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Abstract

We present an online learning approach for robustly combining unreliable
observations from a pedestrian detector to estimate the rough 3D scene ge-
ometry from video sequences of a static camera. Our approach is based on
an entropy modelling framework, which allows to simultaneously adapt the
detector parameters, such that the expected information gain about the scene
structure is maximised. As a result, our approach automatically restricts the
detector scale range for each image region as the estimation results become
more confident, thus improving detector run-time and limiting false positives.

1 Introduction
Video surveillance is becoming a major application area of computer vision. New cameras
are installed daily all around the world, adding huge quantities of data to the streams of
information that need to be processed. As this happens, it becomes increasingly important
to develop methods for reducing the manual effort that is still required for camera setup,
replacing it by automatic processing.

In this paper, we focus on one aspect of this problem, namely to learn as much as
possible about the depicted scene in an entirely automatic fashion. Our goal is to learn
the rough scene geometry and semantics (e.g. where can people walk? Where do they
typically appear at which sizes?) from videos of a static camera by observing objects
that move within it. Taking advantage of the fact that observed object size is related to
distance, we accumulate responses from a pedestrian detector to infer 3D structure. As the
output of a pedestrian detector however still contains considerable noise and many false
detections, especially for the difficult video footage available from many surveillance
settings (see Fig. 1), we continuously integrate those measurements in a graphical model
for robust estimation. In return, we use the estimated scene structure to constrain the
object detector only to those image regions and local scales at which objects are likely
to occur (see Fig. 2). Such a procedure can result in considerable speedups, which go
hand-in-hand with an increase in accuracy, since false positives at improbable scales are
already filtered out (see e.g. [10, 14]).

Several other approaches have been proposed recently which target a similar goal by
trying to estimate scene structure in a batch learning stage (e.g. [13, 16]). For an automatic
system, such a fixed learning stage may be problematic, since it is not guaranteed that
the limited number of observations during that stage provides sufficient information for
defining the entire scene. Consequently, those approaches employ additional simplifying
assumptions about camera viewpoints [9, 17], specific properties of indoor scenes [6] or
urban scenes [3, 18], or the existence of one single ground plane that is valid for the entire
scene [10, 13, 16]. In contrast, our approach applies the learning process in an online

BMVC 2008 doi:10.5244/C.22.32



(a) (b)

(c) (d)

Figure 1: The typical output of a pedestrian detector (here, HoG [5] is used) on com-
plex scenes (containing shadows, occlusions, and multiple ground surfaces), with many
false positives, missing detections, and inexact bounding boxes. Our target is to robustly
estimate multiple ”walkable” ground surfaces from such noisy observations.

fashion such that the estimation can be refined after each observed frame. Furthermore, it
is able to deal with scenes that consist of arbitrary (possibly several) ground surfaces.

Since the online estimation is based on incomplete information, this raises an inter-
esting problem: For computational reasons and to filter out false positive detections, we
want to restrict the search space for location and size of pedestrians in the scene as far as
possible. However, although we may not have observed a person in a certain image re-
gion so far, this does not mean that one cannot appear there, requiring us to continuously
re-explore the search space. To resolve this tradeoff, we propose a method for informed
parameter selection which minimises the expected uncertainty of the scene structure esti-
mate based on an entropy framework. Our approach allows to gradually restrict the scale
range parameter of a pedestrian detector, as the scene estimation becomes more reliable.
If no information about the scene is available, all possible observations are considered
(exploration phase), and the more reliable the estimation becomes, the more specific the
chosen search scale ranges get (exploitation phase). Fig. 2 shows samples for a location-
dependent size prior obtained after observing about 30s of a video sequence.

In detail, this paper makes the following contributions. 1) We propose a method to
learn the local geometry of a scene from the output of a pedestrian detector by estimating
multiple “walkable” ground surfaces. 2) This method is based on an entropy framework
to simultaneously and gradually adapt detector parameters (in our case the scale range pa-
rameter) such that the expected information gain about the scene structure is maximised.
3) Both of those steps are combined in an online learning approach to benefit from con-
tinuous data sources, while maintaining quality-of-service for the resulting detections.
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Figure 2: Our method automatically estimates ”walkable” ground surfaces from which
location-dependent size priors for pedestrian detection can be obtained. Here, randomly
sampled bounding boxes are shown for two scenes. The colors depend on the ground
surfaces (two are found in 1(b)), and the intensity is proportional to the estimated depth.

2 Related Work

3D Reconstruction. An explicit 3D reconstruction of the scene requires two or more im-
ages taken from different viewing locations with overlapping field-of-view [8]. For many
surveillance settings, this is not practical, as most data sources are static and monocular
cameras. Single-view scene geometry estimation has therefore attracted increasing inter-
est recently. However, existing approaches are usually based on strong assumptions about
the scene or work only in specific settings: Shape-from-shading [20] is only applicable to
scenes of uniformly coloured and textured surfaces, and methods based on 3D metrology
[4] require manual interaction. Other attempts are based on the assumption of orthogonal
shapes in the scene, which are predominant in urban environments [3, 18, 11] or indoor
scenes [6]. Usually, these methods fail for general outdoor settings. One of the most pop-
ular methods [9] assume that the world consists of vertical structures and one flat ground
surface, and make strong assumptions about the viewpoint (i.e. camera position and axis).
Then, a classifier is learnt to model the relation between local material properties (colour
and texture), 3D orientation, and image location. In [17], this approach is improved such
that it works for non-vertical structures. In contrast to these methods, our algorithm is
based on integrating pedestrian detections over time instead of directly using geometric
features. Therefore, it does not dependent on any assumptions about scene geometry or
viewpoint. Furthermore, our algorithm can learn multiple ground surfaces. However, it is
restricted to reconstruct ground surfaces where people walk. Our algorithm is based on
an online learning process to benefit from virtually unlimited data sources like web-cams
or surveillance cameras.

Camera Autocalibration. For surveillance applications, camera autocalibration has be-
come a popular tool, closely related to 3D scene reconstruction. A possible approach is to
estimate vanishing directions through edge detection and grouping (e.g. [11]). Although
the 3D orientation of a plane can be determined by its vanishing line (relative to the cam-
era) [8], such information cannot easily be extracted from unstructured outdoor images
and is notoriously sensitive to noise. Another approach is to exploit homologies obtained
from moving pedestrians in the scene. However, in previous work [13, 12, 16] head and
foot positions of single pedestrians needed to be detected and tracked very accurately



and robustly. Although also based on moving pedestrians, our approach is not dependent
on reliable tracking. Instead, it pursues a conservative online learning strategy by only
picking out confident detections (e.g. from image regions where pedestrians are walking
individually) and integrating those over a longer time window. Therefore, our method is
more robust and can be used for complex and crowded scenes.

Improving Object Detection. Recent work has shown how scene knowledge can be used
to improve object detection by providing contextual priors for object location and scale
[10, 19]. For example, the viewpoint can be modelled explicitely in a graphical model
to combine object detection and geometric context [10]. In contrast to previous methods,
our approach is to gradually adapt detector parameters online by maximising the expected
information gain for the scene estimation. Therefore, we optimally reduce the uncertainty
in the state estimate by choosing the best observation parameters. Such an approach has
previously been used for control parameter optimisation for active sensors (such as pan,
tilt and zoom cameras) [7]. However, while previous work is concerned with optimising
the actual parameters of a physical device, we apply this idea to parameter selection for
the image-based detection process. To our knowledge, no prior work exists in this area.

3 Approach
Our method estimates the scene structure based on noisy observations of pedestrians, and
simultaneously and gradually adapts the detector parameters such that the uncertainty
about the scene estimation is minimised. We consider observations about objects in a
scene as sequential time-series data and model the dependencies between noisy and unre-
liable observations and the scene structure at a certain position in the image in a graphical
model. The observations stem from a sliding-window based HoG pedestrian detector [5].
However, our approach is independent of the specific detector.

We divide the image into a regular grid (chosen independently from the specific
scene), and estimate the depth and spatial structure for each cell independently in a Dy-
namical Bayesian Network. The depth estimation is a probability distribution over relative
depth classes, and the spatial structure is the probability that pedestrians appear (“walka-
bility”), which provides an indication for the reliability of the estimated depth.

Based on these online estimations, the control parameters for the detection algorithm
are adapted continuously for each image region, such that the expected information gain
is maximised in each time step. Equivalently, this corresponds to a minimisation of the
expected uncertainty, which we model by the conditional entropy of the scene estimation.
By optimising the detections and thus the scene structure estimation, we get more reli-
able measurements in the next time step. An essential parameter of an object detector is
the search scale range, which defines the size of pedestrians to look for. We restrict the
optimisation to find such location-dependent scale range parameters. Essentially, one pa-
rameter is a single pointer to a table of scale ranges, defining the minimum and maximum
scale of objects the detector is looking for (see Fig. 5(c) for a legend of the scales covered
by the pointers in our experiments). However, our approach could also be applied to adapt
other parameters.
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Figure 3: The graphical model for one image cell g and one time step t. The observed
nodes s,c are the measurements from the pedestrian detector (scale, confidence value)
and r stems from data association (reliability). The latent nodes e,d,w correspond to the
estimated existence of an object, and the depth and walkability estimations. The control
(or action) parameter a is the selected scale range parameter of the detector.

3.1 Graphical Model
At the core of our approach is a Dynamic Bayesian Network (DBN) for inferring scene
structure from object detections. Each DBN models one cell of the image grid (see Fig. 3).
Its purpose is to integrate information from object detector responses in order to simulta-
neously estimate local scene structure and to provide the entropy framework with a means
of predicting what effects a change in the detector parameters will have on the expected
information gain. The object detector yields observations with a confidence and scale
measurement, which are added as evidence into our graphical model.

Observed Variables. For each image cell g, we add m measurements from the current
time step t. The multinomial variable s ∈ {s1, . . . ,sN} corresponds to the scale of a de-
tection. Furthermore, the binary variable c ∈ {0,1} is the confidence value of a detection
after thresholding. Thus, if the confidence value obtained from the detector is low, the
measurement will have less impact than if the confidence value is high. In addition, we
check whether the observed detection has consistently moved compared to the preceding
time steps. This is necessary in order to filter out certain background image structures,
such as doors or windows, which give rise to very persistent false positives in some image
locations. The result of this data association check is added through an observed binary
variable r ∈ {0,1} (reliability), which ensures that a pedestrian is moving, thus eliminat-
ing potentially wrong static detections. As a result, our procedure also ignores possibly
correct detections of standing pedestrians when estimating scene geometry, which may
lead to slightly longer time until convergence for the benefit of added robustness (against
false, early conclusions due to possibly wrong detections).

Latent Variables. Our target is to reliably estimate the depth values for “walkable” re-
gions which best explains the measurements. For each time step and each measurement
m, the evidence (r,c,s) is added to the model, and the probability of the existence of an
object e for the current time step in this cell is inferred. Hence, the latent binary vari-
able e ∈ {0,1} combines all the indications from the observed nodes (r,c,s) to estimate
whether a reliable observation has been made at the current time step. The latent variable
w ∈ {0,1} corresponds to the estimation, how likely an object will appear at this image
location, and serves as a prior for e. Because we use measurements from a pedestrian de-



tector, and pedestrians only appear in scene regions which are “walkable”, w corresponds
to the “walkability” of this cell. Finally, the relative depth of the scene is modelled by
the latent multinomial variable d ∈ {1, . . . ,D}. The estimated depth d depends on the
walkability w, because we only can reliably estimate the depth for image regions where
it is likely that pedestrians can appear. The control (or action) parameter a models the
influence of the detector parameters (in our case the search scale range) on the output of
the detector. a is selected by our algorithm (see Section 3.2) based on the last time step
and fixed for the current time step t, thus not taken into account for inference. Ultimately,
we want to optimise the parameters a so as to minimise the expected uncertainty of the
depth estimate for walkable regions p(d,w = 1).

Structure. The dependencies of the variables are encoded in the DBN, see Fig. 3. The
conditional probability distributions of the variables within one time slice are manually
chosen based on experiments (independently from the test videos), and the behaviour of
the DBN is verified for synthetic test sequences.

The current depth and walkability estimations depend on the last time step. The num-
ber of observations (based on which the estimations are obtained) influences the relia-
bility of the estimations. Therefore, if only few observations have been made so far, a
new and reliable observation should influence the estimation stronger than if many reli-
able observations already have been made before. We model this in a two-slice Temporal
Bayesian Network (2TBN) (a special case of a DBN, [15]) by the transition probabili-
ties p(wt |wt−1,et−1) and p(dt |wt ,dt−1,et−1) (corresponding to the dashed lines in Fig. 3).
They are modelled by unnormalised histograms and updated if a successful observation
was made (i.e. if p(et−1 = 1)). Hence, the a priori probabilities for walkability and depth
depend on the old estimation, and are updated if a reliable observation has been made.
With these modifications, we add a “memory” to the graphical model.

The updated conditional probability distribution in the 2TBN can be computed from
the inferred conditional probability distribution in the current time slice and the transition
probabilities introduced before:

pa(dt ,wt ,et |dt−1,wt−1,et−1,ct ,st ,rt) =
pa(dt ,wt ,et |ct ,st ,rt)p(dt ,wt ,et |dt−1,wt−1,et−1) = (1)
pa(dt ,wt ,et |ct ,st ,rt)p(wt |wt−1,et−1)p(dt |wt ,dt−1,et−1)p(et |wt) (2)

For inference in the 2TBN, we use an approximation of the junction tree algorithm im-
plemented using forward/backward operators (see [1]).

3.2 Entropy-based Optimisation of Detector Parameters
We aim at adapting the detector parameters in each time step depending on the estimated
scene structure, i.e. the depth estimate for walkable regions p(d,w = 1). Therefore, we
optimally reduce the expected uncertainty in the state estimate by choosing the best obser-
vation parameters. This influences the observations and thus the inferred scene estimation.
The control parameter at summarises the different parameter settings for the observation
process, in our case the possible scale range parameters of the detection algorithm.

At time step t, our algorithm chooses the best possible parameter at to make an obser-
vation ot based on the last scene estimation pt−1(w,d|a). Among all possible choices, the
selected parameter will maximally reduce the expected uncertainty in a given probability



distribution of the true state x = (w,d) of the DBN, which is the scene estimation we want
to optimise. Applying the chosen parameter at yields an observation ot = (c,s,r) which
is finally used to update the scene estimation pt(w,d) by Bayesian inference in the DBN.

A natural measure for the uncertainty is the expected conditional entropy,1

Ĥat (wt ,dt︸ ︷︷ ︸
xt

|et ,ct ,st ,rt︸ ︷︷ ︸
ot

) =−
∫∫

pat (xt ,ot) log(pat (xt |ot))dxt dot (3)

which takes into account the distribution of the observations, and hence is independent
of the observation to make in the next time step. The parameter a∗t is then found by
minimising the entropy:

a∗t = argmin
at

Ĥat (xt |ot) (4)

The probabilities in Eq. 3 are obtained by inference in the DBN (see Section 3.1), that
encodes the conditional independence relationships, and by applying the chain rule of
probability. Thus, we can write the probability of all nodes at time instant t:2

pa(w,d,e,c,s,r) = p(w)p(d|w)p(e|w)p(r|e)pa(c|e)pa(s|e,d) (5)

The factors influenced by the detector are pa(c|e) and pa(s|e,d), which need to be esti-
mated for every possible parameter setting a (see next paragraph).

Our approach results in a restriction in the data selection process: We reduce the
scale range of possible targets in the observed scene and thus implicitly apply a location-
dependent size prior. As a result, our method decreases the number of false positives in
areas where it can acquire sufficient detections to reliably estimate scene geometry.

Training: Estimation of Detector Statistics. The influence of the detector param-
eters on the measurement process can be summarised by the probabilities pa(c|e) and
pa(s|e,d). They describe the likelihood of making an observation of a certain confidence
c given the evidence of an object class e, and of size s given e and the depth d. Usually,
neither true depth d nor true height of a person are found in publicly available image
databases. Instead, only the pixel size s∗ of persons in the image is annotated. Therefore,
we learn the output of the detector for the annotated pixel size s∗ from training data, yield-
ing p(c|e,s∗) and p(s|e,s∗), and approximate p(c|e) and p(s|e,d) by marginalisation:

p(c|e) =
∫

p(c|e,s∗)p(s∗|e)ds∗ (6)

p(s|e,d) =
∫

p(s|e,s∗)p(s∗|e,d)ds∗ (7)

Furthermore, we model p(s∗|e,d) with a projective mapping for an assumed focal length
f and object height h:

p(s∗|e = 1,d) = k exp(−( f h/d− s∗)2/σ
2) (8)

and estimate the false detection distribution p(s∗|e = 0,d) by running the detector on
images without pedestrians. p(s∗|e = 1) is the distribution of annotated object sizes in

1 pa(·) = p(·|a) is a probability that additionally depends on the control parameter a.
2To simplify the notation, we omit the subscript t and marginalise out the variables at t−1.
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Figure 4: Results for the scenes in Figs. 1(a) and 1(b). a) most probable depth classes
for walkable regions (depth encoded in colour values). b) probability of walkability (i.e.
probability of reliably detected pedestrians; dark regions are more probable). c) ground
surfaces fitted to the depth estimates. (best viewed in colour)

the training set. For training the expected detector performance, we used the annotated
GRAZ/INRIA image database, and the detection tolerances from [2]. Although Eq. 8
neglects the actual focal length of the original images, manual inspection of the data
set used for the evaluation reveals a typical short focal length for street scenes, which
coincides with our application domain.

4 Experimental Results
We ran several experiments to verify our method. For all tests, the frames from high
resolution (HD) videos are discretised into a regular 20× 20 grid, each cell containing
a DBN as described before. The number of depth classes d and the number of different
scale range parameters a are set to 10. We divide the maximum search scale range for the
detector in 4 parts, and map the possible minimum/maximum scale combinations to 10
different actions (see the legend in Fig. 5(c)).

In Fig. 4, we show results of the scene structure estimation after about 30 seconds for
videos from the screenshots in Figs. 1(a) and 1(b). Column a) shows the most probable
depth classes maxd p(d,w = 1) where pedestrians are reliably detected (i.e. “walkable” re-
gions), and column b) shows the probability that a region is walkable p(w = 1). Although
the detection algorithm returns many false positives for such cluttered and crowded high-
resolution images with many partially occluded pedestrians, the DBN robustly estimates
the regions of reliable detections and the relative depth classes. If running for a longer
time, more measurements will be combined subsequently by the online algorithm. There-
fore, the depth and walkability estimates will get more reliable as the estimated distri-
butions get narrower. Because more measurements fall into one cell for regions which
are far away, it usually takes less time until the estimation converges (see e.g. Fig. 4(b),
top). Furthermore, pedestrians probably will appear at locations which were not observed
before, resulting in a more complete scene estimation.

To estimate the ground surfaces which best fit the estimated depth values, we project
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Figure 5: a) The entropy of the scene estimation with and without scale range parameter
selection. b) Location-dependent search scale ranges for each cell after 30s. c) Colour
legend for the action parameter a, which points to a range of detector search scales.

the depth values to 3d points by roughly assuming a focal length of the camera (which is
either known or a rough guess is estimated easily, c.f. Section 3.2). Planes are then auto-
matically fitted to the points using RANSAC and segmented into walkable regions where
p(w = 1) (results are shown in Fig. 4(c)). For the sequence in the 2nd row, two ground
surfaces are correctly found. Such a result was not possible with previous methods.

Secondly, we demonstrate the effect of the entropy-based search scale range selection
in an online experiment. In each frame, measurements from the detector are combined,
and the best location-dependent parameters for the next time step are selected. In the
beginning, the depth distribution for one cell is rather uniform. After each time step, our
method progressively refines it, and its entropy decreases. In Fig. 5(a), the entropy of the
scene estimation is plotted for each frame with and without our algorithm for scale range
parameter selection. In Fig. 5(b), the chosen parameters for each cell after about 30s are
shown for the scene in Fig. 1(a). Fig. 5(c) illustrates which detector search scale range is
covered by which action parameter a, encoded in colours. Fig. 5(b) demonstrates that the
search scale range is strongly restricted in cells with reliable scene estimates (c.f. Fig. 4,
top). For image regions where the scene estimation is not reliable (because no or noisy
observations have been made so far), the search scale range is less limited.

For a typical frame of our HD video sequences, the original pedestrian detector [5]
evaluates more than 300′000 detection windows on the whole image. In comparison, our
method effectively limits the search scale range such that typically only about 40′000
windows are evaluated for reliably estimated image regions (a 10x speedup). For the
remaining region, one could employ a random sampling scheme with a small budget of
detection windows, since the region is less likely to contain pedestrians. Such methods to
maintain quality-of-service for detections are especially important for online applications
like surveillance.

5 Conclusion
We presented an online learning approach to estimate the local geometry of the scene
based on unreliable observations from a pedestrian detector. Our method is not based on
strong assumptions (e.g. about the viewpoint), can learn multiple ground surfaces, and
benefits from virtually unlimited data sources like web-cams or surveillance cameras. Si-
multaneously, the algorithm adapts the scale range parameter of the detector such that the



expected information gain about the scene structure is maximised, allowing to improve
the detector run-time and limiting false positives. Hence, our approach resolves the trade-
off of exploring the image for all possible scales vs. relying on the current estimation. To
our knowledge, no previous work exists on online learning of detection parameters based
on entropy. Our algorithm is currently restricted to reconstruct ground surfaces where
people walk. In the future, we plan to extend the graphical model to include conditions
between cells, and to additionally use colour and texture cues.
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