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Abstract

This paper proposes a new focus measure operator for Shape From Focus to
recover a dense depth map of a scene. The method can handle depth discon-
tinuities effectively by using adaptively shaped and weighted support win-
dows. The support window shapes and weights are determined from the im-
age characteristics of the all-focused image of the scene. Similar and closer
pixels in the support window get higher weights, which inhibits the problems
caused by the depth discontinuities. The size of the support window can be
increased conveniently for a more robust depth estimation without introduc-
ing any window size related Shape From Focus problems. The large support
window sizes also addresses the edge bleeding problem. The experiments on
the real and synthetically refocused images show that the introduced ideas
work effectively and efficiently in real world applications.

1 Introduction
Recovering the 3D structure of a scene from multiple images is one of the main research
areas of Computer Vision. Shape from defocus (SFD) and shape from focus (SFF) are
two of these traditional approaches which use focus as a cue for depth extraction of a
scene. SFD[14][3] is the problem of reconstructing the depth map of a scene from a set of
images by estimating the relative blurriness of images. In contrast, the SFF estimates the
depth by searching for the best focused scene points from image set taken with different
focus settings. For each image in the sequence, the quality of focus is computed and the
best focused image in the sequence is determined for each pixel. The focus setting of
the selected image is used for depth estimation of the corresponding pixel. The relation
between the object depth and focal length of the lens is found by using

1
f

=
1
u

+
1
v
, (1)

where f is the focal length of the lens, u is distance between lens and image plane, and
v is the depth of the object. SFF can be implemented by changing either f , u, v, or any
combination of them.

Inferring shape form focus can be posed as a problem of measuring the focus quality
of image pixels. Although there are different SFF approaches, such as [5][8][13], almost
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all of them employ local windows to measure the focus quality because it is very difficult
to measure the focus quality using a single pixel. The local window approach assumes
that the surfaces of the objects in the scene can be approximated by surface patches par-
allel to the image plane (fronto planar or equifocal surface assumption). Although this
assumption makes the focus quality measurement practical, it is not always valid in the
real world because object surfaces can have very complex structure including depth dis-
continuities and non-equifocal surfaces. As a result, the conventional SFF method fails to
yield accurate results around depth discontinuities and slanted surfaces.

Another major problem with the traditional SFF methods is called edge bleeding
which is caused by the occlusions due to the sharp depth discontinuities when imaged
with finite aperture lenses[6] (Fig.1 (a) and (b)). Edge bleeding affects the image regions
even at perfect focus and it cannot be easily addressed by traditional SFF methods be-
cause it is visible in every image in the whole image set for image areas near sharp depth
discontinuities. Edge bleeding also causes focus measure ambiguities around the layered
object positions [11](such as the ambiguity between scene points P and R in Figure 1 (b)
and (d)). Errors due to edge bleeding can be reduced by increasing focus measure window
sizes at least as large as the size of the support of the widest blur kernel expected in the
setup[7, 12]. However, using larger window sizes in focus measure produces erroneous
results around depth discontinuities. Nair and Stewart [7] use an all-focused image of
the scene to address the edge bleeding problem. They extract the surface intensity edge
positions from the all-focused image. The extracted edges are used in an SFF depth es-
timation method and the depth values are propagated to the other image sections. This
method, however, has problems with image sections with no dominant edge features, e.g.,
smooth and low textured regions. On the other hand, accurate depth recovery around dis-
continuities can be possible using coaxial projector-camera system by utilizing projector
defocus model [17].

In this paper, we propose to employ adaptively shaped support windows to measure
the focus quality of a given image region from a set of images taken with different known
focus settings. The adaptive support windows would address the depth discontinuity prob-
lem if they assign different weights for pixels with different depth values. Since the pixel
depths are not available, we use image intensities to determine whether given two neigh-
boring pixels have similar depth values. In order to address the edge bleeding problem,
we obtained the image intensity values from the all-focused image of the scene, which
can be taken by a finite aperture lens with a small aperture size setting. Our adaptive mea-
surement method allows larger window sizes for a more robust depth estimation without
introducing any window size related SFF problems. The large support window sizes help
with the edge bleeding problem as well. Our method also has the advantage of recover-
ing the depth values of the fine structure with considerably large support windows. The
experiments performed on synthetically refocused images with ground truth depth values
show that our method produced much more accurate depth values compared with tradi-
tional SFF methods. Other experiments with real images shows the effectiveness of our
method with sharp depth discontinuities and fine image structure.

The rest of the paper organized as follows. Section 2 gives background of the SFF
method. Section 3 describes the details of our adaptive focus measure operator. We
describe the experiments performed in Section 4. Finally, we provide concluding remarks
in Section 5.
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Figure 1: (a)Picture of a scene with two equifocal layers where focus is set to background.
The boundary between the background and foreground blurred because the image points
near the boundary receive a mixture of light from both focused background and blurred
foreground. (b)The image formation process of (a). (c) The image of the same scene when
focus is set to foreground. (d)The image formation process of (c). The point x may appear
focused when focus is set to both foreground or background (focus measure ambiguity
between the scene points P and R).

2 Previous Work

2.1 Focus Measure Operators
A focus measure operator is used to measure the focus quality of an image region. The
operator should produce high response to high frequency variations of the image intensity,
since better focused image has higher frequency components. It should produce maximal
response to the perfectly focused image regions. A simple and frequently used operator
is Laplacian (∇2)

∇
2I(x,y) =

∂ 2I(x,y)
∂x2 +

∂ 2I(x,y)
∂y2 .

If the image is highly textured at pixel level, using Laplacian for depth estimation
would produce satisfactory results. However, this situation is not realistic and rarely hap-
pens in real problems. To alleviate this problem, focus measures are summed up in a
finite support window. For the Laplacian operator case, focus measure of the pixel x0,y0
is formulated for the as

FM (x0,y0) = ∑
(x,y)∈Ωx0 ,y0

∇
2I (x,y),

where Ωx0,y0 is the support window. Since the x and y components of the Laplacian
operator may cancel out each other (Ixx =−Iyy), the operator might produce incorrect re-
sponses, even in the presence of high frequency variations in image intensity. In order to
prevent cancelation of components, Nayar and Nakagawa [8] introduce a new focus op-
erator called Sum of Modified Laplacian (SML) which is the sum of Modified Laplacian



operator (ML) values in a neighborhood of local support window Ω. Discrete implemen-
tation of the ML and the SML operators can be easily applied in the image domain such
that

ML(I (x,y)) = |−I (x+ s,y)+2I (x,y)− I (x− s,y)| +
|−I (x,y+ s)+2I (x,y)− I (x,y− s)| ,

where s = 1,2, ..,N.

SML(x0,y0) = ∑
(x,y)∈Ωx0,y0

ML(I (x,y)) f or ML(I (x,y))≥ T ,

where T is a threshold value and Ωx0,y0 is the support window centered around the pixel
x0,y0.

2.2 Shape From Focus
SFF is a method for recovering depth from an image sequence which are taken with
different focus settings. After the focus measure computation, the focus setting f for each
pixel (x,y) is simply selected as

fi(x,y) = argmax
i

(FMi(x,y)),

where i = 1..N and N is the number of images in the sequence. FMi(x,y) is the focus
measure computed around pixel position (x,y) for the ith image in the sequence.

Depth values for each pixel is computed from the estimated focus settings using the
lens formula (Equation 1). Although SFF works effectively for some applications, e.g, mi-
croscopic objects[8], since the planar surfaces assumption is not realistic in most cases,
the traditional SFF method does not yield accurate results especially with depth disconti-
nuities and slanted surfaces.

Subbarao and Choi[13] proposed a new concept called Focused Image Surface (FIS)
which is a piecewise planar approximation of the shape of object in 3-D image space.
Starting from the initial estimate of FIS, focus measure is recomputed for all possible
planar surface patches in the small cubic volume formed by the image sequence. Planar
surface patches with maximum focus measure are searched to extract FIS. The search
is based on brute force approach therefore it is computationally expensive. Ahmad and
Choi[1] use dynamic programming optimization to reduce the computational complexity
of FIS. Initial estimate of FIS is obtained by using traditional SFF methods. Therefore,
FIS results is dependent on the SFF results.

The piecewise planar approximation does not give accurate results for some objects
with complex geometry, therefore Yun and Choi [16] propose Curved Window Focus
Measure which uses piecewise curved search windows to find accurate shape of FIS. To
interpolate the piecewise curved window, they introduced Nine Control Points (NCP)
model and constructed Lagrange polynomial for the surface equations.

Both planar and curved surface approximation methods ignore the surface discontinu-
ities, therefore produce erroneous results around these regions. The next section explains
how we address the surface discontinuity problem effectively by introducing adaptively
shaped windows for focus measure computation.



Figure 2: Computed adaptive support windows for four different pixels in an image. The
brighter pixel means larger weight and the weights for darker region are close to zero.

3 Adaptive Focus Measuring
In traditional SFF, the focus measure for an image pixel is computed over a finite sup-
port window [4][7] with the assumption that depth of the scene should not change inside
the window. The size of the window must be large enough in regard to blur radius to
be free from edge bleeding [7][12] and to handle noisy and homogeneous image parts.
However, larger support windows located on depth discontinuities contain pixels from
different depths which violates the equifocal surfaces assumption. Therefore, depth esti-
mation around these regions would be in accurate.

In order to recover depth of surfaces not only around homogeneous and noisy regions
but also around depth discontinuities, a proper support window should be selected for each
pixel adaptively. Assuming that image characteristics contains cues about scene structure,
it is possible to produce an adaptive support window for each pixel based on the local
image characteristics. Therefore, we need to examine intensity variations of the whole
image. Unfortunately, conventional cameras with large aperture lenses tend to blur image
areas around depth discontinuities even for perfectly focused surfaces, which is visualized
in Figure 1. As a result, it is impractical to build adaptive support window from partially
focused images in the sequence. Instead of using partially focused images, we employed
the all-focused image to generate image context dependent adaptive support windows.
Note that employing the all-focused image does not add any computational complexity
to the system. It is also very convenient to obtain this image using the same setup that
produces the image sequence for the SFF by stopping down the aperture of the lens.

Adaptivity of windows is achieved by assigning weights to each pixel in the support
window. A different support windows are computed for each pixel in the all-focused
image. The weights are assigned to the support window pixels according to similarity
and proximity scores between the pixels enclosed by the window and the pixel for which
window is computed. Similar and closer pixels get larger weights in the assumption that
they probably lie on the same surface. Weights of the support window Ωx0,y0 centered
around the pixel x0,y0 are computed using all-focused image I f according to the following
formula.

ωx0y0 (x,y) = e−(4d/γ1+∆I f /γ2), (2)



where ∆d =
√

(x− x0)2 +(y− y0)2, (x,y) ∈Ωx0,y0 , and

∆I f =
√

(Ir
f (x,y)− Ir

f (x0,y0))2 +(Ig
f (x,y)− Ig

f (x0,y0))2 +(Ib
f (x,y)− Ib

f (x0,y0))2.

∆d is euclidian distance in spatial domain and ∆I is euclidian distance in color space
where Ir

f , Ig
f , and Ib

f are the intensity values of image for red, green, and blue channels.
γ1 and γ2 are constant parameters to supervise relative weights. Note that this function is
the combination of two Gaussian on space distance(∆d) and range distance(∆I). Figure
2 shows sample adaptive support windows computed for four different pixels for Venus
image of the Middlebury Image Base[10].

Using one of the standard focus measure operators (FM) initial focus measures are
computed for all partially focused images. Then the new focus measure AFM for pixel
x0,y0 is computed using support window produced using Equation 2.

AFM (x0,y0) = ∑
(x,y)∈Ωx0 ,y0

ωx0y0 (x,y)FM(x,y). (3)

Once the new focus measures are computed for each image in the sequence, the best-
focused frame and its corresponding focus settings f are obtained for each pixel. Depth of
the pixels are computed by substituting the focus settings in Equation 1 as in the traditional
shape from focus method.

Our adaptive weighting method resembles the Bilateral Filtering [15] which is de-
signed to perform edge preserving smoothing of images. It uses the concept of Gaus-
sian smoothing by weighting the filter coefficients using corresponding image context.
Weights are assigned according to similarity and proximity criteria which adaptively re-
shapes the filter. Bilateral filter was also successfully applied to stereo, inpainting, com-
puter graphics, etc.

4 Experiments
In order to test and verify accuracy and effectiveness of our method, we performed exper-
iments using partially focused real images and synthetically refocused real images with
ground truth depth values. All experiments for the SFF method and our method were
carried out using the Modified Laplacian (ML) as initial focus measure operator. We used
a step size of 3 and threshold value of 5 as the ML parameters. We took γ1 as 5 and γ2 as
half of the window size for weight computation parameters.

In order to show the accuracy of our method numerically, we performed experiments
on synthetically refocused real images. The refocused images were generated with iris
filter[9] using true depth map of the scene. Iris Filter is a software plug-in meant to
reproduce the depth of field and bokeh (defocused image regions) texture. Iris Filter
needs the all-focused image, the depth map of the image, the focus depth setting, and the
aperture size. A realistic image of the scene is produced using the inputs. We produced
around 30 images with different focus settings. We obtained the image and its true depth
map from Middlebury Image Base[10].

In order to test the performance of our method, we chose an image of a scene with
significant depth discontinuities. Note that the equifocal surface assumption is severely
violated in this image, therefore the classical SFF method produces erroneous result as
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Figure 3: Synthetic refocused images were generated with iris filter from the all-focused
image(a) with true depth map(d). Estimated depth map of the scene using (b)SFF and (c)
our method with window size 25.(e) Difference image of (b) and (d). (f) Difference image
of (c) and (d)

RMS errors
Window Size 25x25 21x21 15x15 11x11 9x9
SFF 14,21 12,97 12,24 13,29 14,45
Our Method 5,32 5,44 7,5 12,31 14,46

Table 1: RMS errors of produced depth map with various window sizes.

expected. Figure 3 shows the all-focused image, the result of the SFF method, and the
result of the proposed method. We also show the difference images between the true depth
map and the estimated depth maps for both method. As seen in the difference images in
Figure 3, the SFF method and our method performs comparably around continuous depth
regions. However, at depth discontinuities our method performs much better than SFF.

We calculated the RMS errors between our result and the ground truth. The same er-
rors are calculated for the SFF method. Table 1 shows these results with various support
window sizes. For our method error rates decrease as the window sizes increase, because
smaller window sizes results in inaccuracies due to the edge bleeding and insufficient tex-
ture. In contrast, SFF suffers from the depth discontinuities and hence error rates increases
with the increasing window size. Particularly, the performance of our method near depth
discontinuities is much better than the SFF because our method can preserve arbitrarily
shaped depth discontinuities very well. We tested our method also on challenging real
scenes including sharp depth discontinuities. Four sets of test images were captured in
the lab using a real-aperture camera. For each set, 30 images were obtained with different
focus settings. All-focused image of the scenes were captured with smallest aperture size
of the lens. The true depth maps for real images are unknown. Figure 4 shows the all-
focused image of each set and their depth maps obtained by SFF and our method. Visual
inspection of the estimated depth maps shows that our method handles the sharp depth
discontinuities very well. We also observe that the fine structure in rows 1 and 3 (tree
branches) is handled properly with our method. The traditional SFF method smears up



Figure 4: Real test images used in experiments Column (a) all-focused image (b) results
of traditional SFF with window size 21x21 (c) results of proposed method with the same
window size.

the depth map around the fine structures. Our last experiment is also on a real scene taken
with another setup with slightly higher depth of field. Some of the images in the set are
shown in the top row of the Figure 5. Results of our method and SFF with various window
size shows that our method successfully recovers depth discontinuities. Larger window
sizes produce better result with out method whereas the SFF method produces erroneous
results with the larger window sizes.

5 Conclusions
We introduced a new focus measure method for the depth estimation of a scene for shape
from focus. The method employs novel adaptively shaped and weighted support windows
to addresses the problems due to the depth discontinuities and edge bleeding, which are
difficult to handle for traditional shape from focus techniques. An all-focused image of
the scene is used to adjust the weights of the support windows according to similarity and
proximity criteria.

Results of the experiments show that the performance of the method around the depth
discontinuities is much better than the SFF method because the proposed method can pre-
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Figure 5: (a) All-focused image of the scene. Partially focused images with focus is set to
near object(b) and far object(c). Second row shows the results of SFF method and third
row shows results of proposed method using support region of (d) 5x5,(e)11x11,(f)21x21
pixels.

serve arbitrarily shaped depth discontinuities without any problems. In addition, larger
support window sizes makes the depth estimation process even more robust without in-
troducing any side effects as in traditional SFF methods.

The methods dependence on the intensity values of the all-focused image does not
pose any problems even for high texture surfaces because the focus measure operators
perform robustly for these kinds of regions without any large window support. Conse-
quently, for these regions our method performs at least as good as the traditional SFF
methods. If the all-focused image region includes depth discontinuities without any in-
tensity change, then our method will use an incorrect support window. However, since
the same window will be used by non-adaptive methods, our methods will never perform
worse than traditional non-adaptive methods.

The proposed method can be interpreted as the depth map estimation of an all-focused
image. Depth values for the same image can be estimated using some other technique,
such as stereo or shape from shading. The all-focused image may function as an implicit
registration medium between the depth estimation methods. As a result, a robust fusion
of depth values from focus and other depth estimation methods becomes feasible.

Compared with traditional the SFF methods, our method seems to have higher com-
putational complexity due to computation of the weights for the support windows. Fortu-
nately, using proper data structures, like the bilateral grid [2], very fast implementation of
the algorithm is possible.
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