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Abstract

We present a unified method for recovering from tracking failure and closing
loops in real time monocular simultaneous localisation andmapping. Within
a graph-based map representation, we show that recovery andloop closing
both reduce to the creation of a graph edge. We describe and implement
a bag-of-words appearance model for ranking potential loopclosures, and
a robust method for using both structure and image appearance to confirm
likely matches. The resulting system closes loops and recovers from failures
while mapping thousands of landmarks, all in real time.

1 Introduction

Existing real time monocular SLAM (RTMS) systems rely mainly on tracking to perform
localisation at each time step, using a motion model and active search to constrain the
camera trajectory and update the map. However, the trackingassumptions are easily vio-
lated by unmodeled motion or failure to find landmarks in the video due to blur, occlusion,
or an insufficient appearance model. Tracking failure causes incorrect data association
and motion estimation, leading to catastrophic corruptionof the structure estimate.

Even when the camera motion and environment are favorable, the statistical filtering
often delivers inconsistent results on a large scale. This problem is not confined to RTMS,
but plagues metric SLAM in general. Resulting maps are locally correct, but globally
incoherent, and nontrivial loops are rarely closed by the standard active search techniques.

Such fragility and inaccuracy makes RTMS unusable for most real-world sequences,
and motivates the development of active recovery and loop closing algorithms. Recovery
typically refers to relocalisation of the camera pose following a tracking failure, while
loop closing refers to data association between two distinct parts of the map even when
tracking is proceeding smoothly.

We present a unified method for both recovery from failure andactive closing of loops
in a graph-based RTMS system, using both appearance and structure to guide a localisa-
tion search. Crucially, the system continues to map the environment after tracking failure
occurs. Upon recovery, the new and old maps are efficiently joined, so no mapping work
is wasted or lost. The operations are simple in the context ofthe graph representation.
For recovery, two connected components of the graph are joined into one, whereas for
loop closure, two nodes in the same connected component become directly connected,
improving the global coherence of the map. The resulting system runs in real time while
mapping thousands of landmarks, recovering from multiple tracking failures and closing
loops.
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2 Related Work

2.1 Real Time Monocular SLAM

One of the first convincing implementations of real time SLAMwith a single camera is
that of Davison et al[3], which uses active search for image patches and an Extended
Kalman Filter (EKF) to map up to 100 landmarks in real time.

More recent work by Eade and Drummond[5] partitions the landmark observations
into nodes of a graph to minimise statistical inconsistencyin the filter estimates. Each
graph node contains landmark estimates conditioned on the local observations, and the
edges represent pose transformations (with scale) betweenthe nodes. Because this graph-
based SLAM approach can map many landmarks and allows iterative optimisation over
graph cycles, we use it as a basis for our system.

Klein and Murray [7] take a novel approach to RTMS, in which tracking and map-
ping are based on carefully selected key-frames, and a global bundle adjustment over
key-frame poses runs in the background while pose tracking runs at frame-rate. This
yields excellent results for environments within the limits of the global optimisation. Our
method for detecting loop closures and recovering could be applied directly to this ap-
proach, as each key-frame is synonymous to a node in our system.

2.2 Recovery

The algorithm of Pupilli and Calway[11] uses a particle filter to model pose, which makes
the tracking robust to erratic motion, but fails to account for dependence between the
camera and landmark estimates, and cannot make coherent maps for many landmarks.

Williams et al.[15] present a robust relocalisation methodbuilt on top of Davison’s
system. Classification with randomised trees[8] yields image-to-landmark matches, from
which pose is recovered when tracking has failed. However, classification using ran-
domised trees breaks down in the domain of thousands of classes, and the online class
training and storage cost (30ms, 1.25MB per landmark) is prohibitive when dealing with
many landmarks each time step.

2.3 Loop Closing

Davison’s system has been extended to allow loop closing when two sub-maps have in-
dependently chosen the same landmarks from similar viewpoints[1]. However, the loop
closing is not real time (taking more than 1 minute), and the loop detection conditions are
rarely satisfied in practice[14].

Loop closing using visual appearance is not a novel idea; therichness of camera data
makes it particularly suited to the task of recognizing similarity. Dudek and Jugessur[4]
use descriptors derived from principal component analysisover Fourier transformed im-
age patches to describe and match frames, and then use a vote over descriptors to choose
a database image. Newman et al.[10] build a similarity matrix to evaluate the statistical
significance of matching images when laser range data also matches.

Sivic and Zisserman[12] apply the bag-of-words model used in text retrieval to per-
form content-based retrieval in video sequences. Affine-invariant descriptors extracted
from the videos are clustered at training time, and then quantised to the cluster centers



Figure 1: Each node has its own coordinate system and Gaussian landmark estimate in-
dependent from other nodes. Edges represent the transformations between nodes induced
by shared landmark estimates, with cycles providing additional constraints

at run time to yield visual word histograms in the images. Potential matches are ranked
using the term-frequency-inverse-document-frequency metric.

The appearance-based SLAM work of Cummins and Newman[2] applies the bag-of-
words method within a probabilistic framework to detect loop closures. A generative
model of word expression yields a likelihood of observed words over stored places, per-
mitting maximum-likelihood data association and update ofthe place’s appearance model
parameters. While the system delivers high accuracy visualmatching, the generative
model must be computed offline and the model update cost at each time step is high.

Very recent work by Williams et al. [14] uses the randomised-trees relocalisation
method described above to close loops in submap-based SLAM.This has the drawbacks
listed above for randomised-trees classification. Further, relocalisation is tried against
each submap in turn, in a brute-force manner. Our approach focuses the search using a
visual appearance model.

3 Local SLAM Algorithm

Our SLAM system with unified recovery and loop closing extends the graph-based RTMS
system of by Eade and Drummond[5]. This section very briefly describes the graph rep-
resentation of the map estimate and the operation of the system, henceforth called Graph-
SLAM.

3.1 GraphSLAM Overview

GraphSLAM stores landmark estimates in graph nodes, and maintains estimates of the
similarity transformations between nodes. The nodes are statistically independent of each
other, as observations of landmarks in each video image are used to update at most one
node (where the observation model is nearly linear). However, landmarks are not strictly
partitioned between nodes – indeed, the estimates of landmarks shared between two nodes
determine the transformation estimate of an edge between the nodes.

The graph is a piecewise-Gaussian representation of landmark estimates. Camera
pose is always represented relative to the active node, which can change at each time
step. There is no global coordinate frame (see Fig. 1). Instead, estimates are transformed
between local coordinate frames via edges.



3.2 Nodes

Within each node, observations are combined using an information filter, yielding a Gaus-
sian posterior with dimension 3N for N landmarks. Landmark estimates are stored in
inverse-depth coordinates to make the observation model more linear. A bound is placed
on the maximum number of landmark estimates per node, so thatthe update computation
time is also bounded.

3.3 Edges and Traversal

An edge between two nodes represents an estimate of the scaled Euclidean transformation
between the nodes’ coordinate frames. The transformation is constrained by the estimates
of landmarks shared between the two nodes (when mapped from one node to the other
through the edge, they should align with maximum likelihood).

Each edge cycle in the graph also provides a constraint on every edge in the cycle (each
cycle should compose to the identity transformation), permitting iterative optimisation of
the edge parameters without modifying the nodes.

3.4 Observations

At each time step, landmark estimates from nearby nodes are projected into the image,
determining a gated search region. The patch associated with each landmark is affinely
warped to reflect the current pose estimate, and the predicted region in the appropriate
image octave is searched for the patch using normalised cross correlation.

When fewer than a specified number of landmarks are visible, new landmarks are
chosen in image locations given by an interest point detector. Patches are acquired from
the image, and the initial landmark estimates are added to the active node.

3.5 Basic Modifications

We replace the interest point detector used by [5] with a scale space extrema detector,
so that each detected interest point has an image scale. The appearance patch of a new
landmark is sampled at this scale, and localised in the appropriate octaves of subsequent
video frames. This results in more robust operation when small-scale image features are
rare. Also, landmark detection must be stable across viewpoint change to allow loop
closure and recovery from novel viewpoints.

We also allow multiple connected components in the graph. When tracking is pro-
ceeding without trouble, the active node remains in the current connected component. But
when few observations can be made, tracking has failed, and anew connected component
is created. SLAM operation then starts fresh, with no landmarks in the current active
node. Disjoint connected components may later be reconnected as described below.

4 Loop Closing and Recovery Candidate Selection

To close loops or recover, we first select candidate nodes likely to correspond to the active
node, using an appearance model based on visual words. Section 5 describes how the
coordinate transformation from a candidate node to the current pose is sought.



Figure 2: Example image patches that quantise to each of fourwords in the vocabulary

Both for our coarse bag-of-words appearance model, and for the local landmark de-
scriptor database described in Section 5.2, we use viewpoint-invariantdescriptors of scale-
and rotation-normalised patches. We compute a SIFT[9] descriptor in the appropriate
scale and orientation with a two-by-two spatial grid and four angle bins per spatial bin.
These 16-D descriptors are less distinctive than the standard 128-D SIFT decriptors, but
are more efficient to compute, store, and compare, and perform well for our application.

4.1 Bag-of-words Appearance Model

We use a bag-of-words appearance model to find nodes that are likely to have similar
appearance to the current video image. Visual bag-of-wordsapproaches[12][2] generally
extract feature descriptors from an image, quantise the descriptors to a fixed “vocabulary”
of visual words, and use the histogram of observed words as animage descriptor. An
inverted index or generative model is used to identify images or places that are likely to
match the query image.

The vocabulary is typically trained offline from representative training data. To avoid
requiring any offline training requirements, we build the vocabulary incrementally during
operation. The words of the vocabulary are characterised bythe descriptors described
above, computed from interest points in each video image.

In order to avoid adding descriptors of unstable or fluke features to the vocabulary,
we maintain both a main databaseV holding the current vocabulary, and a young word
databaseY containing candidates for addition toV . For each interest point in an image,
we compute its descriptord and its nearest neighborsw ∈ V andy ∈ Y . Let rG be the
quantisation radius of bothV andY .

• If both w andy are farther thanrG away fromd, d is added toY and assigned a
default time-to-livettl(y) and a counter valuecount(y) = 0.

• If ‖y−d‖< ‖w−d‖, count(y) is incremented andttl(y) reset to the default.

• Otherwise,d is already sufficiently represented inV , and it quantises tow.

At each time step,ttl(y) is decremented for ally ∈ Y . If count(y) reaches a threshold
beforettl(y) = 0, theny is moved fromY to theV . Otherwise, it is discarded.

Offline clustering results suggest reasonable values forrG. When millions of descrip-
tors harvested from many sequences are clustered using k-means, the cluster radius varies
inversely with the number of clusters. Grouping into 2000 words yields an r.m.s. cluster
radius of 0.34, while grouping into 4000 words gives a radiusof 0.29. Using either of the
static offline vocabularies at run time yields matching performance qualitatively similar



to our online vocabulary building. We choose a cluster radius rG = 0.3, and the online
vocabulary typically converges to 3000 words. See Fig 2 for example quantisations.

4.2 Appearance Search

For each graph node, the system stores a list of words observed in video images while
that node has been active, and the occurrence count of each word. If the occurrence count
of a word in this list is above a threshold (we use 3), then the word is ‘expressed’ by
that node. Given the existing vocabulary wordsW observed by the current video image,
the occurrence counts of allw ∈W in the active node are incremented. Then a term--
frequency-inverse-document-frequency scheme (similar to that of [12]) is used to rank
the nodes that express any words inW . The highest-rankedk nodes not already connected
to the active node are candidate node matches to the current view. We usek = 3.

5 Loop Closing and Recovery

Here we detail how loop closing or recovery proceeds betweenthe active node and a
candidate node. Section 4 describes how candidate nodes arechosen.

5.1 Loop Closing≡ Recovery

Loop closing and recovery in our system are the same event under slightly different cir-
cumstances. Loop closure occurs when a new edge is created between the active node
and another node in the same connected component, creating acycle in the graph. Recov-
ery occurs when a new edge is created between the active node and a node in a different
connected component, thus merging them into one connected component (see Fig. 3).

This unification of loop closure and recovery has important benefits to SLAM. Firstly,
the system is always mapping; it just creates a new graph component when failure occurs,
to represent subsequent map estimates. There need not be a separate behavior when ’lost’
– as long as the failure event is reliably detected, a new component is created and the map
remains uncorrupted.

Secondly, and more crucially for extended operation, treating recovery as component
reconnection means that no mapping opportunities are wasted. If tracking fails near the
beginning of a long loop, a recovery mechanism like the one described by [15] can not
relocalise until the original landmarks are once again visible. In contrast, our system
immediately starts mapping in a new graph component, and when the early landmarks
reappear, the map of the greater part of the loop is connectedwith that of the beginning.

5.2 Local Landmark Appearance Model

The appearance-based candidate selection method in Section 4 chooses graph nodes whose
observed landmarks are likely to be visible in the current video image. To localise with
respect to such a node, correspondences between features inthe video image and land-
mark estimates in the candidate node must be established. Tothis end, each graph node
maintains a local appearance model of its landmark estimates. This is distinct from the
global bag-of-words visual appearance model, and is used only for matching candidate
nodes’ landmarks to keypoints in new video images for loop closing.



Figure 3: Loop closing and recovery: Candidate matching nodes are chosen by visual
appearance. Then structure is matched using landmark appearance models, and a candi-
date edge is created. Observations are made via the candidate edge until it is promoted,
at which point a cycle is created (top) or two components are connected (bottom). The
active node is shaded

A set of descriptors represents the various appearances of all observations of all land-
marks in the node. The setSi (for nodeNi) is built incrementally: Whenever a landmark
L j is observed inNi, a descriptord j is computed at the position and scale of the observa-
tion. Let ek ∈ Si be the nearest neighbor inSi to d j, and a descriptor of landmarkLk. If
‖ek−d j‖ > rL or k 6= j, thenSi← Si∪

{

d j
}

. That is, the descriptor is added toSi if its
nearest neighbor is sufficiently distant or describes a different landmark.

Thus variations in the appearance of a landmark are represented in Si to within dis-
tancerL in descriptor space. We userL = 0.15, which gives a much finer representation
of descriptor variation than in the global bag-of-words vocabulary. This choice ofrL is
guided by the observation that even descriptors of the same image patch after rotations,
scalings, and small deformations vary within a radius 0.1 indescriptor space.

5.3 Descriptor Matching and Robust Model Fitting

For all of the interest points detected in each video image, the descriptors described above
are computed and matched to their nearest neighbours in a candidate node’s local land-
mark appearance model. For every landmark in the candidate’s database, there might be
many local interest point descriptors matching to it. We useMLESAC[13] to find the
correct correspondences. Any three matches from descriptors to distinct landmarks in the
candidate node determine a pose[6]. For many such poses, themaximum-likelihood set
of inlier correspondences are computed, with a fixed log-likelihood of outliers of -5.0. Up
to 200 random three-point-pose hypotheses are tried. This is similar to the approach of
[15].

5.4 Candidate Edge Trial Period

If the maximum likelihood set of inliers from pose-fitting islarge enough (we require 8
inliers), matching is considered successful. A candidate edge is created from the candi-
date node to the current active node, using the pose result from MLESAC as the edge



transformation. The candidate edge does not act as a standard edge in the graph – the
camera cannot traverse it, and landmark observations that would result in node updates
are not made through it.

Instead, after the pose estimate has been constrained by standard observations, ad-
ditional landmark predictions from candidate nodes are made via any candidate edges
pointing into the active node. The success or failure of active search for such landmarks
serves only to score the viability of the candidate edges. Weuse a simple heuristic: if the
ratio of total failed to successful predictions exceeds a threshold, the candidate edge is
discarded. When the inverse ratio exceeds the threshold, the candidate edge is validated,
and a loop closure or recovery event occurs.

5.5 Connecting the Nodes

When a candidate edge is promoted to a normal graph edge, either a cycle is created in
the graph, or two components are connected. In the first case,the existing graph cycle
optimizer will incrementally adjust the graph to satisfy the constraint created by the new
edge cycle.

This second case represents a recovery event. If the tracking failure that created the
newer component was very recent, almost no mapping has occurred in the new component
before reconnection. To simplify the graph in this common recovery situation, the ages
of the two components being merged are checked. If the newer component is very young,
it is discarded as ephemeral, and the camera pose is transformed back into the older com-
ponent’s matched node, through the newly created edge. The edge is then discarded, and
SLAM continues in the original component.

6 Results

We have implemented our method for a dual-core computer. Image searches and filter
updates happen in parallel with interest point detection, descriptor computation, and bag-
of-words maintenance. On a 2.2 GHz Pentium Core 2 Duo, per-frame processing never
exceeds 33 ms, with loop detection/recovery requiring no more than 6 ms. The system
successfully closes loops and recovers from tracking failure in both indoor and outdoor
sequences, while operating in real time and mapping thousands of landmarks.

We use a completely planar real scene as a basic test of reconstruction accuracy. The
camera hovers at typical viewing distanceh above one part of the scene, before being
kidnapped to the other half. The system continues mapping ina new component. When
the camera again views the original portion of the scene, thetwo components are matched
and reconnected. The final map contains 251 landmarks. All 226 landmarks with depth
uncertaintyσ < h/50 are no farther thanh/100 from the maximum likelihood plane.

In an outdoor sequence, the camera moves in an elliptical loop, with the camera facing
outwards. Rough camera motion causes tracking failure, butthe system immediately
recovers. Extended failure occurs when the camera is suddenly rotated toward the ground.
Mapping of novel views then continues in a new component. As the camera returns to near
the starting point, a node in the first connected component isrecognised and matched, and
the components are merged. As the trajectory continues around the loop a second time,
the loop itself is closed. The resulting map contains 1043 landmarks.



Figure 4: Top: video frames of loop closure or recovery events. Bottom: the most sim-
ilar previous view of the scene. Normal observations are green, while observations via
candidate edges are magenta

Figure 5: Before and after loop closure in two sequences. Landmarks are yellow, graph
edges are green, nodes are red, and the camera is a small frustum. Each pair is from con-
secutive time steps (33 ms apart), before further incremental refinement by the optimiser

In an indoor scene, a complex external loop is traversed and closed. Then the camera
is repeatedly kidnapped from one part of the environment to another, with new viewpoints
significantly different from the originals. In all cases, recovery occurs within 15 frames.
The final map contains 1402 landmarks.

7 Future Work

The efficient method we have presented greatly improves the robustness of real time
monocular SLAM, but is not flawless. The worst failure mode ofthe system is spurious
loop closure given extensive repeated structure. In testing, this occurs only in synthetic
sequences with large repeating textures. The problem is particularly difficult to solve in
general, as repeated structure at arbitrary scales might beencountered. A probabilistic
model for appearance-based loop closure, as in [2], could mitigate the issue.

Another problem is that the cycle optimisation treats the edge transformation esti-
mates as independent, though they are in fact correlated through the node estimates. This
results in over-confident and incorrect global maps when many loops are optimised. We
plan to address this using conservative local graph optimisations.

While the bag-of-words appearance model is sufficiently distinctive for our test envi-
ronments, we intend to evaluate its performance and discrimination in much larger envi-
ronments (where the graph is significantly larger).
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