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Abstract 

High-dimensional feature matching based on nearest neighbors search is 
a core part of many image-matching based problems in computer vision 
which are solved by local invariant features. In this paper, we propose a 
new indexing structure for the high-dimensional feature matching, which is 
based on the distance of the sub-vectors. In addition, we employ an 
effective image-similarity measure of two images based on the exponential 
distribution of the Euclidean distance between matched feature vectors. 
Experimental results have demonstrated the efficiency and effectiveness of 
the proposed methods in extensive image matching and image retrieval 
applications. 

1 Introduction 
Using local invariant features for image matching plays an important role in many 
computer vision applications, such as image retrieval, object recognition, panoramas 
building, scene reconstruction and video data mining [1-4]. In these applications, firstly 
local invariant features are detected individually in each image, then they are 
characterized by invariant descriptors and finally the feature descriptors in one image 
are matched to the features of other images. The matched features can be used in the 
subsequent procedures such as representing an object, voting for an image or being 
used for estimating the geometry parameters. 

Related work. Lowe [5] proposed an object recognition method that are composed 
by three main components: (1) local feature detector based on the Difference-of-
Gaussian filter; (2) the SIFT descriptor, which is highly distinctive and robust over 
common image deformations caused by changes in camera pose and lighting; (3) a fast 
matching algorithm, called BBF (best-bin-first) for the high-dimensional vector 
searching. These components have been widely used in many vision problems. 
Especially the SIFT descriptor performs so well that it still seems to be the most 
appealing descriptor for practical applications nowadays although various refinements 
based on this scheme have been proposed [6]. At the same time, a lot of data structures 
for the matching of the feature descriptors have been reported, which can be generally 
divided into five classes [7], (a) Exhaustive search; (b) Hashing and indexing; (c) Static 
space partitioning; (d) Dynamic space partitioning; (e) Randomized algorithms. For 
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detailed discussions on these algorithms please refer to [7]. In this paper, we only focus 
on the static space partitioning methods. K-d tree is a static space partitioning strategy 
based on a k-dimensional binary search tree and has been successfully used in ANN 
(approximate nearest neighbor) search for low dimensional cases. However, the k-d tree 
search often performs poorly in high-dimensional spaces. The BBF algorithm [5], also 
based on the binary searching tree, can deal with the high-dimensional searching issue 
and it has been widely used in matching image feature vectors. Each feature vector is 
considered as a point. BBF firstly selects a dimension as the key one, which has the 
largest variance, to divide each node if it is not a leaf node. Then for every point, it is 
added to the left child if the key dimension is smaller than that of the root and to the 
right child if bigger. The process is recursively executed on the left and right children 
until only one point remains. By this way, it will cost relatively less time when carrying 
out the ANN search process. Yu et al. [8] proposed the iDistance (indexing the 
distance) algorithm which is a B+ tree based indexing method used for ANN search in 
high dimensional data space. The core idea of iDistance is that it only searches the 
points which have the similar distance to the reference point as the query point. Our 
algorithm is also inspired by this idea. Sivic et al. [4] employed vocabulary tree to 
represent large number of the subsets of the feature vectors, and they consider the 
features associated with a particular subset as matches to each other. Nister et al. [9] 
designed a hierarchical vector quantization method based on the vocabulary tree and 
they matched individual feature descriptors by comparing paths of features down to the 
vocabulary tree. However, the memory occupancy needed to build a vocabulary tree is 
very high. In [9], about 143MB memory is used for building a vocabulary tree with 6 
levels and 10 branches. 

The first and the main goal of this paper is to propose an efficient and effective 
indexing mechanism for the feature vectors matching in high-dimensional space. Unlike 
kd-tree based methods, we employ sub-vectors (containing multi-dimensions, not only 
some one dimension) of the feature descriptor to build indexing structures for that 
multiple dimensions could contain more information than one. We consider feature 
descriptor matched if they contain particular numbers of the similar sub-vectors and the 
sub-vectors could be regarded as similar when their distances to a reference point are 
similar. Based on assumptions above, we could build a simple indexing using a string of 
binary bits to indicate the distance information of each sub-vector to a reference point. 
We will demonstrate our method more efficient and effective than the commonly used 
BBF algorithm by extensive experimental results. The second goal of this paper is to 
present a simple yet effective image-similarity measure which can be used in the image 
matching based applications. 

The remainder of this paper is organized as follows. Section 2 details the proposed 
feature matching strategy and section 3 introduces the presented image-similarity 
measure. The experimental results and analyses are drawn in section 4. Finally, the 
conclusion and perspective are summarized in section 5.  

2 High-Dimensional Feature Matching 
To make searching for NNs (nearest neighbors) more efficient, we propose a new 
indexing structure based on the distances of sub-vector (seemed as a point) to the 
reference point (the origin point in our algorithm), called iSVD (indexing Sub-Vector 



Distance). In our algorithm, each feature vector is divided into n  parts equally and 
each part is termed as a sub-vector with equal dimensions. 

2.1 Basic Idea of iSVD 

There are two basic assumptions for iSVD. 
Assumption 1: If two feature vectors are similar (measured by Euclidean distance), 

then the correspondent sub-vectors of the two features should be similar respectively. 
This assumption can be formulated as following, 

 1 1 2 2( , ) ( , ) ( , ) ... ( , )Sim Sim Sim Sim= ∧ ∧ ∧ m mf f f f f f f f� � � �  (1) 

where ( , )Sim f f�  denotes a binary variable which equals to 1 if the correspondent 

feature vectors f  and f�  are similar and equals to 0 if not. if  denotes the ith sub-
vector of the feature descriptor and m is the number of sub-vectors used for indexing. 

Assumption 2: If two sub-vectors (seemed as points in high-dimensional space) are 
similar, then they have similar distance to the same reference point. 

This idea is also employed by [8], and it reveals the fact that the two points which are 
approximately located in a sphere centred at the reference point may be similar with 
each other. In our algorithm, we simply choose the origin point of high-dimensional 
space as the reference point. Therefore, the distance from a sub-vector point to the 
original point equals to the L2 norm of the sub-vector (termed as norm_i and i denotes 
the sequence number of the sub-vector in a feature descriptor, 1 i m≤ ≤ ). 

Suppose we build indexing structure using m sub-vectors of feature descriptors 
extracted in one image. For the illustration purpose, we resort to the binary split tree 
with m depth (see Figure 1 a), which in fact does not need in our algorithm. At each 
node of the tree in ith level, a divided value div is defined to divide the features in this 
node into 2 groups: “left” group if norm_i is smaller than div and “right” group if 
larger. The same process is recursively applied to each group until all the m sub-vectors 
are compared for every feature descriptor. We index each feature descriptor according 
to the path to denote the way it is down to the tree, i.e. assign ‘0’ to denote it down to 
the left group and ‘1’ denotes to right group (see Figure 1 a). Finally the feature 
descriptors can be indexed by a binary string or an equivalence decimal integer. The 
binary split tree discovers the essential idea of our indexing algorithm. In practical use, 
the tree structure is not required in our algorithm. We actually only need to calculate a 
binary string and the equivalent integer for indexing purpose (the red rectangle in 
Figure 1 b). 

In order to improve the NN searching accuracy, we introduce a probability factor 
α ( 0 1α≤ ≤ ), which defines an ambiguity region. If there are num feature descriptors 
in the current group in ith level and they are sorted ascendingly according to norm_i, 
then we define S(j) function, denoting the jth (1 j num≤ ≤ ) L2 norm of sub-vector of 
all the features in this group. Thus, the ambiguity region can be defined as following, 
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For each feature in this group, we define the following rules to build the indexing, 
 



If norm_i<v1, add the feature to the “left” group in next level, i.e. assign ‘0’ to the 
current bit of the binary string; 

If norm_i>v2, add the feature to its “right” group in next level, i.e. assign ‘1’ to 
the current bit of the binary string; 

Otherwise, add the feature to both its “left” and “right” group, i.e. copy the feature 
indexing structure first, and then assigned ‘0’ to the current bit of the binary string of 
original one and assigned ‘1’ to that of the copied one. In other words, there will be 
producing two different indexes to indicate the same feature descriptor in this 
process. 
The ambiguity region improves the hit probability for searching the accurate NN of 

the query feature and the parameter α  will be discussed in detail in section 2.3. 
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Figure 1: The proposed indexing structure iSVD for high-dimensional feature search. 
The red circles denote the tree nodes and the blue rectangles denote the feature 
descriptors. (a) the tree indexing structure; (b) the actually used indexing structure. 

2.2 The Procedure of iSVD Algorithm 

The proposed iSVD algorithm for high-dimensional feature match is concluded and 
organized as follows: 

Step 1: Building. An index structure is built for all features extracted in one image. 
Sub-step 1.1 Assign a binary string containing m bits and an unsigned decimal 

integer to each feature for indexing. 
Sub-step 1.2 Divide each feature descriptor equally into n  sub-vectors and use the 

first m (1 m n≤ ≤ ) sub-vectors for indexing. 
In our experiment, the SIFT descriptor with 128 dimensions is divided into n=16 sub-

vectors and each sub-vector contains 128/16=8 dimensions. Thus, m can be set from 1 
to 16 and we choose m=8 in our subsequent experiments to get good balance between 
matching speed and accuracy. 

Sub-step 1.3 For the current group of feature descriptors in ith level, the ambiguity 
region is first calculated (see Eq.2). Then for each feature, we employ the 
aforementioned rules in section 2.1. In addition, the median value of the norm_i of 
features in the current group is recorded in an array array_divided which will be used as 
the divide-values in the searching process. 

The sub-step 1.3 is recursively applied to each group of feature descriptors level by 
level until the level is up to m, i.e. the first m sub-vectors of every feature descriptor are 
all compared in turn. 



As a result, each feature has one or more binary array(s) and the equivalent decimal 
integer(s) for indexing. Then, we sort the indexing integers by ascending order. Thus, 
for every indexing integer, there are several feature descriptors indexed by it (see 
Figure 1 b). Furthermore, it is worth noticed that the number of feature descriptors 
indexed by an integer is nearly same due to our building scheme. This balance property 
will improve the searching speed. 

Step 2: Searching. For a given feature in another image, firstly, we also assign a 
binary string containing m bits and an unsigned short integer to it for indexing. Then, 
we compare L2 norm of its first m sub-vectors in turn to the correspondent value in 
array_divided computed in sub-step 1.3. If it is smaller than the median value stored in 
array_divided, assign ‘0’ to the ith position of the indexing binary string array; if it is 
larger or equal, assign ‘1’. This process is executed repeatedly until all the m sub-
vectors have been compared. Then, we can calculate the equivalent integer x according 
to the indexing binary string. Next, we search the integer indexing structure IS built in 
Step 1, which is in ascending order. If 1 1i i ix x x x− +< = <  ( ix IS∈ ), set x x=� ; If 

1i ix x x− < < , set ix x=� . Finally, we search all the features that indexed by x�  one-by-
one and find the nearest neighbor (1-NN) and the second one (2-NN) to the query 
feature among them. 

Step 3: Matching. We only consider feature matches in which the distance ratio of 
1-NN to the 2-NN is less than a ratio threshold T ( 0 1T< < ). This measure [5] 
performs well and effectively, since correct matches should have the closest neighbors 
significantly closer than the closest incorrect match. 

2.3 Discussion on the Probability Factor α  

The probability factor α  is very important in iSVD algorithm and it is designed to 
improve the searching accuracy. Figure 2 shows the average searching accuracy and 
time cost along with different α  values on the “Boat” image set [10], which contains 
10 test images varying in different scales and rotations of the same scene. We match the 
feature sets between the first image to all the other 9 images respectively and calculate 
the average accuracy and time cost on the same value of α . The searching accuracy 
denotes the accuracy of the nearest neighbor.  
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Figure 2: The curves of searching accuracy and time cost vs.α . 

From Figure 2, we can see that both searching accuracy and time cost increase when 
α  increases for that α  defines an ambiguous region. If the L2 norm of the sub-
vector of the query feature locates in this region, the feature indexing structure will be 
copied, which means the feature will be indexed by more than one integer. In other 
words, the number of feature indexed by one integer can be added. The larger the α  
is, the more number of features will be indexed by one integer, which will certainly 



result in higher searching accuracy and time cost for searching. From Figure 2 (a), we 
can find that the improvement of searching accuracy becomes slowly when α  is 
bigger than 0.35, while the time cost increases sharply when α  exceeds 0.35. 
Therefore, we set α =0.35 in our subsequent experiments to get good balance between 
searching accuracy and time cost. 

2.4 Memory Cost of iSVD 

The iSVD algorithm only needs much smaller memory occupancy compared to 
vocabulary tree [9]. The memory cost contains two parts: one is for feature descriptors; 
the other is for the extra indexing structures. The total memory occupancy can be 
calculated approximately as following, 

 (1 ) [ (1 ) ]m mMem ND N U N D Uα α= + + = + +  (3) 
where N is the feature number extracted in one image. For D-dimensional descriptor 
represented as char type it needs approximate DN bytes. For m sub-vectors building 
indexing needs approximate (1 )mN Uα+  bytes, where U denotes the bytes for each 
indexing structure containing a char array with m bytes and a short integer type with 2 
bytes. In our case, D=128, m=8, U=m+2, α =0.35, N is averagely 8000, resulting in 
1.8MB memory. When performing matching images, we can build indexing structures 
in one image using about 1.8MB memory and release the memory before performing 
another two image matching. 

3 Similarity between Two Images 
Matching of local invariant features enables image matching robust to background 
clutter and occlusion. When finish matching local feature descriptors between query 
image and the reference images, each match could translate to a vote for a particular 
reference image. The vote value can be considered as an image-similarity measure. For 
a successful voting scheme, a large value of votes should be assigned to the matching 
reference images, while only smaller value of votes can be assigned to the unrelated 
reference images. One natural way to measure the similarity of two images I1 and I2 is 
to use the matching number of the local features. However, in some situations, 
especially in the wide-baseline image matching, only matching feature number is not 
robust enough since the local feature descriptor is not as distinctive as that in the 
narrow-baseline case. Yao [3] proposed the image-similarity both using the number of 
matched features 1 2( , )N I I  and the mean distance of all matched features 1 2( , )d I I ,  

 max 1 21 2
1 2

max max

( , )( , )
( , ) (1 )

d d I IN I I
Sim I I

N d
β β

−
= + − ,  [0,1]β ∈  (4) 

where maxN  and maxd  are the highest 1 2( , )N I I  and largest 1 2( , )d I I  among all 
image pairs, and β  is a weighted parameter. 

Here, we present a simple but effective image-similarity measure. Generally, the 
probability of two features being true match (i.e. correspond to the same local region R) 
is a monotonic function h( )i  of the Euclidean distance between the two feature 

descriptors if  and if� ,  



 2[( , ) ] h(|| || )i i i iP f f R f f∈ = −� �  (5) 
And this probability can be simulated as an exponential distribution, i.e. h( ) xx e−= . 

Therefore, the proposed image-similarity measure can be calculated as following, 
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where K is the total number of matched features between two images I1 and I2. 
The proposed image-similarity is related with the distance of the matching feature 

descriptors and the total number of matching features. It is simple yet effective, which 
will be verified in our subsequent experiments. 

4 Experimental Results and Analysis 
In this section, we present extensive experimental results to evaluate the performance of 
the proposed iSVD algorithm and image-similarity measure in image matching and 
image retrieval applications. In our experiments, we use SIFT algorithm [5] to create 
the invariant SIFT descriptors with 128 dimensions for each local regions. All the 
experiments are executed on a PC with Pentium IV 2.80 GHz CPU and 768M memory. 

4.1 Searching Methods Comparison 

In order to evaluate the proposed searching method iSVD completely, we choose 8 
groups of image sets from the image database [10] which consists of a large number of 
various types of scenes. The image sets used in this experiment are listed in Table 1.  
 

 Boat Bricks Cars East_Park Ensimag Graffiti Resid Inria 
Image Num 10 6 6 11 11 11 11 11 
Total Feature Num 50050 62754 16554 43615 43311 42779 27863 30338 

Table 1: The image number and feature number for each group of image sets. 
 

 Boat Bricks Cars East_Park Ensimag Graffiti Resid Inria 
exhaustive 
search Time 27512 77609 6543 13020 15866 8626 6095 8958 

Accu 1 46.03 41.83 66.49 58.22 53.71 69.04 71.26 69.98 
Accu 2 19.90 18.04 36.16 33.04 30.82 51.55 49.74 46.21 BBF 
Time 2263 5159 878 1205 1399 755 804 1164 
Accu 1 57.60 61.49 71.75 71.85 61.88 76.32 79.29 77.03 
Accu 2 32.87 35.39 39.42 53.13 41.92 61.78 62.66 59.96 iSVD 
Time 2024 2987 503 983 1087 610 612 927 

Table 2: The average value of the accuracy (%) and time cost (ms) for 8 groups of 
image sets. 
 

Each image set contains several related images of the same scene. About 300,000 
SIFT features are extracted from these test images. For each image set, we take the first 
image as a query image to match all the other ones in this group respectively. In every 
two images matching procedure, we search the 1-NN and 2-NN of features of the first 
image in the indexing structure built in the second image. We record the average 



searching accuracy of 1-NN, 2-NN and the average time cost for each image group. The 
results of exhaustive algorithm, well-known BBF algorithm and the proposed iSVD 
algorithm are listed in Table 2, respectively. We can see that the iSVD can obtain 
higher searching accuracy than BBF (the accuracy of 1-NN and 2-NN can averagely 
improve 19% and 43% than BBF respectively). Moreover, iSVD can be executed faster 
than BBF for feature matching (the speed of iSVD is 36% faster than BBF on average). 

4.2 Feature Matching Performance Comparison 

In this experiment, we evaluate the feature matching performance for the proposed 
iSVD algorithm using recall-(1-precision) graph [6], which captures the fact that we 
want to increase the number of correct positives while minimizing the number of false 
positives. We obtain the curves along with the variation of the matching ratio threshold 
T (see section 2.2 Step 3). Figure 3 presents the results of exhaustive searching, BBF 
and iSVD on images with different transformations, from which we can see that iSVD 
performs obviously better than BBF over various transformation types of images due to 
its higher accuracy in NN searching.  
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Figure 3: iSVD vs. BBF on matching tasks under different conditions. (a) rotation of 65 
degree and scale of 4; (b) 12 degree viewpoint change; (c) corrupted by Gaussian noise; 
(d) 50% intensity scales. 

4.3 Image-Similarity Validation 

We evaluate the proposed image-similarity measure in an image retrieval experiment on 
a small dataset [11] which contains 30 images with 10 groups of different items. Our 
image retrieval experiment is similar to that conducted by Ke et al. [6]. They performed 
image matching between every two images and regard the number of matched features 
as a similarity measure between images. For each image, the top 2 images with most 



matched number are returned. If the returned 2 images are both in the same group of the 
query image, the algorithm is awarded 2 points. If only one image is in the same group, 
it is awarded 1 point. Otherwise, it is given no point. Therefore, the full mark is 60. 
Here, we follow Ke’s scoring rules, and use BBF searching method with three different 
image similarity measures which are matched number (termed as sim_num), weighed 
sum of matched number and distances [3] (termed as sim_sum) and the proposed 
method in section 3 (termed as sim_exp). The score results are listed in Table 3 and we 
can find that sim_exp is the most effective, whose score is much higher than the other 
two measures. In addition, sim_sum performs only a little better than sim_num, which is 
not as good as our expectation. 
 

 sim_num sim_sum sim_exp 
Scores 26 28 38 

Table 3: Score results using three different image-similarity measures in an image 
retrieval test. 

4.4 Image Retrieval Experiment 

In this experiment, we evaluate the performance of the proposed feature matching 
method iSVD and image-similarity measure on a challenging image data set of 
recognition benchmark images provided by [12], which contains 10200 images in 
groups of four that belong together. We match every two images of the first 1000 
images and perform scoring by counting how many of the four images in the same 
group (including the query image itself). The results of iSVD with sim_exp image-
similarity measure compared to iSVD with sim_num and BBF with sim_num are 
presented in Figure 4. We can see that iSVD algorithm performs much better than BBF 
method with the same image-similarity measure (sim_num). Moreover, jointly using 
iSVD and sim_exp can obtain the best performance. 
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Figure 4: Performance comparison of image retrieval on the database [12]. 

5 Conclusion 
The main contribution of this paper is to propose a novel indexing structure for high-
dimensional feature matching, which builds indexing structure based on sub-vector 
distances. Furthermore, a simple yet effective image-similarity measure is also 
presented. We have demonstrated our approach efficient and effective on extensive 



image matching and image retrieval experiments. In future work, we aim at applying 
our method in some other computer vision applications, such as object recognition and 
scene reconstruction from images. 
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