
Indexing Sub-Vector Distance for High-
Dimensional Feature Matching

Heng Yang, Qing Wang, Zhoucan He
School of Computer Science and Engineering

Northwestern Polytechnical University
Xi’an 710072, P. R. China

qwang@nwpu.edu.cn

Abstract

High-dimensional feature matching based on nearest neighbors search is
a core part of many image-matching based problems in computer vision
which are solved by local invariant features. In this paper, we propose a
new indexing structure for the high-dimensional feature matching, which is
based on the distance of the sub-vectors. In addition, we employ an
effective image-similarity measure of two images based on the exponential
distribution of the Euclidean distance between matched feature vectors.
Experimental results have demonstrated the efficiency and effectiveness of
the proposed methods in extensive image matching and image retrieval
applications.

1 Introduction
Using local invariant features for image matching plays an important role in many
computer vision applications, such as image retrieval, object recognition, panoramas
building, scene reconstruction and video data mining [1-4]. In these applications, firstly
local invariant features are detected individually in each image, then they are
characterized by invariant descriptors and finally the feature descriptors in one image
are matched to the features of other images. The matched features can be used in the
subsequent procedures such as representing an object, voting for an image or being
used for estimating the geometry parameters.

Related work. Lowe [5] proposed an object recognition method that are composed
by three main components: (1) local feature detector based on the Difference-of-
Gaussian filter; (2) the SIFT descriptor, which is highly distinctive and robust over
common image deformations caused by changes in camera pose and lighting; (3) a fast
matching algorithm, called BBF (best-bin-first) for the high-dimensional vector
searching. These components have been widely used in many vision problems.
Especially the SIFT descriptor performs so well that it still seems to be the most
appealing descriptor for practical applications nowadays although various refinements
based on this scheme have been proposed [6]. At the same time, a lot of data structures
for the matching of the feature descriptors have been reported, which can be generally
divided into five classes [7], (a) Exhaustive search; (b) Hashing and indexing; (c) Static
space partitioning; (d) Dynamic space partitioning; (e) Randomized algorithms. For

BMVC 2008 doi:10.5244/C.22.70

detailed discussions on these algorithms please refer to [7]. In this paper, we only focus
on the static space partitioning methods. K-d tree is a static space partitioning strategy
based on a k-dimensional binary search tree and has been successfully used in ANN
(approximate nearest neighbor) search for low dimensional cases. However, the k-d tree
search often performs poorly in high-dimensional spaces. The BBF algorithm [5], also
based on the binary searching tree, can deal with the high-dimensional searching issue
and it has been widely used in matching image feature vectors. Each feature vector is
considered as a point. BBF firstly selects a dimension as the key one, which has the
largest variance, to divide each node if it is not a leaf node. Then for every point, it is
added to the left child if the key dimension is smaller than that of the root and to the
right child if bigger. The process is recursively executed on the left and right children
until only one point remains. By this way, it will cost relatively less time when carrying
out the ANN search process. Yu et al. [8] proposed the iDistance (indexing the
distance) algorithm which is a B+ tree based indexing method used for ANN search in
high dimensional data space. The core idea of iDistance is that it only searches the
points which have the similar distance to the reference point as the query point. Our
algorithm is also inspired by this idea. Sivic et al. [4] employed vocabulary tree to
represent large number of the subsets of the feature vectors, and they consider the
features associated with a particular subset as matches to each other. Nister et al. [9]
designed a hierarchical vector quantization method based on the vocabulary tree and
they matched individual feature descriptors by comparing paths of features down to the
vocabulary tree. However, the memory occupancy needed to build a vocabulary tree is
very high. In [9], about 143MB memory is used for building a vocabulary tree with 6
levels and 10 branches.

The first and the main goal of this paper is to propose an efficient and effective
indexing mechanism for the feature vectors matching in high-dimensional space. Unlike
kd-tree based methods, we employ sub-vectors (containing multi-dimensions, not only
some one dimension) of the feature descriptor to build indexing structures for that
multiple dimensions could contain more information than one. We consider feature
descriptor matched if they contain particular numbers of the similar sub-vectors and the
sub-vectors could be regarded as similar when their distances to a reference point are
similar. Based on assumptions above, we could build a simple indexing using a string of
binary bits to indicate the distance information of each sub-vector to a reference point.
We will demonstrate our method more efficient and effective than the commonly used
BBF algorithm by extensive experimental results. The second goal of this paper is to
present a simple yet effective image-similarity measure which can be used in the image
matching based applications.

The remainder of this paper is organized as follows. Section 2 details the proposed
feature matching strategy and section 3 introduces the presented image-similarity
measure. The experimental results and analyses are drawn in section 4. Finally, the
conclusion and perspective are summarized in section 5.

2 High-Dimensional Feature Matching
To make searching for NNs (nearest neighbors) more efficient, we propose a new
indexing structure based on the distances of sub-vector (seemed as a point) to the
reference point (the origin point in our algorithm), called iSVD (indexing Sub-Vector

Distance). In our algorithm, each feature vector is divided into n parts equally and
each part is termed as a sub-vector with equal dimensions.

2.1 Basic Idea of iSVD

There are two basic assumptions for iSVD.
Assumption 1: If two feature vectors are similar (measured by Euclidean distance),

then the correspondent sub-vectors of the two features should be similar respectively.
This assumption can be formulated as following,

 1 1 2 2(,) (,) (,) ... (,)Sim Sim Sim Sim= ∧ ∧ ∧ m mf f f f f f f f� � � � (1)

where (,)Sim f f� denotes a binary variable which equals to 1 if the correspondent

feature vectors f and f� are similar and equals to 0 if not. if denotes the ith sub-
vector of the feature descriptor and m is the number of sub-vectors used for indexing.

Assumption 2: If two sub-vectors (seemed as points in high-dimensional space) are
similar, then they have similar distance to the same reference point.

This idea is also employed by [8], and it reveals the fact that the two points which are
approximately located in a sphere centred at the reference point may be similar with
each other. In our algorithm, we simply choose the origin point of high-dimensional
space as the reference point. Therefore, the distance from a sub-vector point to the
original point equals to the L2 norm of the sub-vector (termed as norm_i and i denotes
the sequence number of the sub-vector in a feature descriptor, 1 i m≤ ≤).

Suppose we build indexing structure using m sub-vectors of feature descriptors
extracted in one image. For the illustration purpose, we resort to the binary split tree
with m depth (see Figure 1 a), which in fact does not need in our algorithm. At each
node of the tree in ith level, a divided value div is defined to divide the features in this
node into 2 groups: “left” group if norm_i is smaller than div and “right” group if
larger. The same process is recursively applied to each group until all the m sub-vectors
are compared for every feature descriptor. We index each feature descriptor according
to the path to denote the way it is down to the tree, i.e. assign ‘0’ to denote it down to
the left group and ‘1’ denotes to right group (see Figure 1 a). Finally the feature
descriptors can be indexed by a binary string or an equivalence decimal integer. The
binary split tree discovers the essential idea of our indexing algorithm. In practical use,
the tree structure is not required in our algorithm. We actually only need to calculate a
binary string and the equivalent integer for indexing purpose (the red rectangle in
Figure 1 b).

In order to improve the NN searching accuracy, we introduce a probability factor
α (0 1α≤ ≤), which defines an ambiguity region. If there are num feature descriptors
in the current group in ith level and they are sorted ascendingly according to norm_i,
then we define S(j) function, denoting the jth (1 j num≤ ≤) L2 norm of sub-vector of
all the features in this group. Thus, the ambiguity region can be defined as following,

[]_ 1, 2

1 11 S * , v2 S *
2 2

amb reg v v

v num numα α

=

⎛ − ⎞ ⎛ + ⎞⎡ ⎤ ⎢ ⎥= =⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎝ ⎠ ⎝ ⎠

 (2)

For each feature in this group, we define the following rules to build the indexing,

If norm_i<v1, add the feature to the “left” group in next level, i.e. assign ‘0’ to the
current bit of the binary string;

If norm_i>v2, add the feature to its “right” group in next level, i.e. assign ‘1’ to
the current bit of the binary string;

Otherwise, add the feature to both its “left” and “right” group, i.e. copy the feature
indexing structure first, and then assigned ‘0’ to the current bit of the binary string of
original one and assigned ‘1’ to that of the copied one. In other words, there will be
producing two different indexes to indicate the same feature descriptor in this
process.
The ambiguity region improves the hit probability for searching the accurate NN of

the query feature and the parameter α will be discussed in detail in section 2.3.

...

^

...

^^

......

^

0 1

0 1

0

0

1

0 11 0 1

Level m-1

Level 2

Level m

Level 1

...

^

00...01 00...10 11...0 11...1

1s

Indexing Structure

...

^

...

^

...

^

...

2s 1ts − ts

(a) (b)

Figure 1: The proposed indexing structure iSVD for high-dimensional feature search.
The red circles denote the tree nodes and the blue rectangles denote the feature
descriptors. (a) the tree indexing structure; (b) the actually used indexing structure.

2.2 The Procedure of iSVD Algorithm

The proposed iSVD algorithm for high-dimensional feature match is concluded and
organized as follows:

Step 1: Building. An index structure is built for all features extracted in one image.
Sub-step 1.1 Assign a binary string containing m bits and an unsigned decimal

integer to each feature for indexing.
Sub-step 1.2 Divide each feature descriptor equally into n sub-vectors and use the

first m (1 m n≤ ≤) sub-vectors for indexing.
In our experiment, the SIFT descriptor with 128 dimensions is divided into n=16 sub-

vectors and each sub-vector contains 128/16=8 dimensions. Thus, m can be set from 1
to 16 and we choose m=8 in our subsequent experiments to get good balance between
matching speed and accuracy.

Sub-step 1.3 For the current group of feature descriptors in ith level, the ambiguity
region is first calculated (see Eq.2). Then for each feature, we employ the
aforementioned rules in section 2.1. In addition, the median value of the norm_i of
features in the current group is recorded in an array array_divided which will be used as
the divide-values in the searching process.

The sub-step 1.3 is recursively applied to each group of feature descriptors level by
level until the level is up to m, i.e. the first m sub-vectors of every feature descriptor are
all compared in turn.

As a result, each feature has one or more binary array(s) and the equivalent decimal
integer(s) for indexing. Then, we sort the indexing integers by ascending order. Thus,
for every indexing integer, there are several feature descriptors indexed by it (see
Figure 1 b). Furthermore, it is worth noticed that the number of feature descriptors
indexed by an integer is nearly same due to our building scheme. This balance property
will improve the searching speed.

Step 2: Searching. For a given feature in another image, firstly, we also assign a
binary string containing m bits and an unsigned short integer to it for indexing. Then,
we compare L2 norm of its first m sub-vectors in turn to the correspondent value in
array_divided computed in sub-step 1.3. If it is smaller than the median value stored in
array_divided, assign ‘0’ to the ith position of the indexing binary string array; if it is
larger or equal, assign ‘1’. This process is executed repeatedly until all the m sub-
vectors have been compared. Then, we can calculate the equivalent integer x according
to the indexing binary string. Next, we search the integer indexing structure IS built in
Step 1, which is in ascending order. If 1 1i i ix x x x− +< = < (ix IS∈), set x x=� ; If

1i ix x x− < < , set ix x=� . Finally, we search all the features that indexed by x� one-by-
one and find the nearest neighbor (1-NN) and the second one (2-NN) to the query
feature among them.

Step 3: Matching. We only consider feature matches in which the distance ratio of
1-NN to the 2-NN is less than a ratio threshold T (0 1T< <). This measure [5]
performs well and effectively, since correct matches should have the closest neighbors
significantly closer than the closest incorrect match.

2.3 Discussion on the Probability Factor α

The probability factor α is very important in iSVD algorithm and it is designed to
improve the searching accuracy. Figure 2 shows the average searching accuracy and
time cost along with different α values on the “Boat” image set [10], which contains
10 test images varying in different scales and rotations of the same scene. We match the
feature sets between the first image to all the other 9 images respectively and calculate
the average accuracy and time cost on the same value of α . The searching accuracy
denotes the accuracy of the nearest neighbor.

40

45

50

55

60

65

0.2 0.25 0.3 0.35 0.4 0.45 0.5
alpha

ac
cu

ra
te

 (%
)

2000

2500

3000

3500

4000

4500

5000

0.2 0.25 0.3 0.35 0.4 0.45 0.5
alpha

tim
e

(m
s)

Figure 2: The curves of searching accuracy and time cost vs.α .

From Figure 2, we can see that both searching accuracy and time cost increase when
α increases for that α defines an ambiguous region. If the L2 norm of the sub-
vector of the query feature locates in this region, the feature indexing structure will be
copied, which means the feature will be indexed by more than one integer. In other
words, the number of feature indexed by one integer can be added. The larger the α
is, the more number of features will be indexed by one integer, which will certainly

result in higher searching accuracy and time cost for searching. From Figure 2 (a), we
can find that the improvement of searching accuracy becomes slowly when α is
bigger than 0.35, while the time cost increases sharply when α exceeds 0.35.
Therefore, we set α =0.35 in our subsequent experiments to get good balance between
searching accuracy and time cost.

2.4 Memory Cost of iSVD

The iSVD algorithm only needs much smaller memory occupancy compared to
vocabulary tree [9]. The memory cost contains two parts: one is for feature descriptors;
the other is for the extra indexing structures. The total memory occupancy can be
calculated approximately as following,

 (1) [(1)]m mMem ND N U N D Uα α= + + = + + (3)
where N is the feature number extracted in one image. For D-dimensional descriptor
represented as char type it needs approximate DN bytes. For m sub-vectors building
indexing needs approximate (1)mN Uα+ bytes, where U denotes the bytes for each
indexing structure containing a char array with m bytes and a short integer type with 2
bytes. In our case, D=128, m=8, U=m+2, α =0.35, N is averagely 8000, resulting in
1.8MB memory. When performing matching images, we can build indexing structures
in one image using about 1.8MB memory and release the memory before performing
another two image matching.

3 Similarity between Two Images
Matching of local invariant features enables image matching robust to background
clutter and occlusion. When finish matching local feature descriptors between query
image and the reference images, each match could translate to a vote for a particular
reference image. The vote value can be considered as an image-similarity measure. For
a successful voting scheme, a large value of votes should be assigned to the matching
reference images, while only smaller value of votes can be assigned to the unrelated
reference images. One natural way to measure the similarity of two images I1 and I2 is
to use the matching number of the local features. However, in some situations,
especially in the wide-baseline image matching, only matching feature number is not
robust enough since the local feature descriptor is not as distinctive as that in the
narrow-baseline case. Yao [3] proposed the image-similarity both using the number of
matched features 1 2(,)N I I and the mean distance of all matched features 1 2(,)d I I ,

 max 1 21 2
1 2

max max

(,)(,)
(,) (1)

d d I IN I I
Sim I I

N d
β β

−
= + − , [0,1]β ∈ (4)

where maxN and maxd are the highest 1 2(,)N I I and largest 1 2(,)d I I among all
image pairs, and β is a weighted parameter.

Here, we present a simple but effective image-similarity measure. Generally, the
probability of two features being true match (i.e. correspond to the same local region R)
is a monotonic function h()i of the Euclidean distance between the two feature

descriptors if and if� ,

 2[(,)] h(|| ||)i i i iP f f R f f∈ = −� � (5)
And this probability can be simulated as an exponential distribution, i.e. h() xx e−= .

Therefore, the proposed image-similarity measure can be calculated as following,

 2|| ||
1 2

1

(,)
i i

K
f f

i

Sim I I e− −

=

= ∑ � (6)

where K is the total number of matched features between two images I1 and I2.
The proposed image-similarity is related with the distance of the matching feature

descriptors and the total number of matching features. It is simple yet effective, which
will be verified in our subsequent experiments.

4 Experimental Results and Analysis
In this section, we present extensive experimental results to evaluate the performance of
the proposed iSVD algorithm and image-similarity measure in image matching and
image retrieval applications. In our experiments, we use SIFT algorithm [5] to create
the invariant SIFT descriptors with 128 dimensions for each local regions. All the
experiments are executed on a PC with Pentium IV 2.80 GHz CPU and 768M memory.

4.1 Searching Methods Comparison

In order to evaluate the proposed searching method iSVD completely, we choose 8
groups of image sets from the image database [10] which consists of a large number of
various types of scenes. The image sets used in this experiment are listed in Table 1.

 Boat Bricks Cars East_Park Ensimag Graffiti Resid Inria
Image Num 10 6 6 11 11 11 11 11
Total Feature Num 50050 62754 16554 43615 43311 42779 27863 30338

Table 1: The image number and feature number for each group of image sets.

 Boat Bricks Cars East_Park Ensimag Graffiti Resid Inria
exhaustive
search Time 27512 77609 6543 13020 15866 8626 6095 8958

Accu 1 46.03 41.83 66.49 58.22 53.71 69.04 71.26 69.98
Accu 2 19.90 18.04 36.16 33.04 30.82 51.55 49.74 46.21 BBF
Time 2263 5159 878 1205 1399 755 804 1164
Accu 1 57.60 61.49 71.75 71.85 61.88 76.32 79.29 77.03
Accu 2 32.87 35.39 39.42 53.13 41.92 61.78 62.66 59.96 iSVD
Time 2024 2987 503 983 1087 610 612 927

Table 2: The average value of the accuracy (%) and time cost (ms) for 8 groups of
image sets.

Each image set contains several related images of the same scene. About 300,000
SIFT features are extracted from these test images. For each image set, we take the first
image as a query image to match all the other ones in this group respectively. In every
two images matching procedure, we search the 1-NN and 2-NN of features of the first
image in the indexing structure built in the second image. We record the average

searching accuracy of 1-NN, 2-NN and the average time cost for each image group. The
results of exhaustive algorithm, well-known BBF algorithm and the proposed iSVD
algorithm are listed in Table 2, respectively. We can see that the iSVD can obtain
higher searching accuracy than BBF (the accuracy of 1-NN and 2-NN can averagely
improve 19% and 43% than BBF respectively). Moreover, iSVD can be executed faster
than BBF for feature matching (the speed of iSVD is 36% faster than BBF on average).

4.2 Feature Matching Performance Comparison

In this experiment, we evaluate the feature matching performance for the proposed
iSVD algorithm using recall-(1-precision) graph [6], which captures the fact that we
want to increase the number of correct positives while minimizing the number of false
positives. We obtain the curves along with the variation of the matching ratio threshold
T (see section 2.2 Step 3). Figure 3 presents the results of exhaustive searching, BBF
and iSVD on images with different transformations, from which we can see that iSVD
performs obviously better than BBF over various transformation types of images due to
its higher accuracy in NN searching.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1
1-precision

re
ca

ll

exhaustive search

BBF

iSVD

(a)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6
1-precision

re
ca

ll

exhaustive search
BBF
iSVD

(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
1-precision

re
ca

ll

exhausive search
BBF
iSVD

(c)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5
1-precision

re
ca

ll

exhaustive search
BBF
iSVD

(d)

Figure 3: iSVD vs. BBF on matching tasks under different conditions. (a) rotation of 65
degree and scale of 4; (b) 12 degree viewpoint change; (c) corrupted by Gaussian noise;
(d) 50% intensity scales.

4.3 Image-Similarity Validation

We evaluate the proposed image-similarity measure in an image retrieval experiment on
a small dataset [11] which contains 30 images with 10 groups of different items. Our
image retrieval experiment is similar to that conducted by Ke et al. [6]. They performed
image matching between every two images and regard the number of matched features
as a similarity measure between images. For each image, the top 2 images with most

matched number are returned. If the returned 2 images are both in the same group of the
query image, the algorithm is awarded 2 points. If only one image is in the same group,
it is awarded 1 point. Otherwise, it is given no point. Therefore, the full mark is 60.
Here, we follow Ke’s scoring rules, and use BBF searching method with three different
image similarity measures which are matched number (termed as sim_num), weighed
sum of matched number and distances [3] (termed as sim_sum) and the proposed
method in section 3 (termed as sim_exp). The score results are listed in Table 3 and we
can find that sim_exp is the most effective, whose score is much higher than the other
two measures. In addition, sim_sum performs only a little better than sim_num, which is
not as good as our expectation.

 sim_num sim_sum sim_exp
Scores 26 28 38

Table 3: Score results using three different image-similarity measures in an image
retrieval test.

4.4 Image Retrieval Experiment

In this experiment, we evaluate the performance of the proposed feature matching
method iSVD and image-similarity measure on a challenging image data set of
recognition benchmark images provided by [12], which contains 10200 images in
groups of four that belong together. We match every two images of the first 1000
images and perform scoring by counting how many of the four images in the same
group (including the query image itself). The results of iSVD with sim_exp image-
similarity measure compared to iSVD with sim_num and BBF with sim_num are
presented in Figure 4. We can see that iSVD algorithm performs much better than BBF
method with the same image-similarity measure (sim_num). Moreover, jointly using
iSVD and sim_exp can obtain the best performance.

2.5

3

3.5

4

0 200 400 600 800 1000
Number of Images

Sc
or

e

BBF+sim_num
iSVD+sim_num
iSVD+sim_exp

Figure 4: Performance comparison of image retrieval on the database [12].

5 Conclusion
The main contribution of this paper is to propose a novel indexing structure for high-
dimensional feature matching, which builds indexing structure based on sub-vector
distances. Furthermore, a simple yet effective image-similarity measure is also
presented. We have demonstrated our approach efficient and effective on extensive

image matching and image retrieval experiments. In future work, we aim at applying
our method in some other computer vision applications, such as object recognition and
scene reconstruction from images.

Acknowledgments
This work is supported by National Hi-Tech Development Programs of China under
grant No. 2007AA01Z314, National Natural Science Fund (60403008) and Program for
New Century Excellent Talents in University (NCET-06-0882), P. R. China.

References
[1] Noah Snavely, Steven M. Seitz, Richard Szeliski, Photo tourism: Exploring photo

collections in 3D. ACM Transactions on Graphics, 25(3):835-846, 2006.

[2] M. Brown and D.G. Lowe. Automatic Panoramic Image Stitching Using Invariant
Features. IJCV, 74(1):59-73, 2007.

[3] J. Yao and W.K. Cham. Robust multi-view feature matching from multiple
unordered views. Pattern Recognition, 40:3081-3099, 2007.

[4] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object
matching in videos. In ICCV, pages 1470-1477, 2003.

[5] D.G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV,
60(2):91-110, 2004.

[6] Y. Ke and R. Sukthankar. PCA-sift: A more distinctive representation for local
image descriptors. In CVPR, pages 506-513, 2004.

[7] Sameer A. Nene, Shree K. Nayar. A Simple Algorithm for Nearest Neighbor
Search in High Dimensions. IEEE PAMI, (19) 9:989-1003, 1997.

[8] C. Yu, B. C. Ooi, K. L. Tan, H.V. Jgadish. Indexing the Distance: An Efficient
Method to KNN Processing. Proceedings of the 27th VLDB Conference, pages
421-430, 2001.

[9] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In CVPR,
pages 2161-2168, 2006.

[10] Test images for image matching. http://lear.inrialpes.fr/people/mikolajczyk/

[11] A small image set. http://www.cs.cmu.edu/~yke/pcasift/

[12] Object recognition benchmark. http://vis.uky.edu/˜stewe/ukbench/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

