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Abstract

There is considerable interest in techniques capable of identifying anoma-
lies and unusual events in busy outdoor scenes, e.g. road junctions. Many
approaches achieve this by exploiting deviations in spatial appearance from
some expected norm accumulated by a model over time. In this work we
show that much can be gained from explicitly modelling temporal aspects of
scene activity in detail. We characterize a scene by identifying the funda-
mental period of change on a spatial block-by-block basis by estimating au-
tocovariance of self-similarity. As our model, we introduce a spatio-temporal
grid of histograms built corresponding to some chosen feature. This model
is then used to identify objects found in unexpected spatial and temporal lo-
cations in subsequent test data. Employing a Phase-Locked Loop technique,
we describe a method of ensuring that the spatio-temporal model maintains
synchronization with learned scene activity in spite of short-term breakdown
in the reliability of acquired data, and long-term change of the mean funda-
mental period. Results indicate our model to be capable of discrimination
between behavioural aspects of cars at a typical road junction sufficiently
well to provide useful warnings of adverse activity in real time.

1 Introduction
Currently countless people are deployed to watch and monitor CCTV screens in the hope
of identifying criminal activity, untoward behaviour, and serious but non-malicious sit-
uations. A fundamental challenge to computer vision research is to devise algorithms
capable of isolating and displaying events of interest in a clear, uncluttered way and with
a relatively low false alarm rate. Considerable research effort has produced systems which
learn statistical scene content both at the pixel level [14] and from a global perspective
[10] with a view to segmenting an image into the usual (background) and unusual (fore-
ground). By relating foreground object size, shape, and direction to areas within the
scene, it becomes possible to identify people and vehicles in the ‘wrong’ place. However,
generally such models are oblivious to relative event timing.

In this paper, with specific reference to road traffic junctions, we wish to extend the
definition of ‘unusual’ to the temporal domain such that the presence of an object is treated
explicitly in a spatio-temporal context rather than modelled as a deviation from an accu-
mulated spatial-only distribution. This approach is aimed specifically at modelling scenar-
ios in which periodic behaviour is present. For example, it should be possible to identify a
car crossing a junction when the traffic lights for that direction are red. Namely this calls
for a model possessing a certain temporal contextual awareness.
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1.1 Related Work
Considerable work has been published on the biological aspects of perceptual grouping.
In terms of the human visual system this amounts to forming relationships between ob-
jects in an image. But such grouping also occurs in the temporal dimension, whereby
our attention is drawn to objects whose appearances change together, and those whose
appearance changes cyclically or periodically. It is important to make the distinction be-
tween these two types of variation: Cyclic motion implies events in a certain sequence,
whereas Periodic motion involves events associated strictly with a constant time interval.

Within the field of biologically inspired computing, systems using networks of Spik-
ing RBF (Radial Basis Function) Neurons have been used in [8] to characterize and iden-
tify spatio-temporal behaviour patterns. Such a neuron generates a pulse of activity when
the combination of its inputs reaches a critical threshold. The network of connections
from input neurons to output neurons contains groups of parallel paths with varying
synaptic delays whose relative weights are learned in a Hebbian fashion such that the
delay pattern eventually complements (mirrors) the times between events in training data.
By this mechanism, an output neuron can ‘learn’ to fire when the appropriate events occur
with correctly matched time delays, since only under this condition will all spikes reach
the nucleus simultaneously, causing its threshold to be breached and hence firing it.

This idea is applied to a practical vision system in [9], whereby relations between
pixels in the Motion History Image (MHI) over a sequence are learned for a simple shop-
keeper/customer scenario. Abnormal behaviour is detected when a customer takes an
item of stock but leaves the shop without paying the shopkeeper. Similarly using MHI,
[2] discriminates between actions based on movement of the human body by matching
against various learned templates. But so far, although these examples identify sequences
of learned events occurring at precise times, overall the sequences themselves are asyn-
chronous events - they might happen only once, or repeatedly but at arbitrary times. A
model described in [16] forms relations between asynchronous but related scene events
by dynamically adding links between parallel Hidden Markov Models, making it ideal for
many situations where temporal invariance is paramount.

When it comes to periodic motion, [15] describes a method of modelling moving
water, flames, and swaying trees as Temporal Textures. An Autoregressive Model is
proposed in which a new frame may be synthesized such that each pixel is described
by a weighted sum of previous versions of itself and its neighbours, together with an
added Gaussian noise process. Similar to the Temporal Textures of [15], [6] applies the
Wold decomposition to the 1-D temporal signals derived from each image pixel giving
rise to deterministic (periodic) and non-deterministic (stochastic) components, permitting
distinction between various human and animal gaits, and other types of motion.

On an apparently unrelated problem, much is to be found in the literature concerning
gait characterization, modelling and identification. Generally these methods work by
analyzing the relative motion of linked body members, which are all related by the same
fundamental. The parallel between this and modelling road junction traffic is surprisingly
close. Given extracted features, image areas may be likened to body limbs in that they
will likely share fundamental frequency, but be of arbitrary phase and harmonic content.

Various forms of periodic human motion are characterized in [11] by tracking candi-
date objects and forming their ‘reference curves’. After evaluating a dominant spectral
component if it exists, an appropriate temporal scale may be identified. This idea is de-
veloped in [5] which also considers periodic self-similarity, Fisher’s Test for periodicity



and Time Frequency Analysis. Meanwhile the Recurrence Plot described in [4] is a useful
tool for visualizing the evolution of a process in state-space, showing specifically when
the state revisits a previous location.

Instead of using Fourier analysis directly, [3] employs Phase Locked Loops (PLLs)
to discriminate between different gaits, on the basis that it is more efficient. Having
identified some fundamental frequency for an object (person), use of a PLL per pixel
permits estimation of the magnitude and relative phase of this fundamental component
for each pixel making up the object. The idea is that the phase ‘signature’ for every object
(person) will be different. The technique is rendered scale and translation invariant by
matching these parameters as shapes in the complex plane using the Procrustes mean.

In this work we wish to construct an algorithm to characterize the periodicity of a
scene based on its temporal statistics rather than explicit object tracking, thus avoiding the
catch-22 problem of determining appropriate scale versus saliency. Treating the recovered
periodicity as a temporal background we aim to discover anomalies in both space and time
simultaneously in unseen images. Expanding on a technique employing self-similarity
[5], we describe an algorithm for extracting fundamental periods from a video of a scene,
and then use these to facilitate a block-based spatio-temporal data-driven model of scene
activity. Experiments on two traffic junctions scenes show the effectiveness and simplicity
of such a model in performing anomaly detection.

The work presented here relates closely to a method described in [13] whereby a single
global periodicity of a traffic scene is characterized. The single periodicity represents a
severe limitation to the scalability, since most real scenes are much more complicated than
this. We thus propose a generalization towards a much more flexible block-wise multi-
periodicity approach. In addition, we describe a way of ensuring that each per block
model remains synchronized to incoming data - a vital aspect if the approach is to be
adopted in any practical system.

2 Spatio-Temporal Model
Our model involves building histograms over some chosen feature localized in space and
time. Determining the fundamental period at a spatial block location then becomes a
problem of finding matches between repeating sets of histograms. The method is thus
somewhat decoupled from the particular chosen feature, and as long as it can be expressed
by some distribution, any feature suitable for the application at hand may be used.

Given a video sequence Ix,y,t consisting of tmax frames each of size xmax × ymax pixels
in which (x,y) represents spatial pixel location, t the time index, and I the colour triple
{R,G,B}, we split the data into two parts, the first for training and the second for evalua-
tion. The pixel volume is then split into a grid of hmax×vmax equal sized square blocks of
pixels spatially and nmax equal sized blocks of frames temporally. At each spatio-temporal
grid position, consisting of

xmax

hmax
× ymax

vmax
× tmax

nmax
(1)

pixels we construct a separate histogram Hh,v,n of bmax bins over the selected feature space
Hh,v,n(b) = {b1, b2, . . . bmax} where h,v and n are spatial and temporal coordinates.



S Description
1 Choose a suitable feature for the application
2 Extract chosen feature from training sequence
3 Build 3D histogram block by quantizing training data onto a spatio-temporal grid
4 Find dominant fundamental period Tf und for each spatial block in scene
5 Form model from Ensemble Avg. of histograms of length Tf und in training data

REPEAT FOREVER
6 Use Ensemble Average model to detect anomalies in unseen frames
7 Form new histogram data from Tf und most recent unseen frames
8 Use new data to verify/correct synchronization with model using PLL

END

Figure 1: Summary of steps in our algorithm

2.1 Feature Selection
For effective analysis of traffic junctions, experiments indicate that coarse histograms in
2D over optical flow, and in 3D over colour component intensity are both useful features.
Evidently, a dimensionality ‘explosion’ occurs if too many features have to be represented
at too high a resolution. For optical flow, objects detected by thresholded background
subtraction are identified by the coordinates of the centres of their bounding boxes, and a
unique flow vector is evaluated for the connected object by the Lucas Kanade method [7].
Each of the x and y flow directions is quantized into only three bins according to whether
it is positively or negatively greater than a threshold vt from zero, or has magnitude less
than vt . Thus the 2D histogram has 3× 3 bins, and bmax = 9. In the case of the colour
intensity histogram, the integer range 0-255 for each colour channel is quantized linearly
into 4 bins, yielding a 4×4×4 bin 3D histogram, such that bmax = 64.

In general, the relatively high potential dimensionality of histograms may lead to a
sparsity of data points in each bin. Thus for a given size of training set, a trade-off has to be
struck between spatio-temporal resolution and point density, if meaningful distributions
are to be achieved. Our algorithm is summarized in Figure 1.

2.2 Fundamental Period Estimation
To estimate the fundamental period over which scene changes occur is non-trivial, and as
such it is dealt with in more detail in Section 3. Suffice to say at this point that a scene
may exhibit a number of unrelated fundamental periods (including ‘none’) distributed
over various scene regions. For each spatial block (h,v) we define a fundamental period
of K f und

h,v states, measured in the temporal grid resolution, and relate it to a time

T f und
h,v =

K f und
h,v

F
tmax

nmax
seconds (2)

given a frame rate of F per second. Ideally the training data should be long enough to
contain sufficient cycles of the fundamental period that the latter can be distinguished
adequately from noise - normally at least 10 cycles in our experiments.



2.3 State Cycle and Model Initialization

We define the State Cycle Sk
h,v where kh,v = {1 . . .K f und

h,v } of a grid location (h,v) to be
a temporal description of how the chosen feature varies throughout a single cycle of its
fundamental period of K f und

h,v phases. Given that the histogram array Hh,v,n contains a
number of cycles of this temporal description in succession, we wish to form an Ensemble
Average, or ‘average histogram’ per block H f und

h,v of size K f und
h,v representing a summary of

the scene’s typical behaviour at (h,v) over the ch,v most recent cycles of the fundamental,
where ch,v = b nmax

K f und
h,v

c cycles. Taking the ch,v most recent groups of K f und
h,v blocks, the kth

element of H f und
h,v is the mean of the kth elements of the ch,v groups for each bin b

H f und
h,v,kh,v

(b) =
1

ch,v

ch,v

∑
i=1

H
h,v,nmax−iK f und

h,v +kh,v
(b) (3)

where kh,v={1, 2, . . . K f und
h,v }. Normalization of H f und

h,v over b yields an estimate of feature

probability P f und
h,v which is then our spatio-temporal model of the scene

P f und
h,v,k (b) =

H f und
h,v,k (b)

∑
bmax
b=1 H f und

h,v,k (b)
(4)

In principle, the state counter kh,v, initialized to 1, may be updated every tmax
nmax

frames

according to the relation kh,v = mod (kh,v,K
f und

h,v )+1 in order to keep track of the learned
periodic scene behaviour. In practice, the exact update rate is dictated by each block’s
PLL system to be described in Section 4.

2.4 Output Synthesis
The goal is to provide an output sequence from our algorithm showing only objects in the
‘wrong place’ at the ‘wrong time’. For a query test frame Iquery the foreground mask M f g

and valid object bounding box for each object are obtained as described in Section 5. Then
h and v are calculated using h = x×hmax

xmax
and v = y×vmax

ymax
. The estimated probability of a

particular object being at a position is given by the normalized bin value of the histogram
at that location, and may be compared with a threshold α in order to give a binary decision
r as to whether the object is considered sufficiently rare to be displayed

r =

{
1 if P f und

h,v,k (b) < α

0 otherwise
(5)

On the basis of r being true, for each object in Iquery, a matting mask Mmatt is used to re-
insert object pixels according to bounding box dimensions from the new frame Iquery into
the background IB for all objects determined to be anomalous. The background image
with matted objects constitutes the useful output from the algorithm.



3 Determining the Fundamental Period
The method described in the previous section relies totally on obtaining a robust estimate
of the fundamental period of a block using the 3-D spatio-temporal grid of histograms
Hh,v,n. Following a method detailed in [5], we seek to find the most common lag between
instances of temporal self-similarity at times n1 and n2 over all possible combinations of
n1 and n2. As a measure of the dis-similarity between any two histograms, we utilize
the general definition of the symmetric Kullback-Leibler Divergence (KLD) between two
discrete distributions Pn1 and Pn2 given by

DKL(Pn1,Pn2) =
bmax

∑
b=1

(Pn1,b log2 (
Pn1,b

Pn2,b
)+Pn2,b log2 (

Pn2,b

Pn1,b
)) bits (6)

An example of the symmetric Divergence relative to a single time is illustrated in Figure
2(a), and between all combinations of times as matrix S in Figure 2(b), where S(n1,n2) =
DKL(Pn1,Pn2). Because it is the coincidence of minima in S that we are interested in, we
subtract its mean to form S′

S′(n1,n2) = S(n1,n2)− 1
(nmax)2

nmax

∑
n1=1

nmax

∑
n2=1

S(n1,n2) (7)

and construct the normalized 2-D autocovariance matrix A at all possible lags (di,d j)

A(di,d j) =
∑i, j S′(i, j) S′(i+di, j +d j)√

∑i, j S′(i, j)2 � ∑i, j S′(i+di, j +d j)2
(8)

Figure 2: (a) Temporal KL Divergence at a single grid position (50 on the x-axis) relative
to all other temporal grid positions. Naturally the divergence is zero with respect to itself.
(b) Divergence matrix between histograms at n1, n2 for all combinations of n1, n2.

As shown in Figure 3(b), matrix A exhibits a regular structure of peaks spaced at the
dominant period if it exists. The fundamental interval K f und is identified by exploratory
element-wise multiplication of A with a regular matrix of peaks generated by column
vector g(d) as shown in Figure 3(a), whereby varying the pitch d yields a peak in the
overall temporal scene power observed K f und = argmaxd(g(d)T A g(d)) for dmin ≤ d ≤
dmax and binary vector g such that gi(d) = δ ((i−nmax) mod d) where 1 ≤ i ≤ 2nmax−1.
Figure 3(c) shows how the scene’s signal power peaks at a given value of d.



Figure 3: (a) Lattice for d = 15 generated by g(d)g(d)T . Multiplying such a lattice by
the autocovariance matrix in (b) for a range of d identifies the fundamental period. (b)
Autocovariance of the Divergence matrix in Figure 2(b), showing the strong lattice struc-
ture corresponding to a dominant fundamental in the video sequence. (c) Relative spectral
power of a spatial block in Figure 5 for values of d between 4 and 50. Fundamental at
d = 15, gives a period of 15×7.5s = 112.5s corresponding to the cycle of the junction.

4 Phase-Locked Loop
The spatio-temporal model described so far relies completely on its synchronization with
scene activity to provide meaningful results. However, two problems are apparent. Firstly,
the initial estimated periodicity of a block from training data may lack precision, and
secondly, video data from the scene may be disrupted, corrupted, or some event in the
scene may occur to radically alter the phase of the learned dynamic behaviour. In any
case, our model may become de-synchronized, and it is highly desirable that it recover
automatically from such situations. In [3], a Phase-Locked Loop (PLL) was used to
recover the frequency and phase of oscillation in the characterization of human gait.

A PLL is a negative feedback servo mechanism encountered ubiquitously in elec-
tronic systems [1]. Implemented in digital or analogue hardware, or software it is usually
constructed from the same functional building blocks as shown in Figure 4. It operates
by synchronizing a local oscillator in both frequency and phase to a potentially noisy or
variable frequency input signal, and is routinely used for demodulation, data recovery
and frequency synthesis in communication and data systems. The behaviour of a PLL is
largely controlled by the s- or z-plane transfer function of the loop filter.

Here we make use of its ‘frequency filtering’ property to solve the above mentioned
short-comings of our model. By this we mean that short-term frequency variations (jitter)
are rejected, such that the output adopts the long-term average of the input frequency and
phase. We rely on the fact that although the purpose of our model is to detect unusual
events in a scene, on average the behaviour will be largely consistent. The ÷N counter
in Figure 4 causes the oscillator to run at a multiple of the periodicity. We implement
the oscillator in software as a counter or ‘phase accumulator’, and the higher oscillator
frequency yields a finer precision of output rate, and hence block periodicity.

Using the previously described KLD metric, a novel phase detector compares his-
tograms at state l from T f und most recent unseen frames in a circular fashion against the
current model at all K f und phases to determine the optimum

Φ
opt
h,v (l) = argmin

j
(∑

k
DKL[Hh,v,k, S

mod ( j+l+k, K f und
h,v )

v,h ]+1) j,k ∈ {1 . . .K f und
h,v } (9)



The phase exhibiting minimum KLD is considered the optimal target. Although poten-
tially transiently in error, this measurement ensures that on average the model is synchro-
nized to the scene permitting accurate event detection. The loop filter is configured as a
Proportional plus Integral controller, the integral term minimizing zero-order phase error.

Figure 4: Typical PLL with s-plane transfer function θout (s)
θin(s) = KPDKF (s)KCO(s)/N

1+KPDKF (s)KCO(s)/N .

Figure 5: Periodicities from Scenario 1. Much of the junction shares the periodicity of
the 112s traffic lights, whilst the rotating advertising board (top right) changes every 84s.
Areas marked ‘A’ are aperiodic. Pedestrians tracks shown in green, vehicles in red.

5 Experiment
For experiments we chose two busy city-centre road junctions controlled by traffic lights.
Each dataset had 30000 frames of 720×576 pixel colour video at 25Hz frame rate, yield-
ing sequences of 20 minutes duration. The short-term background model was obtained
as described using the method described in [12], based on blocks of 20 frames taken at
12 second intervals. The L1 norm of the background-subtracted data was thresholded at a
value of 30 given an intensity range of 0-255 per colour channel, and after morphological
clean-up, identified object areas were thresholded to reject those below 70 pixels to yield
the foreground mask. The model learns the 2D optical flow as the feature. The PLL loop
filter uses a proportional gain of 3 and an integral gain of 0.02. We compare our method
with an equivalent model having no temporal capability, derived by marginalizing out the
time dimension of the Spatio-Temporal (S-T) model. As shown in Figure 7, in 4 exam-
ples the S-T model correctly identifies cars crossing the junction at completely the wrong



Figure 6: Benefit of PLL on model phase stability. Note its effective acquisition of correct
phase (bottom) soon after t=0, and how it maintains a useful output phase even during
corrupted input data (top) due to the ‘inertia’ caused by the loop filter.

time, whilst the model with No Temporal Processing (NTP) is frequently in error. Such
marked improvement in detection comes exclusively from exploiting the learned optical
flow information over the junction such that the expected instantaneous distribution is
tightly coupled to the junction state cycle by the influence of the PLL. Computationally,
the algorithm achieves 3FPS on a 2GHz PC after initial model building.

6 Conclusion and Future Work
We have demonstrated an algorithm capable of automatically learning multiple periodic-
ities within a scene, such as exhibited at junctions controlled by traffic lights. It has been
demonstrated by experiment that the method can be more discriminating with regard to
activity of a periodic scene than a model which is oblivious to repeating temporal trends.
The method is not tied to a particular feature, but may be employed wherever a histogram
over feature(s) is available. By inclusion of a novel phase detector and control loop, it is
possible to maintain model synchronization in the presence of noise. The logical progres-
sion of the technique is to permit automatic on-line update of histogram data for a block
when its PLL is known to be in the ‘locked’ condition.
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