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Abstract 

 

  This paper proposes a joint random field (JRF) model for moving vehicle 

detection in video sequences. The JRF model extends the conditional random 

field (CRF) by introducing auxiliary latent variables to characterize the 

structure and evolution of visual scene. Hence detection labels (e.g. 

vehicle/roadway) and hidden variables (e.g. pixel intensity under shadow) are 

jointly estimated to enhance vehicle segmentation in video sequences. Data-

dependent contextual constraints among both detection labels and latent 

variables are integrated during the detection process. The proposed method 

handles both moving cast shadows/lights and background illumination 

variations. Computationally efficient algorithm has been developed for real-

time vehicle detection in video streams. Experimental results show that the 

approach effectively deals with various illumination conditions and robustly 

detects moving vehicles even in grayscale video. 

 

1   Introduction 
 

Moving object detection in video sequences is fundamental in application areas such as 

visual surveillance, traffic monitoring, human-computer interaction, and video 

compression. Especially, vehicle detection with stationary camera is an important 

problem for video based traffic monitoring, which is essential for the measurement of 

traffic parameters such as vehicle count, speed, and flow. However, accurate detection 

could be difficult due to the potential variability including shadows or lights cast by 

moving objects, dynamic background processes, and camouflage [11,15]. 

Comprehensive modeling of spatiotemporal information within the video scene is a key 

issue to robustly segment moving objects. Spatial color distribution can be used to 

characterize background and foreground objects within dynamic scenes [18]. Gradient 

(or edge) features help improve the reliability of moving object detection [21]. On the 

other hand, temporal changes of the background can be described by linear processes or 

statistical distributions according to recent observations [4,23]. In [3,10,19], the recent 

history of pixel intensity is characterized by a mixture of Gaussians, and the mixture 

model is adaptively updated for each site to deal with dynamics in background 

processes. In [2,12], kernel density estimation is employed for adaptive and robust 

object detection. 

Moreover, contextual constraint is an essential element to effectively fuse spatial and 

temporal information throughout the detection process. Markov random field (MRF) 

and hidden Markov model (HMM) have been extensively employed to formulate 

contextual constraints. In [7], HMM is used to impose the temporal continuity 

constraint on foreground and shadow detection for traffic surveillance. A dynamical 

framework of topology free HMM capable of dealing with sudden or gradient 

illumination changes is proposed as well [20]. In addition, spatial smooth constraint is 
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modeled by MRF in [14,17]. Spatiotemporal MRF involving successive video frames 

has also been proposed for robust detection and segmentation of moving objects [6]. 

However, conditional independence of observations is usually assumed in the previous 

work, which is too restrictive for contextual modeling of visual scene. Compared to 

generative models including MRF and HMM, the conditional random field (CRF) 

relaxes the strong independence assumption and captures dependencies between 

observations [9]. In recent years, CRF has been applied to image labeling as well as 

video analysis [1,8,16,25,26]. 

Based on the CRF, this paper proposes a joint random field (JRF) model for visual 

scene modeling and presents its application to moving vehicle detection in grayscale 

video. The JRF model extends the CRF by introducing auxiliary latent variables to 

characterize complex visual environment and enhance moving object detection in video 

sequences, so that detection labels (e.g. vehicle/roadway) and hidden variables (e.g. 

intensity of shadowed points) are jointly estimated throughout the labeling process. A 

real-time algorithm of moving vehicle detection has been developed for video based 

traffic monitoring. The method handles both moving cast shadows/lights and dynamic 

background processes, and it integrates data-dependent contextual dependencies among 

both detection labels and hidden variables during the detection process. Experimental 

results show that the proposed approach effectively captures contextual information in 

video sequences and significantly improves the accuracy of moving vehicle detection 

under various illumination conditions. 

 

2   Joint Random Field 
 

Given an image sequence, the label and observation of a point x at time instant t are 

denoted by t
xl  and t

xd  respectively. The detection label t
xl  assigns the point x to one of 

K classes. t
xl  = ek if the point x belongs to the kth class, where ek is a K-dimensional unit 

vector with its kth component equal to one. The local observation t
xd  consists of 

intensity information at the site x. Here t ∈ N, x ∈ X, and X is the spatial domain of the 

video scene. The entire label field and observed image over the scene are compactly 

expressed as l
t
 and d

t
 respectively. Under complex visual environment, it is expected 

that image labeling can be enhanced by introducing a set of auxiliary latent variables to 

characterize the video scene over time. At time t, the hidden variable for each site x is 

denoted by t
xr , and the entire latent field is expressed as r

t
. In this work, K = 3 and t

xr  

describes the cast shadow/light at site x (see Section 3). Based on conditional random 

field, contextual information within both label field and latent field can be formulated 

through a probabilistic discriminative framework of statistical dependencies among 

neighboring sites. 

 

2.1   JRF Model 
 

For random variables v and observed data o over the video scene, (v, o) is a conditional 

random field if, when conditioned on o, the random field v obeys the Markov property 

[9]: ),,|(),,|( xyxyx Nyvvpxyvvp ∈=≠ oo , where the set Nx denotes neighboring 

sites of the point x. Hence v is a random field globally conditioned on the observed data. 

In order to introduce auxiliary hidden variables during the labeling process, the notion 



of joint random field (JRF) is proposed in this work. For two random fields u, v and 

observed data o, (u, v; o) becomes a joint random field if =≠ ),,,|,( xyvuvup yyxx o  

),,,,|,( xyyxx Nyvuvup ∈o i.e. the couple (u, v) is Markovian when conditioned on 

observed data o. 

In this work, given the observed image d
t
 at time instant t, the joint probability 

distribution over the label field l
t
 and the latent field r

t
 is modeled by a joint random 

field (l
t
, r

t
; d

t
) to formulate contextual dependencies. Thus the couple (l

t
, r

t
) obeys the 

Markov property when the observed data d
t
 is given. Using the Hammersley-Clifford 

theorem and considering only up to pairwise clique potentials [22], the posterior 

probability is given by a Gibbs distribution with the following form. 
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The one-pixel potential )|,( tt
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two-pixel potential )|,,,(,
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neighboring sites. Strength of the constraints is dependent on the observed data. To 

simplify the computation, the pairwise potential is further factorized as 
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The JRF model extends the CRF for image sequences by introducing auxiliary latent 

variables to characterize complex visual scene, and it captures data-dependent 

neighborhood interaction among both detection labels and latent variables during the 

labeling process. 

Related work: Recently, random field based models, such as hidden conditional 

random field and layout consistent random field, have been proposed to incorporate 

hidden variables for object/gesture recognition as well as segmentation of partially 

occluded objects [16,26]. Firstly, in these models and their extensions [5,13], labels are 

conditionally independent of observations given the hidden variables. In the proposed 

model, the observations impact the estimation of labels even when the hidden variables 

are given. In relatively complex visual processes such as moving vehicle and cast 

shadow detection, actually the detection labels (e.g. vehicle/roadway) are influenced by 

the observed images even when the hidden variables (e.g. pixel intensity under shadow) 

are known. From this point of view, the proposed model theoretically generalizes 

previous ones with a tradeoff in computational complexity. Hence the proposed model 

can be applied to gesture recognition and multi-object segmentation as well. Secondly, 

the auxiliary variables are continuous in this work, so that each site has a discrete 

detection label and a continuous hidden variable. Usually both the image label and the 

hidden variable of each site are discrete in the previous work. Thirdly, comparing to the 

proposed model, direct interaction (or constraint) between neighboring labels is ignored 

in previous approaches [13,26]. 

 

2.2   Optimization 
 

The maximization of the joint posterior distribution over label field and latent field 

involves both discrete variables l
t
 and continuous variables r

t
, which makes it difficult to 



directly apply popular optimization methods for image labeling such as belief 

propagation and graph cut. The posterior probability is optimized by variational 

approximation [24]. The variational method looks for the best approximation of an 

intractable probability in the sense of Kullback-Leibler divergence. The posterior at 

time t can be approximated by the following distribution. 
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where local approximating probabilities )}|({ tt
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3   Moving Vehicle Detection 
 

For video based traffic monitoring, each pixel in the scene is to be classified as moving 

vehicle, cast shadow (or light), or background (roadway). For a site x at time t, the label 
t
xl  equals e1 for background, e2 for shadow, and e3 for vehicle. Here static shadows are 

considered to be part of the background. 

 

3.1   Local Observation 
 

In order to segment the moving vehicles, the system should first model the background 

and shadow information. For each point x, the pixel intensity t
xd  has three (R, G, and B) 

components for color images or one value for grayscale images. Grayscale images are 

considered in this work, while the formulation for color images can be derived similarly. 

Assume that each pixel in the scene is corrupted by Gaussian noise, so that the 

background model at time t becomes t
x

t
x

t
x nbd += , where t

xb  is the intensity mean for a 

pixel x within the background, and t
xn  is independent zero-mean Gaussian noise with 

variance 2)( t
xσ . Intensity means and variances in the background can be estimated from 

previous images. For dynamic background scenes, the recent history of each pixel is 

modeled by a mixture of Gaussians during background updating [19]. As parameters of 

the mixture model change, the Gaussian distribution that has the highest ratio of weight 

over variance is chosen as the background model. 

Given the intensity of a background point, a linear model is used to describe the 

change of intensity for the same point when shadowed (or illuminated) in the video 

scene, i.e. t
x

t
x

t
x

t
x nbd += ρ . Considering the contiguity of video image, the coefficient 

t
xρ  can be estimated from its neighborhood as ∑∑

∈∈

≈

xx Ny

t
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t
y

t
x bdρ  if the point is 

under cast shadow. 

To achieve maximum application independence, it is assumed that the intensity 

information of vehicles is unknown. Hence uniform distribution is used for the pixel 

intensity of moving vehicle. From the above discussion, the local intensity likelihood of 

a point x at time t becomes 
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where ),;( 2σµzN  is a Gaussian distribution with argument z, mean µ, and variance σ2
, 

c is a small positive constant ( 2561=c  for grayscale images). 

However, the observation model tends to confuse cast shadow and moving vehicle at 

boundary areas or in uniform regions, especially when the vehicle is darker than the 

background and the road surface is un-textured. Such detection error can be effectively 

reduced if the intensity of shadowed points is known, i.e. t
x

t
x

t
x nrd +=  if 2el t

x = , where 

t
xr  is the mean intensity under cast shadow (or light) for site x. Since the intensity under 

shadow is not given beforehand, in this work t
xr  is used as the auxiliary latent variable 

to characterize the visual scene for each point x at time t. 

 

3.2   Contextual Constraint 
 

The one-pixel potential in (2) is set as =)|,( tt
x

t
xx rlV d  )|,(ln t
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 | d

t
) becomes the product of local posterior at each site 

∏
∈Xx

t
x

t
x

t
x drlp )|,(  when two-pixel potentials are ignored. Using the Bayes’ rule, 

),|()|()(),,()|,( t
x

t
x

t
x

t
x

t
x

t
x

t
x

t
x

t
x

t
x

t
x

t
x dlrpldplpdrlpdrlp =∝ . Hence 

=)|,( tt
x

t
xx rlV d ),|()|()(ln t

x
t
x

t
x

t
x

t
x

t
x dlrpldplp− .       (5) 

The prior knowledge )( t
xlp  can be expressed by uniform distribution. The probability 
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x ldp  is given by the local intensity likelihood derived in the previous section. For 

pixel intensity under cast shadow (or light), the posterior ),|( t
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where the positive η reflects the temporal continuity constraint for the auxiliary variable. 

Its value is set to be the same as the learning rate of background updating. 

The two-pixel potential for neighboring detection labels is expressed as the following 

to formulate the spatial dependency. 
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δ , and ||⋅|| is the Euclidean 

distance. The first term (data-independent potential) encourages the formation of 

contiguous regions, while the second term (data-dependent potential) encourages data 

similarity when neighboring sites have the same label. The positives α1 and α2 

respectively weight the importance of data-independent smoothness constraint and data-



dependent neighborhood interaction. However, under heavy noises neighboring sites 

may become quite different even though they belong to the same class. To prevent this 

problem when detecting vehicles within noisy video scene, the regulation term δ is used 

in the data-dependent pairwise potential. 

Similarly, the two-pixel potential for neighboring latent variables is expressed as 
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respectively weight the importance of data-independent smoothness constraint and data-

dependent neighborhood interaction for latent variables. The potential functions 
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t
xyx rrV d  capture neighborhood interactions among detection 

labels and latent variables respectively. Naturally, the potentials impose adaptive 

contextual constraints that will adjust the interaction strength according to the similarity 

between neighboring observations. 

To balance the influence of potential terms for the joint random field, it is assumed 

that ααα == 21  and βββ == 21 , where the parameters α and β are empirically 

determined to reflect the constraint strength for detection labels and latent variables 

respectively. Initially, 
K

lq x

1
)(

0 =  and ))(,;()( 20000
xxxx brNrq σ=  with large variance for 

all the sites. 

 

3.3   Preprocessing and Postprocessing 
 

To improve the computational efficiency, the zone of moving vehicle detection is 

cropped from the scene for video processing (see Figure 1a). The region of interest is 

then straightened by applying perspective transformation [22], so that moving vehicle 

detection is performed on straightened images (see Figure 1b). The straightened image 

corresponds to a scaled top-down view of the roadway. Typically, a trapezoid region 

bounded by roadway lines becomes a rectangle with the prescribed width and length (48 

by 72 in this work) in the straightened image. The image straightening reduces the 

number of pixels for subsequent video processing and substantially improves the 

computational efficiency. Bilinear interpolation is employed when warping the original 

image region onto the rectangle in the straightened image. 

 

 
      (a)        (b)     (c)    (d)      (e) 

Figure 1. (a) Region of interest. (b) Straightened image. (c) Foreground and shadow detection. (d) 

Vehicle detection in the straightened image. (e) Vehicle detection in the original image. 

 



After foreground detection with shadow removal (see Figure 1c), detected vehicles 

are approximated by small rectangles in the straightened image (see Figure 1d). For 

each detected foreground area, the corresponding rectangle has the same central point 

and average width and length, with its edges parallel to the horizontal and vertical axes. 

On the highway, most occlusions happen between moving vehicles from neighboring 

lanes. The detected roadway lines help separate occluded vehicles when occlusion 

across multiple lanes takes place. Small detected regions, such as frontal part of 

incoming vehicles and false detection caused by noises in the scene, are ignored to 

enhance the robustness of moving vehicle detection. The located rectangles in the 

straightened image are then mapped back onto the original image (see Figure 1e). 

 

4   Results and Discussion 
 

The proposed approach has been tested on grayscale video sequences captured under 

different environments for road traffic monitoring. The 48-pixel neighborhood is 

utilized in the algorithm. The C program can process about 25 frames per second on a 

Pentium 4 3.0G PC. Four moving vehicle and cast shadow detection algorithms are 

studied in our experiments: the mixture of Gaussians (MoG) based approach [10], the 

Markov random field (MRF) approach with spatiotemporal constraints [17], the 

dynamic conditional random field (CRF) approach [25], and the proposed joint random 

field (JRF) approach. The same initialization and neighborhood are used in these 

algorithms (when applicable). 

 

 
     (a)        (b)      (c)   (d)     (e)    (f) 

Figure 2. (a) Vehicle detection by the CRF approach. (b) Vehicle detection by the proposed 

approach. (c) Straightened image. (d) Estimated latent field (intensity of shadowed points). (e) 

Foreground and shadow detection by the CRF approach. (f) Foreground and shadow detection by 

the proposed approach. 

 

Figure 2 shows the detection results by the conditional random field approach and 

the proposed method for a video sequence with strong reflection on the road surface. 

The gray regions in Figure 2e and 2f represent moving cast shadows. The CRF 

approach is unable to capture the intensity variation under relatively complex scene. It 

can be seen that parts of dark vehicles are misclassified in Figure 2e. On the other hand, 

the auxiliary variables (intensity of shadowed points) used in the proposed approach 

effectively model the illumination variation of the visual scene over time, which 

improves the reliability of vehicle and shadow segmentation. Compared with Figure 2e, 

moving vehicles and cast shadows at different locations of the road are accurately 

distinguished in Figure 2f. 

Figure 3 shows the results of moving vehicle and cast shadow detection by the 

Gaussian mixture approach, the Markov random field approach, and the proposed 

method for a grayscale video sequence with low image contrast in the detection zone. In 

Figure 3e.1, the pixel based MoG approach is likely to confuse moving vehicle and cast 



shadow under the noisy environment. The errors are corrected in Figure 3f.1 by the 

proposed method with the help of contextual dependencies and auxiliary variables (see 

Figure 3d.2). The MRF approach produces smooth segmentation results. However, 

sometimes it may smooth in a wrong way due to the neglect of the contextual 

interaction dependent on observations. It can be seen that some regions under shadow 

are misclassified in Figure 3e.2, while cast shadows are effectively removed from the 

moving vehicles in Figure 3f.2. 

 

 
    (a.1)       (b.1)        (c.1)    (d.1)    (e.1)   (f.1) 

 
    (a.2)       (b.2)        (c.2)    (d.2)    (e.2)   (f.2) 

Figure 3. (a.1) Vehicle detection by the MoG approach. (a.2) Vehicle detection by the MRF 

approach. (b) Vehicle detection by the proposed approach. (c) Straightened images. (d.1) 

Estimated intensity of roadway. (d.2) Estimated latent field (intensity of shadowed points). (e.1) 

Foreground and shadow detection by the MoG approach. (e.2) Foreground and shadow detection 

by the MRF approach. (f) Foreground and shadow detection by the proposed approach. 

 

The detection results are also evaluated quantitatively by comparing to the manually 

labeled ground-truth for straightened images. Table 1 shows the average error rate 

(portion of misclassified points in the entire image) for thirty representative frames of 

the three sequences (ten for each) shown in Figure 1-3. The MRF approach outperforms 

the MoG approach by utilizing smoothness constraints. Compared to the MRF approach, 

the CRF approach takes advantage of data-dependent neighborhood interactions. The 

JRF approach further improves the detection accuracy by introducing auxiliary latent 

variables to model the structure and evolution of the video scene. In our experiments, 

the JRF approach averagely reduces the error rate of the other three approaches by 73%, 

58%, and 37% respectively. The substantial increase of the accuracy indicates that by 

integrating contextual constraints and introducing auxiliary variables, the proposed 

approach effectively models the traffic scene during the detection process. 

 

 MoG MRF CRF JRF 

error rate 16.4% 10.2% 6.8% 4.3% 

Table 1. Error rates of detection results. 

 

Figure 4 shows the results of moving vehicle detection in the dark. The proposed 

approach can be applied to the detection of both cast shadows and cast lights. It can be 

seen that pixel intensity varies drastically when background points are illuminated by 

vehicle lights. Comparing to moving vehicles, the cast lights cover much more regions 

of the roadway, which could cause serious mistake and even failure in further video 



analysis. The proposed method accurately discriminates cast lights from moving 

vehicles even in grayscale video sequences. 

 

 
    (a.1)       (a.2)        (b.1)    (b.2)    (c.1)   (c.2) 

Figure 4. (a) Vehicle detection by the proposed approach. (b) Straightened images. (c) 

Foreground and light detection by the proposed approach. 

 

 
    (a.1)       (a.2)        (b.1)    (b.2)    (c.1)   (c.2) 

Figure 5. (a) Vehicle detection by the proposed approach. (b) Straightened images. (c) 

Foreground and shadow detection by the proposed approach. 

 

Figure 5 shows the results of vehicle detection in video sequences with background 

illumination variations. The detected shadow regions are actually caused by the 

automatic gain control (AGC), since the setting has been automatically adjusted by the 

video camera when large vehicles pass by. Hence, even in video streams without 

moving cast shadows or lights, the proposed approach also helps prevent false vehicle 

detection under dynamic illumination variations. 

 

5   Conclusion 
 

There are two main contributions in this paper. The first is to propose a joint random 

field (JRF) model that extends CRF by introducing auxiliary latent variables to 

characterize visual scene over time and enhance moving object detection in video. The 

second is to develop a real-time vehicle detection algorithm for video based traffic 

monitoring. The proposed model integrates contextual constraints among both detection 

labels and hidden variables during the detection process. Experimental results show that 

the proposed approach effectively handles both cast shadows/lights and background 

illumination variations, and it significantly improves the performance of vehicle 

detection even in grayscale video sequences. Our future study is to apply the JRF model 

to activity/gesture recognition for video based event detection and develop traffic 

analysis techniques such as vehicle counting and tracking, stopped vehicle detection, 

and traffic flow estimation based on the proposed detection method. 
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