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Abstract

A variety of approaches using BP and image segmentation havebeen pro-
posed for the stereo correspondence problem. In this paper,we introduce a
novel approach, based on a combination of segmentation and BP. Our method
inherits the idea of Multiscale BP, however at each level of the hierarchy, each
graph node corresponds to an image segment, which we call superpixel, in-
stead of a fixed rectangular block of pixels. The resulting depth map at the
coarser level is used to initialize the depths at the finer level. At the lowest
level, we perform loopy BP on the four-connected pixel subgrid within each
superpixel. The proposed method is applied to stereo imagesin the standard
Middlebury dataset, and to real outdoor stereo images and car sequences. Ex-
perimental results show quite acceptable accuracy of depthinference, with
running time fast enough for practical use.

1 Introduction

Stereo vision has for many years been considered a fundamental problem in computer vi-
sion, and still continues being an active research topic now. A substantial amount of work
has been developed to solve the stereo matching problem [10]. Among these proposed
methods, Belief Propagation (BP) and segmentation-based methods have been widely
investigated. BP for stereo matching has been described in [7, 5, 8, 9] and some other pa-
pers. Some recently introduced segmentation-based methods [3, 2, 1, 11] have obtained
very good performance on the Middlebury dataset.

The approach we introduce in this paper combines segmentation and BP. Our method
is inspired by the idea of Multiscale BP [5]. The general loopy BP algorithm is too
slow for practical use as a large number of iterations is usually a necessary condition
for convergence, and each BP iteration has to run across the whole image grid. The
Multiscale BP algorithm described in [5] is an algorithmic technique that improves the
efficiency of BP, where BP is performed in a coarse-to-fine manner, so that long range
interactions between pixels can be captured by short paths in coarse graphs. In Multiscale
BP, the graph structure is constructed as follows. The graphat thei-th level consists of
blocks of 2i × 2i pixels, connected in a grid structure. Therefore the graph at the next
level is a finer grid of the graph at the previous level. Our MRFs are built in a totally
different way. At the top level, each graph node correspondsto an image segment, which
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we call a superpixel, instead of fixed rectangular blocks of pixels. Adjacent superpixels
are connected by edges in the graph. Loopy BP is then performed on this graph to assign
a depth to each superpixel. At the next level, each superpixel is further segmented into
smaller superpixels. Again, we build a graph on top of these superpixels and perform BP
for depth inference. The resulting depth of the parent superpixel at the coarser level is
used to initialize the depths of children superpixels at thefiner level. At the lowest level,
we perform BP on the four-connected pixel grid within each superpixel.

This significant difference in implementation brought to our approach some distin-
guishing properties. First, it is a natural way to use the superpixels acquired from the
segmentation as pixel blocks for the multiscale approach. Our pixel blocks therefore ac-
tually correspond to real objects or object parts in the images, while the square blocks in
Multiscale BP are simply created for the sake of computational convenience, and do not
capture any perceptual meaning of the image data. As a consequence, we can allow for a
sharp discontinuity of depth between superpixels, while sill maintain the smoothness as-
sumption within each superpixel. The effect this has is thatour approach is less likely to
suffer from the over-smoothing problem, which causes the blurriness at thin objects, and
at depth discontinuities. The general loopy BP algorithm asin [7, 5, 8, 9] and others, is
a global stereo method, which incorporates explicit smoothness assumptions throughout
the image and determines the disparity map by minimizing a global energy function. This
behavior of propagating the smoothness cost information across the whole image may
lead to poor performance at object boundaries.

Our approach shares the same assumption with other segmentation-based methods
[3, 2, 1, 11], i.e. the scene structure can be approximated bya set of non-overlapping
planes in the disparity space, and each plane corresponds toone segment in the image.
However most of those methods are too complicated and therefore become too slow for
practical applications. Another main distinction of our approach is that segmentation-
based methods generally perform a local-based matching step to detect a set of reliable
point correspondences. This step depends heavily on the image data, especially the color
information, and is likely to perform poorly on less idealized real-world data (including,
for example, gray-scale images or night-vision images, which are often noisy, with less
contrast and of lower resolution). Our approach uses loopy BP to minimize a global cost
function, which takes into account both the data and the spatial coherence, therefore is
more robust to noisy data.

For the purpose of performance evaluation, we tested our algorithm with the standard
Middlebury dataset. The testing results in comparison withthe Multiscale BP algorithm
are demonstrated. Since we are more interested in the performance of our method in
practical applications, such as stereo vision for autonomous vehicle systems, we also
apply our method to the real outdoor stereo car sequence provided by Daimler AG and
Toyota. Experimental results show quite acceptable accuracy, with encouraging running
time.

In the next section of the paper, we describe our proposed algorithm in details. Sec-
tion 4 demonstrates experimental results obtained from thestandard stereo image dataset
with associated ground truth, as well as from real stereo carsequences. The last section
includes some discussions and conclusions.



2 Proposed approach

In this section, we present a detailed description of our approach for the stereo matching
problem.

2.1 Segmentation and Graph construction

To segment the image, we use an efficient algorithm describedin [4]. This algorithm
has advantage over the color-based segmentation commonly used by other segmentation-
based stereo methods. It captures perceptually important non-local image regions, which
often reflect global aspects of the image. This property strongly supports the assumption
that the scene structure can be approximated by a set of non-overlapping smooth surfaces
in 3D space, and each surface corresponds to an image segment/superpixel. In addition,
this segmentation algorithm runs in time nearly linear in the size of the image and is fast
in practice.

Our algorithm also requires a construction of a graphical models between superpixels
at each segmentation scale. This graph is built by assigningeach node to a superpixel and
adding an edge between each pair of adjacent superpixels. Inorder to do this, we need to
capture the adjacency relations between superpixels. As the algorithm in [4] is based on
an iterative region merging technique, in which neighboring image regions with similar
characteristics are merged to form a new region, it turns outthat we can follow each iter-
ation of segmentation and keep track of the adjacency information between superpixels.
Therefore, segmentation and graph construction can be donesimultaneously, and run in
time linear to the size of the image.

It is also important to note that except for the first scale, there are more than one graph
at all other scales. In fact, the number of MRFs at the next scale is exactly the number
of superpixels at the previous scale. At the next scale, eachsuperpixel of the previous
scale is further segmented into a set of smaller superpixels. An MRF is then formed for
each set and loopy BP is performed on this MRF for depth inference. This procedure is
illustrated in Figure 1. The smoothness constraint across superpixels at a specific scale
is only enforced at that scale and ignored at subsequent scales. The reason to do this is
based on the following argument. The property of the segmentation algorithm that we use
almost guarantees that boundaries between superpixels arealigned with real boundaries
of different surfaces in the real world. This allows for a truncation of depth smoothness
at boundaries of superpixels. This truncation also helps reduce a large number of passing
messages. The number of messages being truncated at each scale is exactly the total length
of boundaries between superpixels at the previous scale. Although in our implementation,
depth inferences in different MRFs at one scale are performed sequentially, we can also
run them in parallel to make the algorithm much more efficient.

2.2 Loopy BP for depth computation

First we introduce several definitions and notations that will be used later in this section.
The cost of assigning a depthd to a pixel(x,y) is defined as follows:

D(x,y,d) = DI(x,y,d)+ ω ∗DGRA(x,y,d)



Figure 1: A superpixel at the previous scale and its corresponding MRF at the next scale.

whereω controls the relative weight between the 2 terms.DI(x,y,d) measures the squared
intensity differences, and is given by

DI(x,y,d) = (Ile f t (x,y)− Iright(x−d,y))2

DGRA(x,y,d) incorporates the squared gradient differences in both directions x and y,
which makesD(x,y,d) more robust to change of brightness and angle of views:

DGRA(x,y,d) = (∇xIle f t(x,y)−∇xIright(x−d,y))2 +(∇yIle f t(x,y)−∇yIright(x−d,y))2

In case of color images, these dissimilarity measurements can easily be extended to
all channels. The cost of assigning depthd to a superpixels is defined as follows:

Dsp(s,d) = ∑
(x,y)∈s

D(x,y,d)

Next, the cost of assigning depthdi andd j to two neighboring pixelsi and j is de-
fined to beV (di,d j) =

∣

∣di −d j
∣

∣. This term formulates the spatial coherence constraint at
the pixel level. For the superpixel level, the term becomesVsp(si,s j,di,d j) = σ

∣

∣di −d j
∣

∣,
whereσ is a weighting function that involves the squared difference in mean intensity
of the two superpixelssi ands j. The idea is that the smoothness violation between adja-
cent superpixels should be penalized more for superpixels that look similar, and less for
superpixels that look different.

Now we describe our segment-based multiscale BP approach. For each MRFG, we
search for an optimal assignment of depthds ∈ DG to each superpixels ∈ G. (in the first
segmentation scale,G covers the whole image).DG is the total number of quantized depth
values that can be assigned to nodes inG. This amounts to optimizing an energy function
for the labelingf that labels each superpixels with a corresponding depthds = f (s). The
energy function has the following form:

EG( f ) = EG
data( f )+ λ ∗EG

smooth( f )

whereλ controls the relative importance of the data cost and the smoothness cost,

EG
data( f ) = ∑

s∈G

Dsp(s, f (s))

and
EG

smooth( f ) = ∑
∀(si,s j)∈NG

Vsp(si,s j, f (si), f (s j))



whereNG is the set of all pairs of neighboring superpixels inG. The optimal depth as-
signment for all nodes inG is approximated by performing loopy BP onG. We used the
max-product BP algorithm with conceptually parallel updates. In our actual implementa-
tion however, they were performed sequentially.

Due to the difference in the graph structure, the messages cannot be passed explicitly
from one scale to the next, as in Multiscale BP. Here the information from coarse to fine is
softly transfered downwards as follows. First, each message coming to a child superpixel
will be initialized to be biased toward the depth value assigned to its parent superpixel.
Second, as we assume that each superpixel is a region with small depth variability, the
depth values of the children superpixels can be bounded within a small range around the
depth value that was assigned to their parent superpixel. Asa result, the depth range used
for children superpixels can be much smaller than the one used for the parent superpixels
at the previous scale. Since the messages at the fine level here are less dependent on the
messages at the coarse level, our method tends to be less sensitive to errors made at the
coarse level.

At the final scale, loopy BP is performed on the pixel grid of each superpixel at the
previous scale and a depth value is assigned to each pixel in the image. In this caseG
is a subgraph of the four-connected pixel grid, and each termin the energy function now
becomes:

EG
data( f ) = ∑

p∈G

D(p, f (p))

wherep is a pixel inG and

EG
smooth( f ) = ∑

∀(p,q)∈NG

V ( f (p), f (q))

where(p,q) are pairs of neighboring pixels inG.
Here we performed a significant pruning of smoothness terms from one level to the

next, especially at the lowest level, where the smoothness constraint is only enforced
between the pixels inside a superpixel. As discussed in section 1, boundaries between
superpixels are very likely to be aligned with real boundaries of objects in the real world.
This means that the set of region boundaries will cover most occlusion boundaries. It
is quite valid to truncate the smoothness across these boundaries. Conversely, a lot of
region boundaries are not occlusion boundaries. The concern is that the pruning of valid
smoothness terms at these boundaries may result in noisy stereo estimates. Specifically,
depth discontinuities may incorrectly occur at region boundaries which are not occlusion
boundaries. The problem may get more severe in images containing large object surfaces.
For example in Figure 4 and Figure 5, there exist visible depth discontinuities inside the
region of the ground plane. In this case, the smoothness truncation can be considered
a trade-off between quality and speed. Here we argue that formany cases this smooth-
ness truncation is completely acceptable. First, note thatwe still enforce the smoothness
constraint between superpixels at the previous level. Second, the depth information is
transfered from coarse to fine as previously described. The impact is that nearby pixels
at the lowest level are still driven to have similar depths, i.e the smoothness constraint
between pixels are still implicitly enforced. Consider theimages in Figure 2: Although
most region boundaries created by the segmentation are not occlusion boundaries, these
boundaries are not visible in the resulting depthmaps, while the true occlusion boundaries
were well maintained.



3 Experimental Results

In this section, in order to evaluate the performance of our algorithm, the following ex-
periments were carried out on stereo dataset with ground truth, and on real-world images
and car sequences. For all datasets we used a fixed set of parametersω andθ .

3.1 Qualitative Analysis with the Middlebury dataset

We evaluate our algorithm on the Middlebury dataset1, where 4 stereo pairs and their
ground truth are provided. Figure 2 shows the obtained results, compared to the ground
truth. We also compare our method with the Multiscale BP algorithm in [5]. Since our
method is based on this method, it is meaningful to show that our method can improve
its performance. Here we used the publicized source code from Pedro Felzenszwalb2.
We kept the default values for all parameters used in their implementation. They had
better results on the first 2 categories:tsukuba andvenus(with depth ranges of 16 and
20, respectively), while we outperformed on the last 2 categories: teddy andcones (with
depth range of 60). Note that the scenes in the last 2 categories are more complicated, and
have broader depth ranges. The comparison is illustrated intable 1.

Left image Ground truth Our MRF at the top level Our results

Figure 2: Results using the Middlebury dataset with available ground truth.

1The dataset can be downloaded from http://cat.middlebury.edu/stereo/data.html
2The source code is available at http://people.cs.uchicago.edu/ pff/bp/.



Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

MBP[5] 2.13 4.29 11.4 1.40 2.38 16.5 17.3 25.2 31.0 12.5 20.6 22.0

Our method 4.85 7.03 19.0 7.40 8.94 28.1 14.2 22.8 30.9 10.6 20.5 22.9

Table 1: Comparison between the proposed method and the Multiscale BP algorithm on
theMiddlebury dataset (error threshold = 1).

3.2 Results on realistic stereo images and sequences

Real-world data are different from standard database in that they usually have lower qual-
ity (for example, outdoor gray-scale images or night-vision images, which are often noisy,
with less contrast and of lower resolution), and have a much larger depth range, as well as
more complicated scene. The objective of this experiment isto evaluate the performance
of our method on such data. Unfortunately ground truth depthis not available for these
datasets.

Figure 3: Results using some realistic images.

Figure 3 demonstrates our results on several real-world grayscale images. We also
tested our method on the real-world road driving rectified stereo sequences (acquired and
provided by Daimler AG3 and Toyota). The resulting depthmaps of a few frames in the
sequences are demonstrated in figure 4 and 5. By means of comparison, results from the
Multiscale BP algorithm were also shown.

For running time analysis, we run our algorithm for the 2 car sequences and compute
the average running time on each frame. All the frames in bothstereo sequences are
grayscale and have been geometrically rectified. We then compare our running time with
the Multiscale BP algorithm (Table 2). Both algorithms use the same testing environment
as follows: laptop PC with Intel Core Duo 2.0Ghz, 2 Gigabyte memory, on-board Mobile
Intel(R) graphic adapter, WinXP operation system. Both uses the depth range of 53 pixels.
Multiscale BP runs with 10 iterations, while our algorithm runs BP on 3 scales, each with
10 iterations.

4 Discussions and Conclusions

In this paper we introduced a new algorithm for stereo visionbased on the conjunction of
loopy BP and image segmentation. Similar to other segmentation-based methods, our ap-

3The sequence is available at http://www.citr.auckland.ac.nz/6D/datasets.htm



Left image Multiscale BP Our results

Figure 4: Results using the Daimler road driving sequence.

proach uses the assumption that each superpixel in the imagecorresponds to a smooth sur-
face of the scene structure, and these surfaces do not overlap. Due to this assumption, the
piecewise smoothness prior is automatically incorporatedwithin each superpixel, while
the smoothness constraint across superpixels is enforced by running loopy BP at each
level of multiscale segmentation. Depth assignment by Loopy BP is performed down-
wards at each scale of segmentation, starting from a coarse segmentation of the image,
and the lowest level being the pixel grid within each superpixel of the most recent seg-
mentation.

By using the superpixels acquired from the segmentation as pixel blocks for the mul-
tiscale approach, each pixel block at each scale actually represents a smooth surface of
the scene structure. Consequently, depth discontinuity isallowed at boundaries of super-
pixels, while we still assume smoothness within each superpixel. This property not only
reduces significantly the number of passing messages, but also helps maintain sharp depth
discontinuities at object boundaries, and maintain thin objects.

The proposed method is then applied to the standard stereo dataset as well as to the
outdoor stereo car sequences provided by Toyota and DaimlerAG. With the Middlebury
dataset, we obtain comparable performance with the standard loopy BP algorithm. As we



Left image Multiscale BP Our results

Figure 5: Results using the Toyota night-vision road driving sequence.

want to give emphasis to practical applications of stereo vision, we are more interested in
evaluating our methods on real-world data. Experimental results, as compared with the
Multiscale BP algorithm, show that we have more encouragingrunning time, with better
performance on the car sequences. In this data, we especially do better on low-textured
regions (sky, ground planes, ...), and we also obtain sharper boundaries in the resulting
depth map.

One problem with this method is that it is sensitive to error made at the coarse level,
since it is strictly coarse to fine. We can address this problem by constructing a graphical
model that models mutual relations between superpixels at different levels. One possible
choice would be to connect the MRFs at all levels to form a unified MRF, by adding an
edge between the parent superpixel at one level and each of its children superpixels at
the next level. However, this would add a lot more complexityto the system, and would

Avg running time
Daimler (300 frames) Toyota (400 frames)
640×350pixel 644×493pixel

Multiscale BP 19.5s/fr 25.5s/fr
Our method 16.3s/fr 18.4s/fr

Table 2: Average running time of our method and the Multiscale BP on the car sequences.



reduce the significantly the efficiency of the algorithm.
In the near future, we plan to work on speeding up the algorithm. The most obvious

approach is to run the loopy BP algorithm at each MRF in a parallel fashion. Also, the
same algorithm can be implemented incorporating a technique to handle occlusions, and
a more sophisticated 3D plane representation for each superpixel, in order to improve
accuracy.
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