
Exploiting Uncertainty Propagation in
Gradient-based Image Registration
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Abstract

Parametric, gradient-based image alignment is used nowadays in many appli-
cations such as object tracking, image registration or camera calibration. In
such processes intensity differences between a template and a warped image
are minimised based on Newton-like optimisation algorithms. It has been
known for a long time that pre-filtering the images under inspection and the
use of coarse-to-fine strategies can somehow increase the convergence ra-
dius, but a general derivation is missing. We present a generic framework
which relates parameter uncertainty with positions in the image’s scale space
instead of heuristic isotropic smoothing to improve the convergence radius.
Specifying parameter uncertainty is often more intuitive than selecting a good
pyramid level and improves convergence particularly in settings where a sin-
gle parameter’s influence (e.g. a rotation angle) varies largely across a patch.
We show that the classical application of image pyramids in displacement es-
timation embeds into the novel formulation and demonstrate our approach on
refinement of robust feature correspondences and homography estimation.

1 Introduction
During the last years automatic image matching based on invariant or robust features such
as SIFT[3] has shown tremendous progress: Multi-scale or affine covariant region detec-
tors find interest regions (cf. to [8]) which, together with local orientation[3], define a
local coordinate system. An approximation of the local image warp between a feature
correspondence is then readily available from the relative parameters of the detected re-
gions. However, the accuracy of relative scale, orientation, position or affine parameters
from the detector is typically only very rough and the question arises whether the local
image-to-image transformation can be optimised using standard methods [2, 9] based on
the grey values and gradients of the feature regions to allow exploitation of these cor-
respondences, e.g. for homography[12] or pose[11] estimation. If gradient-based image
alignment is directly applied to the full-resolution images, e.g. based upon affine warps,
one notices that some pixels of a patch can provide contradictory information. They dis-
turb the optimisation, because they are outside the valid linear environment of the true
correspondence (compare fig. 1) and such outliers have to be avoided. For instance, if the
initial parameters have a rotational error of 10◦ (which is the orientation histogram quan-
tisation proposed in SIFT[3]), this results in a position error of 3 pixels for the corners of

BMVC 2008 doi:10.5244/C.22.9



Figure 1: Given rotational, similarity or affine parameter uncertainty, the 2D pixel po-
sitions within a warped patch are unequally certain (left image). The ellipses indicate
the 2D position uncertainties in a patch induced by significant rotational and minor scale
uncertainty. Outer regions (far from the warp center) are typically more uncertain. For
positions near a patch border the assumption of locally linear intensities in gradient based
alignment quickly gets violated with such uncertainties. The linearity assumption can be
seen in the 1D intensity profile of the right image, where the intensity near xT is approxi-
mated by the tangent (dotted line). For a small displacement, e.g. x1

I , the linearity is quite
correct, but for a larger, e.g. x2

I , the linear extrapolation is far away from the real data.

a square patch with half window size 12. In presence of fine detail, this violates the grey
value linearisation assumption made in alignment. Typically, image pyramids are used in
this case or heuristic smoothing is applied, but if we reduce the resolution, we may run into
a high-dimensional version of the aperture problem, where we do not have enough data to
estimate the parameters: The feature has a relatively good localization at its intrinsic scale
in scale-space (cf. to [1]), but does not necessarily provide much structure at significantly
coarser levels. Therefore, a goal of this contribution is to use as much of the data as pos-
sible and filter away only disturbing information. Also, when optimising parameterised
warps based on multiple parameters, some may allow for a better prediction than others
and some may have a stronger influence on the convex environment and validity of the
local linearisation. Finally, not all of the pixels in a patch have to be sensitive to an incor-
rect start value in the same way (compare center and border in fig. 1). This contribution
addresses all these issues and incorporates uncertainty in a unified way, thereby embed-
ding the classical image pyramid from displacement estimation. Consequently, the novel
approach will not improve convergence in simple displacement scenarios but its goal is to
automatically exploit a heterogeneous structure of more complex warps better than con-
stant isotropic smoothing. The paper is structured in the following way: Section 2 relates
the contribution to previous work while section 3 presents the gradient-based alignment
problem and shows how parameter uncertainty can be incorporated. The convergence
is demonstrated on synthetic and on real images using patch-based local alignment and
homography estimation in section 4.

2 Related Work
One of the first publications on gradient based image alignment is the work[2] by Lu-
cas and Kanade in 1981. In a stereo setting they stated that under the Image Brightness
Constancy Assumption the correspondence problem can be formulated as that of minimis-



ing the grey value difference using Newton’s method, provided the prediction is close to
the true value. They also state that smoothing the image can increase the convergence
radius. Since then, a vast quantity of articles has been published on extensions, improve-
ments, accelerations and applications of this topic. We refer the interested reader to the
work of Baker and Matthews [9], which provides an excellent overview and comparison.
An approach different from the low-parametric global model is often taken in optic flow
estimation [10], where a 2D displacement is estimated for each pixel leading to a huge
number of parameters, which are only important locally. Additional regularisation terms
are applied to overcome the local aperture problem. In our contribution, we concentrate
on the case of estimating the parameters of one model warp typically with high redun-
dancy (a large number of intensity measurements but few global warp parameters), where
we inspect the influence of the uncertainty of the global parameters.

Since the work of [2], alignment and tracking was performed on image pyramids in
coarse-to-fine strategies, although this was handled rather as an implementation detail.
For example, [7] mentions that parameters are propagated from one pyramid level to the
next. Christmas [5] investigated the relation between smoothing and optical flow estima-
tion in more detail, however he provided a specialised filter analysis for pure displacement
only. Later, Molton et al. [6] examined parametric image warps in a probability-theoretic
framework. However, they were focused on formalising and characterising all sources of
noise and to incorporate priors on the warp parameters. Although they already give the
intuition that “smoothing should be done over a range similar to the expected change of
pixel position” they do not conclude that different pixels in a patch should be subject to
different amounts of smoothing or that this smoothing could be anisotropic. Uncertainty
was also handled in other works [13, 14], however, not incorporated into the minimisation
but viewed as an outcome. To our knowledge, so far nobody considered the influence of
parameter uncertainty within the grey value difference minimisation. Therefore, in con-
trast to previous work we propose to propagate parameter uncertainty to pixel position
uncertainty, which helps in selecting a good filter scheme. We then give an implementa-
tion exploiting the image’s scale space to obtain local convexity with high probability.

3 Parametric Image Alignment with Uncertainty
The image brightness constancy assumption states that corresponding points in two im-
ages have the same grey value, when the images are related by some warp W . According
to Baker and Matthews [9] we refer to the first image as the template T and the second as
the image I, where the warp depends on some parameters p:

I(W (x, p)) = T (x) (1)

If a parameter prediction p̃ is given, which is sufficiently close to the true value p̌, we
may use Newton’s method to find the p̂, which minimises the squared sum of intensity
differences at position x in the patch P. We use the term patch here for intuition, in
fact x may be from a set P of arbitrarily distributed sample points in an image. For
example, for refinement of robust image features, we use a fixed grid attached to the local
feature, such that the absolute number of samples does not depend on the size of the
feature, or to obtain an infinite homography for a purely rotated camera, we may select
a number of samples uniformly distributed across the image. Although our contribution



is not restricted to a particular alignment method, we use what Baker and Matthews call
the inverse compositional approach (see [9] for details), which exploits a prediction p̃ to
obtain an inverse compositional update ∆p̂ in each iteration

∆p̂ = argmin∆p ∑
x

(T (W (x,∆p)− I(W (x, p̃)))2 (2)

which is composed into p̃ for the next iteration. The equation system is based solely upon
the gradients in T to estimate the missing transformation which is close to the identity
transform. If p̃ is very close to p̌, this means that ∆p is nearly zero, we are in the convex
surrounding of the minimum of the error function and we can linearise the above sum

∑
x

(T (W (x,0))+∇T
∂W
∂ p

∆p− I(W (x, p̃))2 (3)

which (assuming W (x,0) = x) leads to the solution

∆p = H−1
∑
x

[
∇T

∂W
∂ p

]T

[I(W (x, p̃))−T (x)] , H = ∑
x

[
∇T

∂W
∂ p

]T [
∇T

∂W
∂ p

]
(4)

The term in (3) is only a valid approximation of the term in (2) as long as p̃ is quite
correct. It states that near the position x the template has the grey value T (x)+ ∇T ∂W

∂ p
which is only valid in a very small neighbourhood. E.g. if p parameterises translation
and p̃ is 10 pixels away from the true optimum, in presence of fine detail there may be
multiple local extrema in between, which are not represented by the linear approximation.

Incorporating Uncertainty

In previous algorithms the images had to be smoothed sufficiently to allow convergence,
which is a rather unintuitive requirement. While we keep the idea, that the image bright-
ness constancy assumption is also valid at coarser scales, we compute an appropriate scale
now automatically on a per-sample basis given an initial parameter uncertainty: For ro-
bust feature refinement such uncertainty estimates can be obtained e.g. from an empirical
feature detector evaluation [8] or from noise models [13]. We assume that the uncertainty
of the parameter vector p is unimodal and characterised well by the first two moments of
its distribution, mean p̃ and covariance Σpp. Since the normal distribution has the max-
imum entropy of all distributions for a given mean and covariance, we assume p being
normal-distributed in the following. However, qualitatively the derivation also applies to
the uniform distribution or other unimodal distributions. Now, let the warp W map coor-
dinates of T to I. We now investigate how much the coordinates change, when we change
the parameters p. Under the assumption that W is locally approximated well by its first
order Taylor approximation linear error propagation yields:

ΣxIxI ≈
∂W
∂ p

Σpp
∂W
∂ p

T

(5)

If W is actually linear, then xI is normal distributed with covariance ΣxIxI . Now we select
the iso-density curve at 2σ which comprises nearly 90% of probability inside and call this
the target region. In the following it is assumed that almost always the true correspon-
dence x̌I is somewhere in the target region and that we therefore require linear intensity



within this region. The shape and the size depend on the projection of the parameter un-
certainty Σpp into the image. We first consider the simple case that ΣxIxI has two equal
eigenvalues. This means that xI’s distribution is an isotropic Gaussian with circular iso-
density curves and that a point xT is mapped to a disc around xI , whose radius l is

l = 2
√

0.5 trace(ΣxIxI ) (6)

Then, we select an appropriate scale in Gaussian scale space (cf. to [1]) such that struc-
tures of smaller size are suppressed to a large extent and our region can be considered
approximately linear. This can be reached by convolution of the image with an isotropic
Gaussian having standard deviation l. The grey value is then computed at this scale.

If on the other hand ΣxIxI has two different eigenvalues, this means that xI’s position is
more uncertain in some direction. In this case imagine that we normalise the image size,
such that in the transformed image the uncertainty becomes isotropic again. Then we can
apply the method of above. These operations can efficiently be combined by smoothing
the image with a Gaussian filter with covariance 4ΣxIxI . However, in both the isotropic
and the anisotropic case we are interested only in a single grey value, so basically the
image convolution boils down to a single weighted sum of intensities in the target region.

Consequently, we also have to compute the region in the template, where an image
sample at xI is backward-mapped given the parameter prediction and its distribution. Re-
quiring the warp to be invertible is no restriction, since inverse compositional alignment
assumes the warp to be invertible anyway.

ΣxT xT ≈
∂W−1

∂ p
Σpp

∂W−1

∂ p

T

(7)

This represents the region around xT where the warp prediction maps an image position
xI into the template. Since linearity is desired within this region, we proceed in the same
way as with the image. Now, we also calculate the gradient at the obtained scale.

To summarise, we propose that each grey value is obtained using an individual level
of smoothing such that it is linear within the predicted parameter uncertainty. Since each
pixel can be chosen from the best resolution available, it is less likely that one runs into
the aperture problem, which happens often when the whole patch is lifted to a very coarse
level, because then more information than necessary is suppressed. In case the warp
uncertainty leads to an anisotropic position distribution anisotropic smoothing should be
applied at this position, e.g. for small purely rotational uncertainty smoothing is only
required tangential to the warp. The scale and the shape of the smoothing will in general
vary from pixel to pixel.

In early works (e.g. [2]), where only 1D or 2D displacement was estimated, isotropic
image smoothing or the use of image pyramids was suggested. This embeds perfectly
into our framework, because in the case of pure displacement estimation, isotropic 2D
parameter uncertainty leads to a constant and isotropic pixel position uncertainty (ΣxI =
Σpp) for all positions in the patch. This results from the fact that the Jacobian of the warp
with respect to the parameters (the displacement) does not depend on the pixel position.
Therefore in our novel method all intensities would be picked from the same level in
scale space or the same pyramid level, which is exactly what was proposed in earlier
works. In the case of more complicated warps however, the more differentiated scheme of
above is the consequent generalisation. As a side note: When prior knowledge about the



Figure 2: A patch containing hand-written text is aligned using the novel scale method.
The initial affine warp to be estimated between the image in the first and the template in
the second column contains a 15◦ rotation, a scale of 10% and a position offset of 1 pixel.
The gradients used for estimation and the scale, where they were taken from can be seen
in the right two columns (darker pixels represent lower values). Since initially the uncer-
tainty is set appropriately for the missing transformation, particularly at the outer patch
parts samples are picked from coarse resolutions (first row). With nearly compensated
scale and rotation and improved uncertainty, finer details can be used in the second row.
When all samples are taken from the highest resolution (third row) the algorithm behaves
as the original inverse compositional alignment.

parameter distribution is available, it may also be of advantage to incorporate this in terms
of priors in Bayesian estimation as proposed in [6]. To avoid mixing up different effects,
in this contribution we focus on the intensity-related aspects when parameter uncertainty
is available.

Algorithm and Implementation

We will now give some details of the implementation (see fig. 3 for an overview) and
additionally, a second, more efficient approximation for the considerations presented in
section 3. As an approximation for the image’s scale space, we use the Gauss pyramid
with width and height reduced by a factor of 2 per level (as e.g. also used in [3]). Between
the pixels of a level and between the levels we interpolate linearly, which is also known
as trilinear filtering in computer graphics (see [15]). If anisotropic smoothing is required,



Select set P of measurement positions in template and repeat until all positions are taken
from the best resolution or some control points have reached the desired accuracy:

1. For each xT ∈ P propagate parameter uncertainty Σpp to position uncertainty ΣxT xT

2. Obtain template grey value and gradient (an)isotropically from template pyramid
according to ΣxT xT

3. Construct Hessian and Steepest Descent Images (same as in [9])

4. Repeat until no significant improvement:

(a) For each xT ∈ P obtain image coordinates xI using p̃

(b) propagate parameter uncertainty Σpp to position uncertainty ΣxI xI

(c) obtain (an)isotropic grey values from image pyramid according to ΣxI xI

(d) Compute residuals, solve for ∆p and compose ∆p with p̃

5. Update covariance Σpp

6. If parameter update or covariance is sufficient break, otherwise go to 1

Figure 3: Overview of alignment with uncertainty

we first find the smaller principal vector of the pixel covariance and extract trilinear image
values from the scale space, which must then be smoothed in direction of the larger prin-
cipal vector. This exploits the pyramid and avoids anisotropic filtering with huge masks
at full image resolution. We call this method simply anisotropic in the remainder.

Since often the parameter distribution is not known exactly but only its approxi-
mate shape, since additionally the linearisation of the warp is sometimes only valid in
a small range and since anisotropic smoothing is expensive, we propose even in case of
anisotropic covariance to simply pick the grey value directly from scale space according
to eq. 6: As the trace is the sum of the eigenvalues and the eigenvalues of a covariance
matrix are the variances in principal directions, the trace can be seen as a rough upper
bound of the maximum variance. We call this approximation the scale method in the
remainder. In case of isotropic pixel position uncertainty they are the same.

Based upon the gradients and the image intensities we perform the inverse composi-
tional alignment. In the minimum of the error function, we estimate the parameter covari-
ance from the Hessian and the reference variance. This new covariance is then used in
the next iteration, for which the template and the image is constructed again as described
above (compare fig. 2). Convergence of the system can be declared if all measurements
(or some control measurements) are picked from the highest resolution. In this case the
algorithm behaves as the original inverse compositional alignment.

4 Experiments
In order to demonstrate the principle of the novel approach, we first show a very simple
example, where we create a 512×512 (floating point valued) test pattern image with in-
tensity I(x,y) = sin(λ x)+ sin(λ y) as depicted in fig. 4. This image is rotated around its
center and afterwards Gaussian noise (σI = 2% of the sine amplitude) is added to each



Figure 4: Top Row: The left image shows a sum of a horizontal and a vertical sine-pattern.
Such images have been created for different frequencies and each was rotated around
its center as indicated by the arrows. In the center plot, the maximum angle for which
gradient-based Euclidian parameter estimation converged for a 21×21 center patch is de-
picted in dependence of the sine-frequency. Scale and anisotropic are the new methods
of the previous sections which we compare with a traditional pyramid approach. Partic-
ularly when very fine image structures close to the Nyquist frequency are present, both
novel approaches outperform the rigid pyramid with respect to the convergence radius.
The template values of the center patch computed for rotational uncertainties of 0,4,9,16
degrees with the anisotropic method can be seen in the right image.

Figure 5: The images bricks and declaration have been rotated and the fraction of di-
verged alignments at SIFT-feature positions in the first image have been counted (right
beneath each image). The start position in the second image was correct, but the rotation
was set to zero to obtain a rotation convergence radius estimate. For the traditional pyra-
mid method, the best pyramid layer is displayed, which provides still worse results than
automatic individual smoothing. Note that these images contain very fine structures (see
detail magnifications) which are almost filtered out in the classical coarse-to-fine strategy.
In the novel approaches, they are used if possible (see also fig. 2).

pixel. We then compute a 3-parametric Euclidian warp (α,dx,dy) using the anisotropic
and the scale method and a traditional pyramid-based approach for comparison, where the
estimation is first performed on pyramid level 3 and then the results are down-propagated
and refined on the next better resolution. We use 21×21 samples in a patch centered in
the image and provide 0◦ as a rotation prediction. With increasing sine frequency the
pyramid approach converges only for smaller and smaller angles, while the anisotropic
filtering nearly always catches rotations of up to 45◦. The scale approach has slightly
worse convergence than the anisotropic but still better than the pyramid approach. Next,



Figure 6: The two left images (1536×2048, ≈ 40◦ field of view) have been taken with
a digital camera which purely rotated. An estimate of the rotation was given within 1◦

accuracy, from which an infinite homography could be predicted. Given prediction and
uncertainty the homography has been optimised and the resulting parameters have been
used to stitch the images (right). The optimisation has been run upon 20×20 samples
only, distributed uniformly across the 3MPixel image. No heuristic smoothing or manual
selection of a “good” pyramid level was applied. Note that this is an extremely chal-
lenging situation because of the frequency content. Remaining errors may be due to lens
distortion, camera movement and changed illumination.

the images of fig.5 have been chosen, where SIFT features were detected followed by a
rotation of the images. Around each feature 21×21 samples have been used in a square
window 10 times the detection σ (cf. to [3]). Then Euclidian parameters have been esti-
mated with correct position prediction but with no rotation prediction. When the rotation
was estimated worse than 0.05 rad, a failure has been recorded. The graphs show that for
very small rotation errors also the pyramid approach converged, but for larger rotational
errors the novel approaches diverge less frequently, because fine structures are better ex-
ploited here. In the next experiment the automatic scale approach is demonstrated based
on extremely sparse samples. We applied gradient based homography estimation for a real
pair of photos containing high-frequency patterns of skyscrapers. No heuristic smoothing
or some good pyramid level had to be selected. Instead, a prediction for the homogra-
phy parameters was approximated by propagating the rotational uncertainty of 1◦ (see fig.
6 for details). For such warps with higher numbers of parameters heuristic smoothing
becomes really involved, while our framework solves this problem automatically.

5 Conclusion
Image pyramids have been used in gradient-based displacement estimation for a long time
to increase the convergence radius. When more complex parametric image transforma-
tions were considered, the pyramid concept has simply been adopted in the literature so
far or the images under inspection had to be provided “smooth enough” for convergence.
In this contribution we developed a novel framework, which incorporates parameter un-
certainty into the registration process working in scale space. Given a parameter guess



and its approximate uncertainty, the system selects the required amount of smoothing au-
tomatically on a per-sample basis, which allows to keep more detail of the original image
and therefore is less susceptible to the aperture problem. It can be seen as a generalization
of the pyramid concept from displacement. Although the evaluation showed superiority
using local feature alignment, the concept can be applied to a much broader range of
parameter estimation applications as camera tracking or homography estimation.
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