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Abstract

A variety of approaches using BP and image segmentation lnaee pro-
posed for the stereo correspondence problem. In this pagentroduce a
novel approach, based on a combination of segmentationBrd method
inherits the idea of Multiscale BP, however at each levehettierarchy, each
graph node corresponds to an image segment, which we calsnel, in-
stead of a fixed rectangular block of pixels. The resultingtdenap at the
coarser level is used to initialize the depths at the fineglleat the lowest
level, we perform loopy BP on the four-connected pixel subgithin each
superpixel. The proposed method is applied to stereo imaghe standard
Middlebury dataset, and to real outdoor stereo images arskgaences. Ex-
perimental results show quite acceptable accuracy of dafghence, with
running time fast enough for practical use.

1 Introduction

Stereo vision has for many years been considered a fundahpeablem in computer vi-
sion, and still continues being an active research topic Bosubstantial amount of work
has been developed to solve the stereo matching problem ffipng these proposed
methods, Belief Propagation (BP) and segmentation-bastaus have been widely
investigated. BP for stereo matching has been describéq § B, 9] and some other pa-
pers. Some recently introduced segmentation-based n®f8pd, 1, 11] have obtained
very good performance on the Middlebury dataset.

The approach we introduce in this paper combines segmentatid BP. Our method
is inspired by the idea of Multiscale BP [5]. The general pd@P algorithm is too
slow for practical use as a large number of iterations is lhs@anecessary condition
for convergence, and each BP iteration has to run across hieéevimage grid. The
Multiscale BP algorithm described in [5] is an algorithméchnique that improves the
efficiency of BP, where BP is performed in a coarse-to-finemeanso that long range
interactions between pixels can be captured by short patt@arse graphs. In Multiscale
BP, the graph structure is constructed as follows. The gaaphei-th level consists of
blocks of 2 x 2' pixels, connected in a grid structure. Therefore the graphenext
level is a finer grid of the graph at the previous level. Our MRi¥fe built in a totally
different way. At the top level, each graph node correspéo@s image segment, which
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we call a superpixel, instead of fixed rectangular blocksie¢ls. Adjacent superpixels
are connected by edges in the graph. Loopy BP is then pertboméhis graph to assign
a depth to each superpixel. At the next level, each supdrisixarther segmented into
smaller superpixels. Again, we build a graph on top of theseixels and perform BP
for depth inference. The resulting depth of the parent suipelrat the coarser level is
used to initialize the depths of children superpixels affitver level. At the lowest level,
we perform BP on the four-connected pixel grid within eachespixel.

This significant difference in implementation brought ta epproach some distin-
guishing properties. First, it is a natural way to use theespipels acquired from the
segmentation as pixel blocks for the multiscale approaalr.pgixel blocks therefore ac-
tually correspond to real objects or object parts in the iesagvhile the square blocks in
Multiscale BP are simply created for the sake of computaficonvenience, and do not
capture any perceptual meaning of the image data. As a coesee, we can allow for a
sharp discontinuity of depth between superpixels, whilevgintain the smoothness as-
sumption within each superpixel. The effect this has is thatapproach is less likely to
suffer from the over-smoothing problem, which causes therinless at thin objects, and
at depth discontinuities. The general loopy BP algorithrmdg, 5, 8, 9] and others, is
a global stereo method, which incorporates explicit smoess assumptions throughout
the image and determines the disparity map by minimizingpbajlenergy function. This
behavior of propagating the smoothness cost informatioasacthe whole image may
lead to poor performance at object boundaries.

Our approach shares the same assumption with other sedioe+tiased methods
[3, 2, 1, 11], i.e. the scene structure can be approximatea &gt of non-overlapping
planes in the disparity space, and each plane corresporaiseteegment in the image.
However most of those methods are too complicated and threreecome too slow for
practical applications. Another main distinction of ouipeamach is that segmentation-
based methods generally perform a local-based matchipgstgetect a set of reliable
point correspondences. This step depends heavily on tigeiatata, especially the color
information, and is likely to perform poorly on less idealizreal-world data (including,
for example, gray-scale images or night-vision imageschviaire often noisy, with less
contrast and of lower resolution). Our approach uses lodpydminimize a global cost
function, which takes into account both the data and thaapaiherence, therefore is
more robust to noisy data.

For the purpose of performance evaluation, we tested ouoridign with the standard
Middlebury dataset. The testing results in comparison wighMultiscale BP algorithm
are demonstrated. Since we are more interested in the perfme of our method in
practical applications, such as stereo vision for autonsmahicle systems, we also
apply our method to the real outdoor stereo car sequencédeby Daimler AG and
Toyota. Experimental results show quite acceptable acguvéth encouraging running
time.

In the next section of the paper, we describe our proposeditiign in details. Sec-
tion 4 demonstrates experimental results obtained fronstdredard stereo image dataset
with associated ground truth, as well as from real steresequences. The last section
includes some discussions and conclusions.



2 Proposed approach

In this section, we present a detailed description of our@ggh for the stereo matching
problem.

2.1 Segmentation and Graph construction

To segment the image, we use an efficient algorithm describ§d]. This algorithm
has advantage over the color-based segmentation commsedyhy other segmentation-
based stereo methods. It captures perceptually importemtotal image regions, which
often reflect global aspects of the image. This propertyngisosupports the assumption
that the scene structure can be approximated by a set of vertepping smooth surfaces
in 3D space, and each surface corresponds to an image ségupenpixel. In addition,
this segmentation algorithm runs in time nearly linear ia $ize of the image and is fast
in practice.

Our algorithm also requires a construction of a graphicade®between superpixels
at each segmentation scale. This graph is built by assigrginly node to a superpixel and
adding an edge between each pair of adjacent superpixasdém to do this, we need to
capture the adjacency relations between superpixels. @algorithm in [4] is based on
an iterative region merging technique, in which neighbgimage regions with similar
characteristics are merged to form a new region, it turnghaitwe can follow each iter-
ation of segmentation and keep track of the adjacency irdtion between superpixels.
Therefore, segmentation and graph construction can be silongtaneously, and run in
time linear to the size of the image.

Itis also important to note that except for the first scalerétare more than one graph
at all other scales. In fact, the number of MRFs at the nexXedsaexactly the number
of superpixels at the previous scale. At the next scale, sapkrpixel of the previous
scale is further segmented into a set of smaller superpi®eldMRF is then formed for
each set and loopy BP is performed on this MRF for depth imfee This procedure is
illustrated in Figure 1. The smoothness constraint acroperpixels at a specific scale
is only enforced at that scale and ignored at subsequergssc@he reason to do this is
based on the following argument. The property of the segatiemtalgorithm that we use
almost guarantees that boundaries between superpixeddigmed with real boundaries
of different surfaces in the real world. This allows for artcation of depth smoothness
at boundaries of superpixels. This truncation also helgsge a large number of passing
messages. The number of messages being truncated at eladh sgactly the total length
of boundaries between superpixels at the previous scatleoédh in our implementation,
depth inferences in different MRFs at one scale are perfdrseguentially, we can also
run them in parallel to make the algorithm much more efficient

2.2 Loopy BP for depth computation

First we introduce several definitions and notations thithei used later in this section.
The cost of assigning a depttto a pixel(x,y) is defined as follows:

D(X7y7d) = D| (Xaya d) + W DGRA(Xaya d)



Figure 1: A superpixel at the previous scale and its cormedimy MRF at the next scale.

wherew controls the relative weight between the 2 terigx, y,d) measures the squared
intensity differences, and is given by

Di(%,Y,d) = (lieft (X,Y) — lrignt (X — d, y))?

Dcra(X,y,d) incorporates the squared gradient differences in bottctimes x andy,
which make®D(x,y,d) more robust to change of brightness and angle of views:

Dera(XY,d) = (Oxlieft (X, Y) — Dxlright(x_ duy))2+ (Dylleft (X,y) — Dylright(x_ day))z

In case of color images, these dissimilarity measuremertseasily be extended to
all channels. The cost of assigning degtto a superpixetis defined as follows:

DSD(Svd): Z D(Xuyud)
(x,y)€s

Next, the cost of assigning depth andd; to two neighboring pixel$ and j is de-
fined to beV(d;,d;) = }di —d; } This term formulates the spatial coherence constraint at
the pixel level. For the superpixel level, the term becomgés ,sj, di,d;j) = o|d; — d;],
whereo is a weighting function that involves the squared diffeeit mean intensity
of the two superpixels ands;j. The idea is that the smoothness violation between adja-
cent superpixels should be penalized more for superpikatddok similar, and less for
superpixels that look different.

Now we describe our segment-based multiscale BP approacteseh MRFG, we
search for an optimal assignment of degile D¢ to each superpixae G. (in the first
segmentation scal& covers the whole imagelg is the total number of quantized depth
values that can be assigned to nodeG.imhis amounts to optimizing an energy function
for the labelingf that labels each superpix@With a corresponding depth = f(s). The
energy function has the following form:

EC(f) = Egualf) + A * EGoun(f)
whereA controls the relative importance of the data cost and theoimess cost,

Egua(f) = %DSP(Sa f(s)

and

ESwan(f) = 3 Vep(s,sj, f(8), (s))
V(si,Sj)€NG



whereNg is the set of all pairs of neighboring superpixelsdn The optimal depth as-
signment for all nodes ifs is approximated by performing loopy BP @ We used the

max-product BP algorithm with conceptually parallel uggatin our actual implementa-
tion however, they were performed sequentially.

Due to the difference in the graph structure, the messagemthe passed explicitly
from one scale to the next, as in Multiscale BP. Here the m&gion from coarse to fine is
softly transfered downwards as follows. First, each messaging to a child superpixel
will be initialized to be biased toward the depth value asstjto its parent superpixel.
Second, as we assume that each superpixel is a region withdapth variability, the
depth values of the children superpixels can be boundednnatkmall range around the
depth value that was assigned to their parent superpixed.r&sult, the depth range used
for children superpixels can be much smaller than the ong fassehe parent superpixels
at the previous scale. Since the messages at the fine leechhetess dependent on the
messages at the coarse level, our method tends to be le#s/ednserrors made at the
coarse level.

At the final scale, loopy BP is performed on the pixel grid ofkeauperpixel at the
previous scale and a depth value is assigned to each pixetimtage. In this casé
is a subgraph of the four-connected pixel grid, and each tetime energy function now

becomes:
Egua(f) = 5 D(p.f(P))
ata pgc
wherep is a pixel inG and

Egan(f) = 5 V(f(p).f(a))
V(p,a)eNG

where(p,q) are pairs of neighboring pixels @@.

Here we performed a significant pruning of smoothness terom bne level to the
next, especially at the lowest level, where the smoothnesstaint is only enforced
between the pixels inside a superpixel. As discussed inosett boundaries between
superpixels are very likely to be aligned with real bouneswif objects in the real world.
This means that the set of region boundaries will cover moslusion boundaries. It
is quite valid to truncate the smoothness across these boesd Conversely, a lot of
region boundaries are not occlusion boundaries. The congd¢hat the pruning of valid
smoothness terms at these boundaries may result in norgp sistimates. Specifically,
depth discontinuities may incorrectly occur at region bdanes which are not occlusion
boundaries. The problem may get more severe in images aargdarge object surfaces.
For example in Figure 4 and Figure 5, there exist visible ldelicontinuities inside the
region of the ground plane. In this case, the smoothnessdtiom can be considered
a trade-off between quality and speed. Here we argue thahémry cases this smooth-
ness truncation is completely acceptable. First, notevieattill enforce the smoothness
constraint between superpixels at the previous level. ®kcthe depth information is
transfered from coarse to fine as previously described. Mipadt is that nearby pixels
at the lowest level are still driven to have similar depthes,the smoothness constraint
between pixels are still implicitly enforced. Consider theages in Figure 2: Although
most region boundaries created by the segmentation arecoliston boundaries, these
boundaries are not visible in the resulting depthmaps eithi true occlusion boundaries
were well maintained.



3 Experimental Results

In this section, in order to evaluate the performance of ¢gwrghm, the following ex-
periments were carried out on stereo dataset with groutid, @ad on real-world images
and car sequences. For all datasets we used a fixed set ofgiarssmand 6.

3.1 Qualitative Analysis with the Middlebury dataset

We evaluate our algorithm on the Middlebury datdsethere 4 stereo pairs and their
ground truth are provided. Figure 2 shows the obtained testbmpared to the ground
truth. We also compare our method with the Multiscale BP gtlgm in [5]. Since our
method is based on this method, it is meaningful to show thanwethod can improve
its performance. Here we used the publicized source coae Redro Felzenszwalb
We kept the default values for all parameters used in thgdlémentation. They had
better results on the first 2 categorid¢sukuba and venus(with depth ranges of 16 and
20, respectively), while we outperformed on the last 2 catieg: teddy andcones (with
depth range of 60). Note that the scenes in the last 2 cat=game more complicated, and
have broader depth ranges. The comparison is illustratedla 1.
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Ground truth Our MRF at the top level Our results

Figure 2: Results using the Middlebury dataset with avéglgioound truth.

1The dataset can be downloaded from http://cat.middlebduystereo/data.html
2The source code is available at http://people.cs.uchieags pff/op/.



Tsukuba Venus Teddy Cones

nonocc

all | disc nonocc all | disc nonocc all | disc nonocc all | disc

MBPI[5] 213 | 429 | 114 | 1.40 238 | 165 | 173 | 25.2 | 31.0 | 125 | 20.6 | 22.0
Our method | 4.85 7.03 | 19.0 | 7.40 8.94 | 281 | 14.2 22.8 | 30.9 | 10.6 20.5 | 229

Table 1: Comparison between the proposed method and théskalé BP algorithm on
theMiddlebury dataset (error threshold = 1).

3.2 Results on realistic stereo images and sequences

Real-world data are different from standard database irtlles usually have lower qual-
ity (for example, outdoor gray-scale images or night-wisimages, which are often noisy,
with less contrast and of lower resolution), and have a maiger depth range, as well as
more complicated scene. The objective of this experimetot é&aluate the performance
of our method on such data. Unfortunately ground truth déptiot available for these
datasets.

Figure 3: Results using some realistic images.

Figure 3 demonstrates our results on several real-worlgsgede images. We also
tested our method on the real-world road driving rectifiedest sequences (acquired and
provided by Daimler AG and Toyota). The resulting depthmaps of a few frames in the
sequences are demonstrated in figure 4 and 5. By means of aearpaesults from the
Multiscale BP algorithm were also shown.

For running time analysis, we run our algorithm for the 2 @quences and compute
the average running time on each frame. All the frames in Btgheo sequences are
grayscale and have been geometrically rectified. We thempacgour running time with
the Multiscale BP algorithm (Table 2). Both algorithms use $ame testing environment
as follows: laptop PC with Intel Core Duo 2.0Ghz, 2 Gigabysmory, on-board Mobile
Intel(R) graphic adapter, WinXP operation system. Bottstise depth range of 53 pixels.
Multiscale BP runs with 10 iterations, while our algorithoms BP on 3 scales, each with
10 iterations.

4 Discussions and Conclusions

In this paper we introduced a new algorithm for stereo vidiased on the conjunction of
loopy BP and image segmentation. Similar to other segnientaased methods, our ap-

3The sequence is available at http://www.citr.aucklandz6D/datasets.htm



Left image Multiscale BP Our results

Figure 4: Results using the Daimler road driving sequence.

proach uses the assumption that each superpixel in the icoagEsponds to a smooth sur-
face of the scene structure, and these surfaces do not pvBil to this assumption, the
piecewise smoothness prior is automatically incorporatigdin each superpixel, while

the smoothness constraint across superpixels is enforcednning loopy BP at each

level of multiscale segmentation. Depth assignment by kd®B is performed down-

wards at each scale of segmentation, starting from a coagsaentation of the image,
and the lowest level being the pixel grid within each superpof the most recent seg-
mentation.

By using the superpixels acquired from the segmentatiornxas lgocks for the mul-
tiscale approach, each pixel block at each scale actuglhesents a smooth surface of
the scene structure. Consequently, depth discontinuéiifdsved at boundaries of super-
pixels, while we still assume smoothness within each supelprhis property not only
reduces significantly the number of passing messages,dmihalps maintain sharp depth
discontinuities at object boundaries, and maintain thijects.

The proposed method is then applied to the standard stetasetlas well as to the
outdoor stereo car sequences provided by Toyota and Daik@ewith the Middlebury
dataset, we obtain comparable performance with the stdhalgpy BP algorithm. As we



Left image Multiscale BP Our results

Figure 5: Results using the Toyota night-vision road dgwequence.

want to give emphasis to practical applications of steremwi we are more interested in
evaluating our methods on real-world data. Experimentallts, as compared with the
Multiscale BP algorithm, show that we have more encouraginging time, with better

performance on the car sequences. In this data, we espeatialietter on low-textured

regions (sky, ground planes, ...), and we also obtain shégéendaries in the resulting
depth map.

One problem with this method is that it is sensitive to err@de at the coarse level,
since it is strictly coarse to fine. We can address this prolidg constructing a graphical
model that models mutual relations between superpixeléfateht levels. One possible
choice would be to connect the MRFs at all levels to form a ediiRF, by adding an
edge between the parent superpixel at one level and each dfiltiren superpixels at
the next level. However, this would add a lot more completdtthe system, and would

Avg running time

Daimler (300 frames) Toyota (400 frames
640x 350pixel 644x 493pixel
Multiscale BP | 19.5s/fr 25.5s/fr
Our method | 16.3s/fr 18.4s/fr

Table 2: Average running time of our method and the Multis@&® on the car sequences.



reduce the significantly the efficiency of the algorithm.

In the near future, we plan to work on speeding up the algoritfihe most obvious
approach is to run the loopy BP algorithm at each MRF in a ferashion. Also, the
same algorithm can be implemented incorporating a teclertiglhandle occlusions, and
a more sophisticated 3D plane representation for each gipkrin order to improve
accuracy.
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