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Abstract

Aerial video registration is traditionally performed using 2-d transforms in
the image space. For scenes with large 3-d relief, this approach causes par-
allax motions which may be detrimental to image processing and vision al-
gorithms further down the pipeline. A novel, automatic, and online video
registration system is proposed which renders the scene from a fixed view-
point, eliminating motion parallax from the registered video. The 3-d scene is
represented with a probabilistic voxel model, and camera pose at each frame
is estimated using an Extended Kalman Filter and a refinement procedure
based on a popular visual servoing technique.

1 Introduction
Video registration is an important problem in aerial surveillance applications. When
imaging scenes that can be approximated as planar, 2-d image transformations generally
suffice for this purpose. When imaging a scene with significant 3-d structure, however,
2-d registration techniques lead to errors caused by motion parallax. Many imaging sys-
tems [3] require precise video registration in order for higher level image processing such
as foreground detection and tracking to be accurately performed. In order to operate cor-
rectly in highly non-planar environments such as urban or mountainous landscapes, scene
geometry must be accounted for in some way. A novel, fully automatic 3-d registration
system is proposed based on a probabilistic voxel model of the scene’s geometry and
appearance, with camera pose recovery formulated as a Kalman Filtering problem. The
system operates online, meaning each image is registered as soon as it is available, with
no knowledge of future data. A unique pose estimate refinement step using visual servo-
ing techniques in conjunction with imagery generated using the probabilistic voxel-based
scene model is also presented.

2 Prior Work
Image registration is a fundamental problem in many applications such as surveillance,
geographic information systems (GIS), medical imaging, and mosaic creation. Because
the registration system computes and utilizes information about the underlying 3-d scene
and camera pose, it is also related to work in the fields of 3-d modeling and automatic
camera calibration.
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Figure 1: (a) A region of the first frame of the “Steeple St.” sequence. (b) The 70th frame,
registered using a 2-d ground-plane registration. (c) The 70th frame, registered using the proposed
system.

2.1 2-d Image and Video Registration Techniques
A comprehensive survey of image registration techniques was presented by Zitovia in
2003 [19]. Many traditional methods of image registration assume that the scene is ap-
proximately planar and/or the scene is being viewed from a single viewpoint. Under these
assumptions, a 2-d image transformation (a homography for projective cameras) can be
used to map pixels from one image to another. Transformations can be computed based on
matching feature points [16], or via direct comparisons of pixel values in the two images.

When the planarity assumption is violated and the viewpoint is not fixed, parallax
motions are induced. While most 2-d registration algorithms simply treat the motions as
outliers, Rav-Acha et al. [13] showed that small parallax motions could be predicted based
on previous frames, and ignored in the registration process. Another method for dealing
with parallax motions without 3-d information is to relax the assumption of a global image
transformation and define a locally-varying map. Caner et al. [1] estimate the parameters
of a spatially varying filter which maps pixels in one image to a base image.

2.2 Utilizing 3-d information
If information about the 3-d scene is available, it can be used to produce more robust
registration results. Two relevant application domains are orthorectification and model-
based rendering.

In the GIS field, digital elevation models (DEM’s) are routinely used in order to pro-
duce imagery orthographically rendered from above. Zhou et al. [18] provided a study
of orthorectification methods for urban terrain, and Zhou and Chen [17] presented meth-
ods for forested areas. Satellite imagery can also be used to refine existing DEM’s using
stereo methods, increasing the accuracy of the orthorectification [9, 7].

General polygonal meshes can also be used to render scenes from novel viewpoints
through texture mapping. In order to implement such a system, both the 3-d polygonal
mesh and projection of the mesh into the input images must be known. Sawhney et
al. [14] align edge features in the image to projected edges of a (fixed) 3-d model in order
to optimize camera pose and render the scene from a viewpoint chosen interactively.



2.3 Camera Calibration
It is assumed that the internal parameters of the camera are known, but its pose is not.
The full calibration is needed in order to relate images of the scene to the 3-d model and
must be computed automatically. There have been many publications on the topic of au-
tomatic calibration since Maybank and Faugeras presented their work [10] in 1992. Many
algorithms, including noncausal structure from motion (SFM) techniques [6, 12], perform
well but are not suitable for online systems because they optimize parameters for all im-
ages in a sequence simultaneously using bundle adjustment. Simultaneous Localization
and Mapping (SLAM) systems such as those presented by Davidson [4] and Chiuso et
al. [2] require real-time estimation of camera position and 3-d points. Typically, both
SFM and SLAM algorithms rely on feature detection and matching/tracking to relate im-
ages to one another. The proposed system does not compute any feature points, but rather
uses all information available in the image to optimize the camera pose and 3-d model.

3 The Voxel Model
The probabilistic voxel model proposed by Pollard and Mundy [11] for use in 3-d change
detection is used to accumulate information about the scene. Each voxel X is associated
with both an appearance model and an occupancy probability P(X ∈ S), which stores the
probability that a world surface lies within X . It is assumed that for each pixel (i, j) in
an image of the scene, the intensity Ii, j is produced by an unoccluded voxel Vi, j ∈ S. The
probability of a voxel X producing an intensity I in an image pixel given that X = V is
represented by a mixture of Gaussian density distribution.

Given a new image of the scene, the occupancy probability and appearance model
parameters of the voxel X are updated according to the equations given by Pollard and
Mundy [11]. Intuitively, for each pixel in the new image, a ray is cast into the scene
which intersects some set of voxels. The voxels whose appearance models indicate that
they are likely to have produced the intensity at the pixel have their occupancy probability
increased accordingly, and vise-versa. Each voxel along the ray then has its appearance
model updated using the pixel’s intensity, weighted by the likelihood of the voxel being
visible to the camera.

(a) (b)

Figure 2: (a) An expected image generated from the point of view of camera 70 of the “Steeple St.”
sequence. Note that moving vehicles on the streets do not appear in the expected image because of
their low probability to exist at any given location. (b) The original image.



3.1 Expected Image Generation
Given a voxel model and a camera viewing the scene, the expected value of the produced
image can be determined. Each camera ray passes through a set of voxels, R. The ex-
pected value of the intensity IR associated with R can be calculated as a weighted average
of the expected intensities E[I|V = X ] at each voxel X ∈ R :

E[I] = ∑
X∈R

E[I|V = X ]
P(X ∈ S)vis(X)

W
, W = ∑

X∈R
wX . (1)

The term vis(X) represents the probability that voxel X is visible from the camera’s view-
point, and is calculated as:

vis(X) = 1− ∏
X ′<X

(1−P(X ′)) , (2)

with X ′ < X denoting voxels in the set R occurring before X , i.e. closer to the camera
center. The expected value E[I|V = X ] is the expected value of the mixture of Gaussians
distribution.

4 Camera Optimization
The change detection algorithm presented by Pollard and Mundy assumed fully calibrated
cameras, an impractical assumption for an online video registration system. It is assumed,
however, that the internal parameters of the camera have been calibrated and that an esti-
mate of the ground plane relative to the camera is known (e.g. from onboard altitude and
attitude sensors). This estimate is needed only for the first frame of the video to initialize
the voxel model. In order to reliably estimate relative camera pose for each frame, an
Extended Kalman Filter (EKF) is implemented, with the state x at time step k represent-
ing the camera motion relative to time step k− 1. A novel extension of a popular visual
servoing technique is used to refine the Kalman filter state estimate at each time step.

4.1 Representation of 2-d and 3-d Transformations
The 2-d general affine matrix group GA(2) is used to represent image homographies,
and the special Euclidian matrix group SE(3) to represent camera motions. Drummond
and Cipolla [5] showed that by using Lie Algebra representations, 3-d information about
the world is implicitly embedded into the 2-d image transformations. Although the goal
is to accurately handle non-planar scenes, an assumption is made that the camera motion
between two successive frames is sufficiently small to be approximated by a 2-d homogra-
phy induced by a dominant world plane Π =

[
n̂x n̂y n̂z d

]T
,‖n̂‖= 1. Disregarding

degenerate cases, Π can be represented using three parameters:

θ = tan−1 n̂x

−n̂z
, φ = tan−1 n̂y

−n̂z
, dz =

−d
n̂z

(3)

(See Figure 3). The Lie group SE(3) has an associated Lie algebra se(3), which is
spanned by the so-called SE(3) generator matrices Ei, i∈ {1,2 . . .6}. The six se(3) bases
correspond to translation in x, y, and z, and rotation about the x,y, and z axes, respectively.



Likewise, the Lie group GA(2) has an associated Lie algebra ga(3) which is spanned
by the GA(2) generator matrices Gi, i ∈ {1,2 . . .6}. The six ga(2) bases correspond to
shift in x, shift in y, rotation, scaling, shear at 90◦, and shear at 45◦, respectively. Using
these bases, the vectors ~x ∈ ℜ6 and ~z ∈ ℜ6 are defined, representing infinitesimal 3-d
Euclidean and 2-d affine transformations, respectively. Using the dominant world plane
parameterized by θ , φ , and dz, The Jacobian matrix which maps infinitesimal changes in
the camera pose to changes in the induced homography can then be defined, i.e. Ji, j = δ~zi

δ~x j
.

J =




1/dz 0 0 0 1 0
0 1/dz 0 −1 0 0

tan(φ)
2dz

− tan(θ)
2dz

0 0 0 1
− tan(θ)

2dz

− tan(φ)
2dz

−1/dz 0 0 0
− tan(θ)

2dz

tan(φ)
2dz

0 0 0 0
− tan(φ)

2dz

− tan(θ)
2dz

0 0 0 0




(4)

The derivation of this matrix is not presented here but is very similar to one presented
by Drummond and Cipolla [5], with the main difference being they assume that the world
plane normal lies in the Y Z plane, and thus use two plane parameters only. Note that
columns 3 through 5 are approximate only, because in general a full projective image
transformation is needed to model changes caused by translation along the camera axis
and rotation around an axis other than the camera’s principal axis.
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X

n
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φθ

n
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Figure 3: (a) The dominant world plane is shown in the camera coordinate system. (b) The plane
normal n̂ is projected onto the X-Z and Y-Z planes, giving the plane parameters θ and φ .

4.2 Kalman Filter Formulation
The Extended Kalman Filter (EKF) is an extension of the Kalman Filter that allows the
filter to be applied to non-linear processes, and processes with non-linear measurement
functions. Unlike the standard Kalman Filter, the EKF does not give provably optimal
results due to the fact that the random variables are no longer normal after undergoing
non-linear transformations. Despite this fact, it is widely used for a variety of applica-
tions and performs well for processes that are close to linear on the scale of the time
increments [15]. The filter assumes that the system state, xk, is a function f of the previ-
ous state xk−1 and an input uk, plus a zero mean random variable wk. The filter estimates a



state x̂k and error covariance Pk of the estimate at time step k using two steps. The first step
predicts the current state and covariance based on the previous state estimate x̂k−1,Pk−1
and the control input uk.

x̂−k = f (x̂k−1,uk)+wk, P−k = AkPk−1AT
k +Qk−1 (5)

Ak is the Jacobian matrix δ f
δx , and Qk−1 is the covariance matrix of w. The prediction is

then updated based on a measurement vector zk. It is assumed that zk is a function h of xk
plus a normal, zero mean random variable vk with covariance Rk.

x̂k = x̂−k +Kk(zk−h(x̂−k )), Pk = (I−KkHk)P−k (6)

H is the Jacobian matrix δ z
δx , and K is the Kalman gain, calculated as

Kk = P−k HT
k (HkP−k HT

k +Rk)−1 . (7)

A concise derivation of the update and gain functions can be found in the report by Welch
and Bishop [15].

An EKF is used to estimate the change in camera pose from one frame to the next.
The state vector x ∈ ℜ6 contains the coefficients associated with the six se(3) basis ma-
trices. A linear (in the space of se(3)) motion model is used, so that the function f used
in Equation 5 is defined simply as xk = xk−1, and A is the 6× 6 identity matrix, I6. The
measurement vector zk ∈ ℜ6 contains the coefficients associated with the six ga(2) ba-
sis matrices which map frame k− 1 to the current frame k. In order to estimate zk, a
multi-grid Levenberg-Marquardt minimization of the sum of squared differences between
frame k− 1 and frame k warped by zk is used. The Jacobian matrix H is the Euclidian
to affine Jacobian J defined in Equation 4. The state and measurement covariance matri-
ces are assumed constant for all k, and the errors associated with the individual state and
measurement elements are considered independent:

Qk =
[

σ2
t I3

σ2
r I3

]
, Rk = σ2

h I6 (8)

The standard deviations of the errors in the state translation, state rotation, and ho-
mography measurement coefficients are represented as σt , σr, and σh, respectively.

4.3 Refinement using Visual Servoing and Expected Images
The a posteriori estimate x̂k may contain errors due to the non-planarity of the scene,
perspective components of the homography ignored by the affine model, linearization of
the measurement function h via the Jacobian matrix H, and noise. Data from previous
images accumulated in the voxel model is used to produce a refined estimate, x̂+

k . An
expected image is rendered from the viewpoint defined by x̂k using Equation 1. If x̂k
matches the true state xk, the homography bringing the expected image and frame k into
alignment should be the identity (z+

k = 0). If it is not, the inverse Jacobian J−1 is used to
move the estimate towards the correct state, and a new expected image is generated using
the adjusted state x̂+

k . The processes is repeated until the adjustments to x̂+
k fall below

a fixed threshold, or a maximum number of iterations is reached. Once the estimate
converges, the voxel model is updated with information from the current image and the
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Figure 4: Flowchart of the camera pose optimization algorithm.

refined state estimate. The refined state x̂+
k is used in place of x̂k as a prediction for the

next iteration of the Extended Kalman filter.
Note that this refinement process is essentially a novel application of Drummond and

Cipolla’s [5] visual servoing algorithm to camera calibration. Rather than providing feed-
back to a physical servoing system, it is the camera estimate that is being adjusted. Since
it is not possible to capture real images from the estimated viewpoints, data from previous
frames is used to predict them.

4.3.1 System Initialization

The refinement process assumes that the voxel grid has already been populated with
enough information to generate reasonably accurate expected images. In order to al-
low the system to “bootstrap” itself, an estimate of the ground plane is provided upon
initialization. The occupancy probabilities are then initialized using a normal distribution

as P(X) = 1
σ
√

2π e−
d2

2σ2 , where d is the distance of the voxel center to the plane, and σ is a
parameter set based on the certainty of the ground plane estimate. Because of this planar
initialization, registration errors due to parallax can be seen in the first few frames until
the occupancy probabilities converge (Figure 5).

(a) (c)(b)

Figure 5: Volume renderings of the voxel occupancy probabilities for the “downtown” sequence.
The higher a voxel’s occupancy probability, the more opaque it is drawn. (a) frame 0 (b) frame 25
(c) frame 100.



(a) (c)(b)

Figure 6: (a) The generated heightmap for a frame of the “Steeple St.” sequence. (b) The
heightmap values associated with confidence values above threshold. (c) Using the high confi-
dence heightmap values as boundary conditions, a smoothed heightmap is generated using the heat
equation.

5 Registered Frame Rendering
Once the camera pose for a frame is determined, the next task is to render the registered
image. Registered images are essentially re-renderings of the original frames from a
stationary camera. The rendering algorithm can be thought of conceptually as three steps:

1. Generate a voxel heightmap from the virtual camera viewpoint

2. Backproject data from optimized camera into the voxel grid

3. Reproject data to the virtual camera.

The goal of Step 1 is to determine the most likely voxel X̂ that produces the intensity
at each pixel in the registered image. If R is the camera ray corresponding to the pixel,

X̂ = argmax
X∈R

(P(X ∈ S)vis(X)) , cX̂ = P(X̂ ∈ S)vis(X̂) (9)

where cX̂ is the corresponding confidence associated with voxel estimate X̂ . A heightmap
is then generated which contains the z value of the most likely voxel X̂ at each pixel, and
a confidence map which holds the corresponding cX̂ values.

Pixels with low confidence tend to be noisy and need to be filtered. The smoothing
is formulated as a heat equation problem, using the heightmap pixels whose correspond-
ing confidence values are above a threshold as the boundary values. Alternatively, the
smoothing can be formulated as a least-squares fitting problem which uses all confidence
values as weights. As can be seen in Figure 6, areas of homogeneous intensity tend to be
associated with low confidence values. Typically, heightmap values at textured regions
and edges are propagated to the homogeneous areas.

For each pixel in the registered image, a corresponding pixel in the original image
can be found using the position of the corresponding X̂ , and the camera estimate x̂+

k .
It is possible, however, that X̂ is occluded in the original image. This case is detected
by thresholding the visibility probability vis(X̂) from the point of view of the optimized
camera. If vis(X̂) falls below the threshold, the expected intensity (Equation 1) is used in
place of a pixel value from the original image.
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Figure 7: Column (a): first frames of three sequences (from top to bottom): “downtown”, “Steeple
St.”, and “capitol”. Four test points are marked in each. Column (b): registration error of the test
points using 2-d ground plane registration. Column (c): Registration error with proposed system.

6 Results and Future Work
The system was tested on three aerial videos as shown in Figure 7. The videos are
greyscale, with resolution 1280×720 and captured at 30 fps. The “Steeple St.” sequence
contains every tenth frame of the original sequence. Using 2-d ground plane registration
(based cameras and ground plane manually calibrated to obtain ground truth), points near
the ground plane are registered with high accuracy. Points off of the ground plane, how-
ever, exhibit large parallax motions as the camera changes viewpoint. Using the proposed
registration system, points both on and off the ground plane are registered with accuracy
comparable to the ground points in the 2-d case. Ground-plane estimates on the order
of five meter accuracy were provided to the initialization procedure. As can be seen in
Figure 7, the registration error is in general much lower using the proposed system.

Some rendering artifacts do exist in the registered videos which do not exist in the
2-d registration. Future work will involve removing these artifacts. Further work will
also be focused on implementing the system to run in real-time. The nature of the current
implementation makes it an ideal candidate for implementation on the GPU, which could
potentially provide order of magnitude speed-ups. Another potential improvement in ef-
ficiency could be realized by storing the voxel data in a more efficient manner. Currently,
the data for each voxel is stored on disk. Most of the voxels in a typical model, however,
converge quickly to very low occupancy probabilities P(X ∈ S) ≈ 0. An efficient data
structure [8] could provide large savings in storage and allow regions with fine structural
detail to be modeled with increased resolution.
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