we are not performing a full system evaluation for
action recognition; we are instead studying the methods and effects of quantizing S-T
Harris matrices in the context of computing motion consistency. We evaluate our method
against S-I by both final results in a recognition task and by the raw consistency values
both methods produce (see Figure 3).

For evaluation in a recognition task we evaluate our method on a subset of the Weiz-
mann actions dataset [2]. Since template matching against flow does not produce recog-
nition comparable to state of the art algorithms, we have chosen the simple Weizmann
dataset in order to produce recognition rates high enough to effectively detect discrepan-
cies between S-I and our method. The dataset contains 9 people performing 9 different
actions. So as to be able to cross-validate across all nine individuals for a given template,



Figure 4: Sample frames from some of the test videos

we only use the five actions (jumping jacks, bend, one-handed wave, two-handed wave,
and jumping in place) in which all individuals perform the action in the same direction
(e.g., left or right). Each video clip contains one person performing one or more instances
of an action, and we individually annotated all instances of the actions.

The relative performance of the quantization method and the S-I baseline are com-
pared through cross-validation and averaging over all the trials. For each of the five ac-
tions, one instance of one person’s action is used as a template to calculate the motion
consistency on the remaining videos (from different people). The motion consistency
maps are then used to generate precision-recall curves by computing a histogram of pos-
itive and negative motion consistency measures. The positive samples are computed by
taking the local maximum around the manually labelled event, and the negative samples
are chosen from random locations elsewhere. We plot the precision-recall curve for the
“jumping jacks” action in Figure 3(a) and observe that the performance of the two meth-
ods are very similar. By averaging the difference in precision between the two methods
for all actions, we summarize the results in Figure 3(b), where it can be seen that the
difference in precision between the two methods is less than 0.10 for any recall rate.

In addition to the effect of quantization on the final detection rate, we investigate
the effect of quantization on the raw template matching consistencies. We compare our
method against S-I when run on approximately five hours of video, comprising three
live-action films, stills of which can be seen in Figure 4. This represents over a trillion
individual matrix-matrix consistency comparisons. In Figure 3(c) we compare the loca-
tions of the per-frame best consistencies by measuring the distance in pixels between the
two locations. Depending on the choice of threshold, the mean distance ranges from 7 to
12 pixels. If we assume that S-I per-frame maximum is correct, we can also measure how
close the same location is to a maximum when computed with our method. In particular,
let the percentile rank of a point be the percentage of locations in the frame which are less
consistent. If our method produced numerically identical results to S-I, the rank of the
location of S-I’s maximum in our calculation would always be exactly one. We consider
the distribution of ranks in Figure 3(d).

The previous results were generated using a quantization table Q with a fixed set of
parameters. Specifically, we quantized Q into 20 divisions per dimension and used a 16-
level hierarchy with a scaling ratio of 2.1 between the levels. At each level, there are
100 prototypes for a total of (only) 1600 prototypes spanning the space of all S-T Harris
matrices. We now study the effects of these parameters have on the performance. For the
jumping in place action, Figure 5 shows how the performance across all actors varies as
we increase the number of levels in the hierarchy. In general, more levels results in better
performance, with diminishing returns after 8 levels. Performance varies little with the
number of divisions per dimension or number of prototypes. Indeed, little degradation
is seen until as few as 48 prototypes or 5 divisions per dimension are used, a surprising
observation we plan to investigate in future work.
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Figure 5: Increasing the number of levels in the quantization table hierarchy improves
performance. We see diminishing returns after 8 levels.

Table 1: Timing results on a 4s video for different parts of the consistency measure com-
putation. Our consistency measure (c) is over 30 times faster than S-I’s baseline (a).

Timing (sec.) (σ )
(a) S-I approx. consistency 92.70 (0.024)
(b) Matrix quantization 2.07 (0.039)
(c) Consistency lookup 2.75 (0.0087)

Finally, we compare the run-time performance of S-I’s and our matrix quantized mo-
tion consistency measure. We calculate a consistency map for a 24×74×13 template on
a 180× 144× 124 video (at half scale in both space and time) three times and measure
the execution time of the algorithms (summarized in Table 1). A preprocessing step that
is necessary for both algorithms is the spatio-temporal gradient computation needed to
generate the elements of M. Because it is not dependent on the templates, it must only
be computed once per video and thus we exclude it from our timing results. Our matrix
quantization (line b) is also template-independent, and thus can be included in the prepro-
cessing step. The part that is dependent and therefore scales linearly with the number of
templates is S-I’s approximate consistency measure (line a) and our consistency lookup
(line c). As suggested in Section 1, a typical system might need to scan over 100,000 tem-
plates, and therefore these steps dominate the overall computation time. Thus, the 30-fold
acceleration in motion consistency enabled by our method is a significant contribution for
real-world video processing applications.

6 Conclusion
This paper proposes a method for quantizing space-time Harris matrices in the context
of efficiently computing motion consistency in video. First proposed by Shechtman and
Irani for event detection, correlating motion consistency has been incorporated as key
components in a variety of applications in video processing. By analyzing the space of
space-time Harris matrices, we observe that the space forms a hypercone that is amenable
to quantization and reduction to a small set of prototypes. Our two-level quantization of



the matrices reduces the motion consistency calculations to a fast table lookup, resulting
in a thirty-fold speedup over the baseline S-I baseline algorithm. Our basic matrix quan-
tization approach generalizes to other domains but requires a deep understanding of the
matrix space. In future work, we plan to analyze feature spaces in other popular computer
vision algorithms to see whether our technique can provide similar benefits.
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