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Abstract 

In this paper we presented a novel idea for large-scale 3D scene 
reconstruction and annealing based image grouping algorithm for 
unordered wide-baseline photos. Firstly, an alternative maximum a 
posterior (MAP) model which can easily incorporate image clustering prior 
knowledge is proposed. Second, an efficient annealing clustering algorithm 
is developed for organizing photos into clusters by calculating matching 
number of invariant features. Thirdly, we analyze the time complexity and 
efficiency of the proposed approach. Finally a series of experiments are 
performed on the real image data and synthetic data. The experimental 
result shows that the MAP model and relative annealing algorithm are 
efficient enough to tackle the large-scale 3D reconstruction problem, and it 
can be extended to solve other similar SFM parameters estimation problem 
as well. 

1 Introduction 
Large-scale 3D reconstruction, as a challenging issue in computer vision application, 
has drawn considerable attentions in last decade, and a lot of efforts have been devoted 
to develop efficient approaches for recovering high-quality 3D scene models from a 
large set of unordered and wide-baseline images, which are taken from widely 
separated viewpoints. The key problem of large-scale 3D reconstruction is the wide-
baseline stereo (WBS) matching [1]. The procedure of WBS matching includes two 
steps: first, one is to find and extract local features from images by invariant descriptor, 
and then it is necessary to build up accurate correspondence between them. However, 
WBS matching is much more complicated and difficult than traditional small-baseline 
matching, for it has to tackle large deformation and affine wrapping due to the large 
changes over viewpoints. 

So far, most of the literatures and existed methods [2-4] are focus on the two-view 
WBS matching. For multi-view WBS matching in large-scale 3D scene reconstruction, 
the most simple and direct method is to treat it as a series of two-view (tri-view) WBS 
matching, like the Photo Tourism system presented in [5]. The system computed the 
correspondences between each possible images pair and jointed the reconstruction 
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results together to finally recovery the completely 3D model. Unfortunately, the 
computational cost of Photo Tourism system cannot be acceptable if the number of 
image is large, especially when the images are unordered and wide-baseline.  

Dellaert et al. [6-7] presented a novel Maximum likelihood (ML) statistical model for 
3D reconstruction and employ MCEM algorithm to recover the 3D scene structure and 
camera motion parameters together. In each iteration of the MCEM algorithm, the 
correspondence is regarded as hidden variable and represented as a probability 
distribution type instead of single best correspondence vector, and it is estimated by an 
efficient Markov chain Monte Carlo (MCMC) sampling method [8] in each E-step. 
Moreover in recent work, Dellaert et al. [9] presented an out-of-core bundle adjustment 
algorithm for generating large-scale 3D reconstructions, which can be used as M-step of 
EM algorithm. However, a good global reconstruction result is hard to obtain since the 
ML statistical model is too simple to describe the unordered and wide-baseline 
characteristic of images in large-scale 3D reconstruction. As a result, the computational 
cost is still high and the MCMC sampling method in MCEM algorithm may fail to 
estimate a good result for 3D structure and camera motion parameters. 

Alternatively, it is possible to carry out coarse matching before 3D scene 
reconstruction. The main idea of coarse matching is to find the multi-view feature 
correspondence across an unordered set of widely separated images by computing 
view-similarity value between each image pair, so that the WBS matching computation 
can be limited only among the reasonable view pairs, and the illogical view pairs can be 
filtered out for later fine matching. A typical method for coarse matching is proposed 
by Schaffalitzky and Zisserman [10], in which local invariant features of each image are 
firstly extracted and stored in a features-versus-views hash table. Then a greedy 
spanning tree for WBS matching is built up according to hash table. Ferrari et al. [1] 
proposed another algorithm in which the correspondence in two-view is extended to 
multiple-view and the topological constraint is added to filter out more mismatches. 
Brown and Lowe at el. [11] presented a system for fully automatic recognition and 
reconstruction of 3D objects, in which the matches between all unordered images in 
database are found by using local invariant feature characterized by SIFT descriptor 
[13]. Further more, Jian Yao et al. [12] presented a more robust view-ordering 
algorithm in which the views are organized into clusters, then building up the view 
matching-spanning tree under epipolar constraint, so the further mismatches would be 
kicked out and result will be more robust. 

In this paper, we present an efficient method for the multi-view WBS matching over 
a large set of unordered images taken from widely separated views. First we propose a 
maximum a posterior (MAP) model for large-scale 3D reconstruction instead of ML 
model. Under this MAP model, any available prior knowledge about the unknown 
parameters can be readily incorporated into the 3D reconstruction process. Secondly, a 
novel annealing based algorithm for image clustering is developed, by which a large set 
of unordered images can be efficiently partitioned into a series of clusters of related 
views (e.g. a part of the whole large-scale scene) by calculating the initial matching 
numbers of invariant features (found and characterized by SIFT descriptor ) between 
each image pair. 

The rest of this paper is organized as follows. The formal deduction and details about 
MAP model is introduced in section 2. The efficient annealing based ordering algorithm 
for clustering a large set of unordered images is presented in section 3, and in section 4 
we make analyses about the efficiency and computational complexity of the new 



ordering algorithm. Finally, the experiment results and comparisons between other 
ordering algorithms are given in section 5 and the conclusions are drawn in section 6. 

2 MAP Model for Large-scale 3D Reconstruction 
Most of the problem of computer vision can be treated as structure from motion (SFM) 
problem [15], especially 3D reconstruction, which means that 3D scene structure and 
camera motion parameters are recovered and estimated by a series of images taken from 
different viewpoints.  

For this complex geometric parameters estimation problem, we first characterize the 
parameters set like Dellaert did in [6-7], i.e. we define structure and motion parameters 
set as Θ , which consists of 3D feature locations X  and cameras parameters M ; the 
set of local features measurements as U , and correspondence vector J  that records 
which 2D feature point corresponds to which 3D structure feature point. Suppose that 
the correspondence is known, the problem can be described by a ML model as follows: 
 * arg max log ( ; , )L U JΘ = Θ  (1) 
According to Bayesian law, we can employ MAP estimation instead of ML model by 
incorporating prior knowledge ( )P Θ : 
 * arg max log ( | , ) arg max{log ( ; , ) log ( )}P U J L U J P

Θ Θ
Θ = Θ = Θ + Θ  (2) 

The prior information ( )P Θ  in narrow sense can be viewed as the prior probability 
distribution of parameters; here it can be broadly viewed as any information about 3D 
reconstruction that is available. In fact, there is little prior knowledge about SFM in 
most cases and the majority of existing SFM methods assumes no prior knowledge on 
SFM parameters at all. But in large-scale 3D reconstruction, the whole scene is shot and 
caught by a large set of wide-baseline images taken from very different viewpoints. For 
each small part of the huge scene, only part of unordered images is taken for it. One 
image is low related or irrelevant at all with another one if they are taken in widely-
separated views for different part of the huge scene. Therefore, it is unreasonable to 
make WBS matching between an image pair that is shot for very different parts of the 
huge scene, and this was the reason that the ML model is not efficient enough and time 
consuming is huge. As a result, obviously, this fact can be treated as the prior 
knowledge for large-scale 3D reconstruction. 

In order to use the prior information discussed above, we make a partition for the 
unordered image set, i.e. organize the wide-baseline images into clusters of related sub-
scene of the huge scene: 
 { }; ,i i jG G G G i j= ∩ = ∅ ≠  (3) 

The notation G  is the set of all images. After partition, each image subset iG  is 
mutually exclusive with each other. According to the abovementioned partition, we can 
make a partition for SFM parameter set as well, and each subset of parameters 
corresponds to a relative image subset, i.e. we “cut” the huge scene into a number of 
small scenes. Consequently, Eq.(2) can be further expressed like follows: 

 *

1 1

arg max log ( | , ) arg max log( ( ; , ) ( ))
i

n n

i i i i
i i

P U J L U J P
Θ Θ= =

Θ = Θ = Θ = Θ Θ∪ ∪  (4) 

The typical method to solve this problem is known as Bundle Adjustment, which can 
be convenient to add kinds of constraints and sparse solver techniques. Noted that the 



Eq.(4) is obtained under the assumption that the correspondence is known, when the 
assumption is incorrect, the formula has to be changed like follows: 

 *

1 1

arg max log ( , | ) arg max log( ( , ; ) ( ))
i

n n

i i i i
i i

P J U L J U P
Θ Θ= =

Θ = Θ = Θ = Θ Θ∪ ∪  (5) 

In order to perform this MAP without correspondence, a direct way is to marginalize 
Eq.(5) over all the possible correspondences. But it is impossible to get the posterior 
distribution ( | )P UΘ  by doing so, since the direct way would unavoidably suffer from 
the unacceptable computational cost. Fortunately, Dellaert [6-7] proposed a practical 
MCEM algorithm for this situation in which the correspondence is unknown. In the 
MCEM, the unknown correspondence is treated as hidden variable, and the issue of 
correspondence is solved in parallel with the estimation of the SFM parameters.  

According the MAP model discussed above, the large-scale reconstruction can be 
efficiently cut into a series of small-scale reconstructions, then the MCEM algorithm is 
employed and tackling the reconstructions in parallel with each other. And finally the 
high quality 3D model for the whole scene would be obtained by join the reconstructed 
pieces together. 

3 Annealing Clustering Algorithm 
In this section, we propose a novel annealing clustering algorithm that can efficiently 
group a large set of wide-baseline images into clusters. Similar work has been done for 
small scene reconstruction in [10-13], and the key ideas of them are to compute 
similarity-values of all image pairs, and to cluster them into different groups and build 
the spanning tree for matching. However, the computational cost is high when the set of 
image is large. 

3.1 Optimization for Images Set Clustering 
Generally speaking, we abstract away from the images clustering problem and think of 
it in terms of weighted undirected graph. First we define the graph G  as ,V E< > , 
where the vertices V  correspond to the images and the edges E  are identified with 
the relativity between image pairs and the graph is fully connected by the edges E . For 
each edge ( , )i je v v=  we define the weight term as follows: 
 ( , ) _ _ ( , )i j i jw v v feature matching number v v=  (6) 

In fact, any value that can show how similar or different a image pair are in quantity 
can be viewed as the weight of edge term. Here we choose the matching number of 
local invariant features characterized by SIFT descriptor. The more the matching 
number is, the more similar the two images are.  

According to the weight undirected graph defined above, to find a partition C  of 
the images set is equivalent to find a cut set that can cut the graph into several 
connected sub-graphs, and the images set clustering problem can be conveniently 
viewed as a optimization problem to minimize the object function, which can be 
defined as the weight sum of the cut set: 

 ( ) ( ) ( , )k i j
k i j

W C w e w v v
≠

= =∑ ∑  (7) 



Considering the convenience for further performing and formulation, we change the 
object function to be the sum of the weight of the connected sub-graphs, so the 
minimization becomes maximization instead: 

 
1 1 1 1

( ) ( ) ( , )
i iG GG G

i j k
i i j k j

W C W G w v v
= = = = +

= =∑ ∑∑ ∑  (8) 

3.2 Annealing Clustering Algorithm 
The optimization problem has been well studied for lots of years and there are plenty of 
existing methods. In this paper, we choose annealing algorithm for the optimization 
problem mentioned above. The main advantage of annealing algorithm is that it can 
avoid local extreme and find the global maximum (or minimum) of the object function. 
The key for efficiency of annealing algorithm is the proposal strategy, which finds out 
the candidate cluster for choice. In this case, the proposal strategy is related with two 
factors: 

1) The partition for the images set, which decides which images are clustered 
together. 

2) The number of image subset. 
Considering these two factors, our strategy and annealing based clustering algorithm 

can be concluded as follows: 
1) Cut the images set into a number of subsets randomly, and each subset has only 

two images; 
2) Calculate the weight ( )kW C  for each subset, and the average weight W . 
3) Randomly choose two images subset iG  and jG  whose weights ( )iW G  and 

( )jW G  are lower than the average weight W , choose a image in each subset at 
random and swap them, repeat this step for iT  times. 

4) Accept the new clustering 1kC C +′ =  with the following probability:  

 
( ( ) ( ))

exp kW C W C
T

′ −⎡ ⎤−⎢ ⎥⎣ ⎦
 (9) 

5) Unite two subsets if the images of them are high related. Repeat the step until the 
number of subset is iN . 

During the iteration of annealing, we first increase the cluster number iN  and the 
images swapping number iT , and then these two parameters would gradually decrease 
with the temperature parameters. In the internal iteration, images are swapped within 
clusters to increase their weights so that each cluster can be as cohesive as possible. In 
the external iteration, clusters are trying to be combined if images within them are 
highly related. Both these steps increase the object function in intuition and the 
maximum (or minimum) can be eventually found. 

4 Experimental Result and Comparison 
In order to verify the proposed grouping algorithm, we have made a series of 
experiments on various image data comes from different databases. The result shows 
that our approach works as efficiently as expected. In this Section, we will show three 



representative experiments of them and make comparison with traditional exhaustive 
coarse matching methods. 

4.1 Unordered Image set with different Rotation 
The first experiment is performed on 88 photos which are taken from in 4 dissimilar 
scenes with different rotation. All of them come from Mikolajczyk’s database [15]. The 
examples of them are shown in Figure 1. The number is the index for each photo in 
group. Although the photos are ordered by indexes for convenient to show，the initial 
input sequence is randomly organised and the algorithm dose not use the index 
information, therefore, the photo group is still unordered. 

 
Figure 1: Example of each photo group. 

 
In order to validate the efficiency of our new method, we use a view-vs-view table 

proposed in [10] to make a comparison. The table can directly show the number of 
initial two-view connections found between the views of the image set. In fact, the table 
can be seemed as an upper-triangular matrix. Here we change it into a symmetric matrix 
for programming convenience.  

Another special table we define is “cache matrix”. It and symmetric matrix is the 
same type matrix that used to record the initial matching number between image pairs. 
During the process of the grouping, the program will first try to access the cache matrix 
when a coarse matching is needed, and the initial matching number will be stored into 
the matrix if it has not been computed before. Therefore, when the grouping process is 
over, the matrix can be used to show computation cost that our new algorithm takes for 
photos grouping.  

 
 (a)                          (b) 
Figure 2: 88x88 symmetric matrix (a) and relative cache matrix (b). Each element 
stands for the initial number of specific two-image connections. In (b), the elements in 
red and green color mean the corresponding connection numbers have been computed 
during the grouping process; on the contrary, the blue ones haven’t been computed. 
 

Both matrixes of this experiment are shown in Figure 2. For traditional exhaustive 
matching approaches in [10-13], the symmetric matrix (Fig 2(a)) must be fully 
computed; for our new approach, only small part of it needs to be computed. By 
scanning the cache matrix in Fig 2(b) and counting the unrecorded elements, there are 



80.17% elements have not been computed, in other words, our grouping algorithm can 
save more than eighty percent of computational cost comparing with old exhaustive 
ones. 

 
Figure 3: Grouping result. The 88 photos are grouping into 5 clusters. And photos in 
cluster B and cluster C are actually taken from the same scene. 
 

In this experiment, the extern-iteration number of grouping algorithm is set to 2 and 
the inner-iteration number is 200. The grouping result is shown in Figure 3. Careful 
reader may find that the photo grouping result for “New York” is divided into two 
subgroups B and C. It is not surprising, because we only perform 2 external iteration 
times, for the grouping algorithm, which is actually an annealing one, is too short and 
“hot” for it to find a global optimal sorting result. But considering about the time cost, 
this local optimal result we get is acceptable because it did not sort the different photos 
into one group. 

4.2 Unordered Image set of Large-Scale 3D Scene 
The second experiment is performed on 46 photos that also come from [15]. All the 
photos are taken from different viewpoints in 4 dissimilar scenes. The examples of them 
are shown in Figure 4 and the symmetric matrixes are shown in Figure 5. 

 
Figure 4: Examples of each photo group 

 
The grouping result is shown in Figure 5, which is fairly perfect except a few 

mistakes. It is easy to explain that, since the initial matching number is used to be the 
relativity measure between image pair, and sometimes these initial numbers between 
irrelevant photos are even larger than the relative ones. This flaw is more evident if the 
symmetric matrix is binarized, as shown in Figure 6(b). For example, the 7th photo 
which belongs to the “Graff4” group has the unreasonable high similarity with the 30th 
to 32nd photos in “Graff5” group, as shown in Figure 5(b), which finally led to the 
grouping error (the isolated point shown in Figure 6(a)). 



 
 (a)                              (b) 
Figure 5: 46x46 symmetric matrix (a) and relative cache matrix (b). By counting the 
blue elements in (b), we can conclude that the computation cost reduces by 51.50%. 

 
 (a)                             (b) 

Figure 6: (a) Grouping result (b) binarized result of symmetric matrix in Fig 5 (a). 

4.3 Unordered Images of Large-Scale 3D Scene 
The third experiment is performed on the real image set taken by authors in Xi’an city, 
China, as shown in Figure 7, (the scene can be seen by Google Earth at 34°14′10.17″N, 
108°54′05.72″E). Instead of showing matrixes and graphs, we show the grouping result 
of real images clusters in Figure 8. 

 
Figure 7: Real images taken by authors. There are total 48 photos for this city urban 
scene, which can be cut into 5 pieces of building communities. Note: these photos are 
organized into an unordered set deliberately. 

 
In this experiment, the 48 unordered photos are taken from widely different 

viewpoints and have large affine warping. Therefore, the grouping process iterates for 
more than 50 times and saves only 24.02% computation cost in total. It eventually 
groups them into 5 clusters. However, since there are a lot of repeat structures leading 



to wrong feature matching, there are 4 photos grouped into wrong clusters (marked by 
red frame). 

 

 
Figure 8: Photos clustering result. 

5 Conclusion 
In this paper we have presented a novel MAP model which can easily incorporate prior 
knowledge of images clustering and an annealing based clustering algorithm which can 
efficiently organize large number of images into clusters. The model is efficient and 
suitable for large-scale 3D reconstruction. Moreover, the MAP model can be viewed as 
a general framework and the specific form can be changed when using different camera, 
re-projection and noise models.  

For the annealing clustering algorithm, experimental results show that the algorithm 
is efficient to organize a large set of unordered images and is convenient to implement. 
In this paper, we use the matching number of invariant SIFT features. In fact, any value 
can be used if it can express the view-similarity of image in quantity. As a result, the 
MAP model along with the clustering algorithm can be used to model any SFM 
parameters estimation problem if the parameters can be “grouped”. 
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