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Abstract

We present a unified method for recovering from trackingifailand closing
loops in real time monocular simultaneous localisation miagping. Within
a graph-based map representation, we show that recoverpapdlosing
both reduce to the creation of a graph edge. We describe apieriment
a bag-of-words appearance model for ranking potential [dopures, and
a robust method for using both structure and image appeatanconfirm
likely matches. The resulting system closes loops and m¥sdvom failures
while mapping thousands of landmarks, all in real time.

1 Introduction

Existing real time monocular SLAM (RTMS) systems rely mgiah tracking to perform
localisation at each time step, using a motion model andeastarch to constrain the
camera trajectory and update the map. However, the traagsgmptions are easily vio-
lated by unmodeled motion or failure to find landmarks in tidewe due to blur, occlusion,
or an insufficient appearance model. Tracking failure caurseorrect data association
and motion estimation, leading to catastrophic corruptiime structure estimate.

Even when the camera motion and environment are favordtaestatistical filtering
often delivers inconsistent results on a large scale. Tioislpm is not confined to RTMS,
but plagues metric SLAM in general. Resulting maps are lpaarrect, but globally
incoherent, and nontrivial loops are rarely closed by thadard active search techniques.

Such fragility and inaccuracy makes RTMS unusable for meaitworld sequences,
and motivates the development of active recovery and loagirgy algorithms. Recovery
typically refers to relocalisation of the camera pose foltgy a tracking failure, while
loop closing refers to data association between two dispiads of the map even when
tracking is proceeding smoothly.

We present a unified method for both recovery from failureative closing of loops
in a graph-based RTMS system, using both appearance atus&rto guide a localisa-
tion search. Crucially, the system continues to map therenment after tracking failure
occurs. Upon recovery, the new and old maps are efficienthegh so no mapping work
is wasted or lost. The operations are simple in the conteftt@fyraph representation.
For recovery, two connected components of the graph aredaimo one, whereas for
loop closure, two nodes in the same connected componenirtgedoectly connected,
improving the global coherence of the map. The resultingesysuns in real time while
mapping thousands of landmarks, recovering from multigleking failures and closing
loops.
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2 Related Work
2.1 Real Time Monocular SLAM

One of the first convincing implementations of real time SLAWh a single camera is
that of Davison et al[3], which uses active search for imagehes and an Extended
Kalman Filter (EKF) to map up to 100 landmarks in real time.

More recent work by Eade and Drummond[5] partitions the taack observations
into nodes of a graph to minimise statistical inconsisteincthe filter estimates. Each
graph node contains landmark estimates conditioned orotta bbservations, and the
edges represent pose transformations (with scale) betiveemdes. Because this graph-
based SLAM approach can map many landmarks and allowsivei@timisation over
graph cycles, we use it as a basis for our system.

Klein and Murray [7] take a novel approach to RTMS, in whichacking and map-
ping are based on carefully selected key-frames, and a Igtolvalle adjustment over
key-frame poses runs in the background while pose tracking at frame-rate. This
yields excellent results for environments within the lisnif the global optimisation. Our
method for detecting loop closures and recovering couldppdied directly to this ap-
proach, as each key-frame is synonymous to a node in oumnsyste

2.2 Recovery

The algorithm of Pupilliand Calway[11] uses a particle filemodel pose, which makes
the tracking robust to erratic motion, but fails to accouwnt dependence between the
camera and landmark estimates, and cannot make coheresfonapany landmarks.

Williams et al.[15] present a robust relocalisation methodt on top of Davison’s
system. Classification with randomised trees[8] yieldsgeito-landmark matches, from
which pose is recovered when tracking has failed. HoweJasgsdication using ran-
domised trees breaks down in the domain of thousands ofedaasd the online class
training and storage cost (30ms, 1.25MB per landmark) ikipitive when dealing with
many landmarks each time step.

2.3 Loop Closing

Davison’s system has been extended to allow loop closingwitie sub-maps have in-
dependently chosen the same landmarks from similar vievigid]. However, the loop
closing is not real time (taking more than 1 minute), and topldetection conditions are
rarely satisfied in practice[14].

Loop closing using visual appearance is not a novel ideajtheess of camera data
makes it particularly suited to the task of recognizing &mily. Dudek and Jugessur[4]
use descriptors derived from principal component analysts Fourier transformed im-
age patches to describe and match frames, and then use a/gotéescriptors to choose
a database image. Newman et al.[10] build a similarity matrievaluate the statistical
significance of matching images when laser range data alsthes

Sivic and Zisserman[12] apply the bag-of-words model useigxt retrieval to per-
form content-based retrieval in video sequences. Affivasiant descriptors extracted
from the videos are clustered at training time, and then tigethto the cluster centers
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Figure 1. Each node has its own coordinate system and Gadasidmark estimate in-
dependent from other nodes. Edges represent the transfonsbetween nodes induced
by shared landmark estimates, with cycles providing aoiditi constraints

at run time to yield visual word histograms in the images.eRtial matches are ranked
using the term-frequency-inverse-document-frequendyice

The appearance-based SLAM work of Cummins and Newman[Ziesihe bag-of-
words method within a probabilistic framework to detectdazosures. A generative
model of word expression yields a likelihood of observeddsgaover stored places, per-
mitting maximum-likelihood data association and updatihefplace’s appearance model
parameters. While the system delivers high accuracy viswthing, the generative
model must be computed offline and the model update cost httiwae step is high.

Very recent work by Williams et al. [14] uses the randomiseabs relocalisation
method described above to close loops in submap-based STAN has the drawbacks
listed above for randomised-trees classification. Furttedocalisation is tried against
each submap in turn, in a brute-force manner. Our approaunisés the search using a
visual appearance model.

3 Local SLAM Algorithm

Our SLAM system with unified recovery and loop closing extetiek graph-based RTMS
system of by Eade and Drummond[5]. This section very brieflgatibes the graph rep-
resentation of the map estimate and the operation of thersy$tenceforth called Graph-
SLAM.

3.1 GraphSLAM Overview

GraphSLAM stores landmark estimates in graph nodes, andtaiasé estimates of the
similarity transformations between nodes. The nodes atistitally independent of each
other, as observations of landmarks in each video imagesa@ to update at most one
node (where the observation model is nearly linear). Howdéaedmarks are not strictly
partitioned between nodes — indeed, the estimates of latkdrelhared between two nodes
determine the transformation estimate of an edge betweendities.

The graph is a piecewise-Gaussian representation of latkdestimates. Camera
pose is always represented relative to the active node,hwtaa change at each time
step. There is no global coordinate frame (see Fig. 1). &dstestimates are transformed
between local coordinate frames via edges.



3.2 Nodes

Within each node, observations are combined using an irdbomfilter, yielding a Gaus-
sian posterior with dimensionNBfor N landmarks. Landmark estimates are stored in
inverse-depth coordinates to make the observation moded fimear. A bound is placed
on the maximum number of landmark estimates per node, sthibapdate computation
time is also bounded.

3.3 Edges and Traversal

An edge between two nodes represents an estimate of thd gaatédean transformation
between the nodes’ coordinate frames. The transformatiooristrained by the estimates
of landmarks shared between the two nodes (when mapped fnemnade to the other
through the edge, they should align with maximum likelihpod

Each edge cycle in the graph also provides a constraint ag edge in the cycle (each
cycle should compose to the identity transformation), peimg iterative optimisation of
the edge parameters without modifying the nodes.

3.4 Observations

At each time step, landmark estimates from nearby nodesrajecped into the image,
determining a gated search region. The patch associatbceaith landmark is affinely
warped to reflect the current pose estimate, and the predietgon in the appropriate
image octave is searched for the patch using normalised covselation.

When fewer than a specified number of landmarks are visilde; landmarks are
chosen in image locations given by an interest point deteBP@mtches are acquired from
the image, and the initial landmark estimates are addecktadtive node.

3.5 Basic Modifications

We replace the interest point detector used by [5] with aessphce extrema detector,
so that each detected interest point has an image scale. ppearance patch of a new
landmark is sampled at this scale, and localised in the gpjate octaves of subsequent
video frames. This results in more robust operation wherllssnale image features are
rare. Also, landmark detection must be stable across viewpbange to allow loop
closure and recovery from novel viewpoints.

We also allow multiple connected components in the graphemthacking is pro-
ceeding without trouble, the active node remains in thessuttonnected component. But
when few observations can be made, tracking has failed, aed/@onnected component
is created. SLAM operation then starts fresh, with no landkm@n the current active
node. Disjoint connected components may later be recoedestdescribed below.

4 Loop Closing and Recovery Candidate Selection

To close loops or recover, we first select candidate nodelylik correspond to the active
node, using an appearance model based on visual words.oséctiescribes how the
coordinate transformation from a candidate node to theeatipose is sought.



Figure 2: Example image patches that quantise to each offfords in the vocabulary

Both for our coarse bag-of-words appearance model, andhéolocal landmark de-
scriptor database described in Section 5.2, we use viewpuoiariant descriptors of scale-
and rotation-normalised patches. We compute a SIFT[9]rgesc in the appropriate
scale and orientation with a two-by-two spatial grid andrfangle bins per spatial bin.
These 16-D descriptors are less distinctive than the stdrid8-D SIFT decriptors, but
are more efficient to compute, store, and compare, and pexfeil for our application.

4.1 Bag-of-words Appearance Model

We use a bag-of-words appearance model to find nodes thakahetb have similar
appearance to the current video image. Visual bag-of-wapgsoaches[12][2] generally
extract feature descriptors from an image, quantise therigesrs to a fixed “vocabulary”
of visual words, and use the histogram of observed words asage descriptor. An
inverted index or generative model is used to identify insageeplaces that are likely to
match the query image.

The vocabulary is typically trained offline from represéivtraining data. To avoid
requiring any offline training requirements, we build theabulary incrementally during
operation. The words of the vocabulary are characterisethdyescriptors described
above, computed from interest points in each video image.

In order to avoid adding descriptors of unstable or flukeut to the vocabulary,
we maintain both a main databageholding the current vocabulary, and a young word
databas& containing candidates for additionta For each interest point in an image,
we compute its descriptat and its nearest neighbovsc V andy € Y. Letrg be the
guantisation radius of bot andY.

¢ If both w andy are farther thamg away fromd, d is added toY and assigned a
default time-to-livettl (y) and a counter valueount(y) = 0.

o If |ly—d| < |lw—dJ|, count(y) is incremented antl (y) reset to the default.

e Otherwised is already sufficiently represented\ip and it quantises tav.

At each time steptfl(y) is decremented for ajl € Y. If count(y) reaches a threshold
beforettl (y) = 0, theny is moved fromY to theV. Otherwise, it is discarded.

Offline clustering results suggest reasonable valuesgfowhen millions of descrip-
tors harvested from many sequences are clustered usingkaytbe cluster radius varies
inversely with the number of clusters. Grouping into 200Gdgoyields an r.m.s. cluster
radius of 0.34, while grouping into 4000 words gives a radiu@.29. Using either of the
static offline vocabularies at run time yields matching perfance qualitatively similar



to our online vocabulary building. We choose a cluster radiu= 0.3, and the online
vocabulary typically converges to 3000 words. See Fig 2%angple quantisations.

4.2 Appearance Search

For each graph node, the system stores a list of words oltsarwedeo images while
that node has been active, and the occurrence count of eadh lvilve occurrence count
of a word in this list is above a threshold (we use 3), then tedws ‘expressed’ by
that node. Given the existing vocabulary wokifsobserved by the current video image,
the occurrence counts of all € W in the active node are incremented. Then a term--
frequency-inverse-document-frequency scheme (sinilahat of [12]) is used to rank
the nodes that express any word®\in The highest-rankekinodes not already connected
to the active node are candidate node matches to the cuieentWe usek = 3.

5 Loop Closing and Recovery

Here we detail how loop closing or recovery proceeds betwbkeractive node and a
candidate node. Section 4 describes how candidate nodesagen.

5.1 Loop Closing= Recovery

Loop closing and recovery in our system are the same evertrgtightly different cir-
cumstances. Loop closure occurs when a new edge is credteddrmethe active node
and another node in the same connected component, creatyetean the graph. Recov-
ery occurs when a new edge is created between the active ndderaode in a different
connected component, thus merging them into one connectadanent (see Fig. 3).

This unification of loop closure and recovery has importamddits to SLAM. Firstly,
the system is always mapping; it just creates a new graph eoer when failure occurs,
to represent subsequent map estimates. There need notfsratedoehavior when ’lost’
—as long as the failure event is reliably detected, a new oot is created and the map
remains uncorrupted.

Secondly, and more crucially for extended operation, imgatcovery as component
reconnection means that no mapping opportunities are diat&racking fails near the
beginning of a long loop, a recovery mechanism like the orseiileed by [15] can not
relocalise until the original landmarks are once againblési In contrast, our system
immediately starts mapping in a new graph component, and e early landmarks
reappear, the map of the greater part of the loop is connegtkedhat of the beginning.

5.2 Local Landmark Appearance Model

The appearance-based candidate selection method iniSéctimoses graph nodes whose
observed landmarks are likely to be visible in the curredewiimage. To localise with
respect to such a node, correspondences between featuhes\iideo image and land-
mark estimates in the candidate node must be establishetthisTend, each graph node
maintains a local appearance model of its landmark estsnathis is distinct from the
global bag-of-words visual appearance model, and is usidfenmatching candidate
nodes’ landmarks to keypoints in new video images for loogialg.
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Figure 3: Loop closing and recovery: Candidate matchingesate chosen by visual
appearance. Then structure is matched using landmark igpeamodels, and a candi-
date edge is created. Observations are made via the caméidige until it is promoted,
at which point a cycle is created (top) or two components armected (bottom). The
active node is shaded

Recovery

A set of descriptors represents the various appearancébfarvations of all land-
marks in the node. The s&t (for nodeN;) is built incrementally: Whenever a landmark
L; is observed i\, a descriptod; is computed at the position and scale of the observa-
tion. Letec € S be the nearest neighbor & to dj, and a descriptor of landmatl. If
ex—dj|| > rLork# j, then§ — SuU {d;}. That s, the descriptor is added$pif its
nearest neighbor is sufficiently distant or describes adfit landmark.

Thus variations in the appearance of a landmark are repgessanS to within dis-
tancer_ in descriptor space. We usg = 0.15, which gives a much finer representation
of descriptor variation than in the global bag-of-wordsafoalary. This choice of_ is
guided by the observation that even descriptors of the sarage patch after rotations,
scalings, and small deformations vary within a radius 0.ddscriptor space.

5.3 Descriptor Matching and Robust Model Fitting

For all of the interest points detected in each video imdgedescriptors described above
are computed and matched to their nearest neighbours indided@ node’s local land-
mark appearance model. For every landmark in the candsddétabase, there might be
many local interest point descriptors matching to it. We MeeESAC[13] to find the
correct correspondences. Any three matches from desgitalistinct landmarks in the
candidate node determine a pose[6]. For many such posesiakienum-likelihood set
of inlier correspondences are computed, with a fixed logliilood of outliers of -5.0. Up
to 200 random three-point-pose hypotheses are tried. Stasnilar to the approach of
[15].

5.4 Candidate Edge Trial Period

If the maximum likelihood set of inliers from pose-fittinglarge enough (we require 8
inliers), matching is considered successful. A candiddtgeés created from the candi-
date node to the current active node, using the pose resuft MILESAC as the edge



transformation. The candidate edge does not act as a sthedge in the graph — the
camera cannot traverse it, and landmark observations thafdwesult in node updates
are not made through it.

Instead, after the pose estimate has been constrainedrmastiaobservations, ad-
ditional landmark predictions from candidate nodes areanad any candidate edges
pointing into the active node. The success or failure ovactiearch for such landmarks
serves only to score the viability of the candidate edgesu¥éea simple heuristic: if the
ratio of total failed to successful predictions exceedsradiold, the candidate edge is
discarded. When the inverse ratio exceeds the thresh@dathdidate edge is validated,
and a loop closure or recovery event occurs.

5.5 Connecting the Nodes

When a candidate edge is promoted to a normal graph edger aittycle is created in
the graph, or two components are connected. In the first dasesxisting graph cycle
optimizer will incrementally adjust the graph to satisfe ttonstraint created by the new
edge cycle.

This second case represents a recovery event. If the tgptkilnre that created the
newer componentwas very recent, almost no mapping hasreddarthe new component
before reconnection. To simplify the graph in this commaroxery situation, the ages
of the two components being merged are checked. If the newmponent is very young,
it is discarded as ephemeral, and the camera pose is trarestdrack into the older com-
ponent’s matched node, through the newly created edge. dgeis then discarded, and
SLAM continues in the original component.

6 Results

We have implemented our method for a dual-core computergénsaarches and filter
updates happen in parallel with interest point detectiescdptor computation, and bag-
of-words maintenance. On a 2.2 GHz Pentium Core 2 Duo, pendrprocessing never
exceeds 33 ms, with loop detection/recovery requiring noentitkan 6 ms. The system
successfully closes loops and recovers from trackingraiin both indoor and outdoor
sequences, while operating in real time and mapping thalssaiiandmarks.

We use a completely planar real scene as a basic test of tagtiien accuracy. The
camera hovers at typical viewing distant@bove one part of the scene, before being
kidnapped to the other half. The system continues mappiagniew component. When
the camera again views the original portion of the scendaythe&omponents are matched
and reconnected. The final map contains 251 landmarks. All@2dmarks with depth
uncertaintyo < h/50 are no farther than/100 from the maximum likelihood plane.

In an outdoor sequence, the camera moves in an ellipticpl leith the camera facing
outwards. Rough camera motion causes tracking failuretHaisystem immediately
recovers. Extended failure occurs when the camera is sbidaeated toward the ground.
Mapping of novel views then continues in a new componenth@gamera returns to near
the starting point, a node in the first connected componeatizgnised and matched, and
the components are merged. As the trajectory continuesidre loop a second time,
the loop itself is closed. The resulting map contains 104d8naarks.



Figure 4: Top: video frames of loop closure or recovery eveBiottom: the most sim-
ilar previous view of the scene. Normal observations aremyrahile observations via
candidate edges are magenta

Figure 5: Before and after loop closure in two sequencesdirenks are yellow, graph
edges are green, nodes are red, and the camera is a smaiirfri&ich pair is from con-
secutive time steps (33 ms apart), before further increahesfinement by the optimiser

In an indoor scene, a complex external loop is traversed imséd. Then the camera
is repeatedly kidnapped from one part of the environmemaaleer, with new viewpoints
significantly different from the originals. In all cases¢ogery occurs within 15 frames.
The final map contains 1402 landmarks.

7 Future Work

The efficient method we have presented greatly improvesdbastness of real time
monocular SLAM, but is not flawless. The worst failure modehef system is spurious
loop closure given extensive repeated structure. In ggstiris occurs only in synthetic
sequences with large repeating textures. The problem igplarly difficult to solve in
general, as repeated structure at arbitrary scales mighhbeuntered. A probabilistic
model for appearance-based loop closure, as in [2], couidate the issue.

Another problem is that the cycle optimisation treats thgeettansformation esti-
mates as independent, though they are in fact correlatedghrthe node estimates. This
results in over-confident and incorrect global maps whenynh@ops are optimised. We
plan to address this using conservative local graph opitioiss.

While the bag-of-words appearance model is sufficientltirtitive for our test envi-
ronments, we intend to evaluate its performance and distaiion in much larger envi-
ronments (where the graph is significantly larger).
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