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Abstract

In this paper, we present a trajectory-based video retrieval framework us-
ing Dirichlet process mixture models. The main contribution of this frame-
work is four-fold. (1) We apply a Dirichlet process mixture model (DPMM)
to unsupervised trajectory learning. DPMM is a countably infinite mixture
model with its components growing by itself. (2) We employ a time-sensitive
Dirichlet process mixture model (tDPMM) to learn trajectories’ time-series
characteristics. Furthermore, a novel likelihood estimation algorithm for
tDPMM is proposed for the first time. (3) We develop a tDPMM-based prob-
abilistic model matching scheme, which is empirically shown to be more
error-tolerating and is able to deliver higher retrieval accuracy than the peer
methods in the literature. (4) The framework has a nice scalability and adapt-
ability in the sense that when new cluster data are presented, the frame-
work automatically identifies the new cluster information without having to
redo the training. Theoretic analysis and experimental evaluations against
the state-of-the-art methods demonstrate the promise and effectiveness of the
framework.

1 Introduction
For content-based video retrieval, motion information plays an important role in depicting
the semantic contents of videos. In general, there are two types of motion-based video
retrieval techniques: camera-based and object-based. For the camera-based approaches,
camera motions, such as zooming in or out, tilting up or down, panning left or right,
are used for classifying videos of different contents. Optical flow field analysis is often
applied to estimating the camera motion parameters. However, videos with very similar
camera motions may contain different semantic contents. For object-based video retrieval,
object motion analysis and behavior understanding are the key to developing the indexing
structures. Since motion trajectory is an important cue to describe motion features for a
video sequence, recent work in the literature uses object motion trajectories to index mo-
tion events in videos. Therefore, our video retrieval framework takes a trajectory learning
based strategy for video retrieval.
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Object trajectories, which contain rich spatio-temporal and semantic information, are
typically used for representing object motion characteristics. In this case, video retrieval
is achieved by trajectory matching. Little and Gu [1] used the polynomial-based curve
fitting technique to represent spatio-temporal motion information of the object trajectory.
Sahouria [6] applied a wavelet transform using Harr basis to analyze object trajectory’s
spatio-temporal information in multiple scales. Naftel and Khalid [8] showed that the
Discrete Fourier Transform (DFT) coefficient based trajectory representation performed
better than polynomial-based trajectory representation in video retrieval. Bashir et al. [18]
proposed a principal component analysis based approach to model object trajectories in a
video clip. The longest common subsequence (LCS) algorithm [7] is used for measuring
the similarity between two object trajectories by analyzing objects’ coordinates directly.
In [9], trajectories are divided into several small segments each of which is expressed by a
semantic symbol. A distance measure combining the edit distance and the visual distance
is exploited to determine the similarity between two trajectories. However, it is infeasible
for video retrieval to match a query trajectory to all the trajectories in the database for any
real systems.

More recent work on trajectory-based video retrieval focuses on trajectory learning to
construct a better trajectory-based index structure. In this case, the problem of trajectory-
based video retrieval is reduced to how to make trajectory learning more effective and
efficient. In [8], motion trajectories are learned through self-organizing map (SOM) in
the DFT-Coefficient feature space. Johnson and Hogg [2] used two competitive neural
networks connected by a leaky neuron layer to model the probabilistic distribution of
flow vectors and the trajectories. Compared with [2], Hu et al. [3] proposed a fuzzy
self-organizing map (FSOM) that is much simpler in architecture as it takes the whole
trajectory rather than discrete flow vectors as the input. Fu et al. [4] showed that spec-
tral clustering performed well in the case of multi-cluster trajectory learning. Alon et
al. [5] employed a finite mixture of HMM to learn motion data using the Expectation-
Maximization (EM) technique. However, the aforementioned learning methods share a
problem that they lack a competent criterion for estimating the “correct” number of tra-
jectory clusters.

In this paper, we develop a trajectory-based video retrieval framework using the Dirich-
let process mixture model (DPMM)[10, 11, 12, 16, 17]. In the framework, DPMM is first
applied to unsupervised trajectory learning. DPMM is a countably infinite mixture model
whose components can grow by itself, resulting in adaptively determining the number
of trajectory clusters. Based on the number of trajectory clusters learned from DPMM,
we then apply a time-sensitive DPMM (tDPMM) derived from [14] to build the index
of the motion trajectories in the video database, and a probabilistic matching model for
final video retrieval. Especially, a novel likelihood estimation algorithm for tDPMM is
proposed for the first time. The algorithm approximates the likelihood using a collection
of particles generated by Gibbs sampling. We have shown that the retrieval framework is
scalable and adaptive in the sense that when new data are present there is no need to redo
all the learning from the scratch.



2 Dirichlet process mixture model
2.1 Introduction to DPMM
Let Dir(·) denote the Dirichlet density function. If a random probability distribution G
on a continuous random variable η within a probability space A is distributed according
to the Dirichlet process (DP) [10] parameterized by a scaling parameter α and a base
measure G0 over A, the relation
(G(η ∈ A1),G(η ∈ A2), . . . ,G(η ∈ AK))∼ Dir(αG0(A1),αG0(A2), . . . ,αG0(AK)) (1)

holds true for any natural number K and K partitions A into A1:K . By integrating over G,
the joint distribution on a set of random variables η1:N exhibits a clustering effect; the i-th
draw ηi conditioned on the previous i−1 draws η1:i−1 is either equal to one of η1:i−1 or
an independent draw from G0, which can be illustrated in the following formula:

p(ηi|η1:i−1) ∝ αG0(ηi)+
i−1

∑
j=1

δ (ηi−η j) (2)

given by the Pòlya Urn scheme [11]. As a result, η1:N are randomly partitioned by the
Pòlya Urn scheme into clusters in each of which variables have the same value. The
partition structure of the Pòlya Urn scheme is described as follows. Let η∗1:L denote L
unique values in η1:i−1; the next draw from the DP follows the urn distribution:

ηi =
{

η∗l with probability ml
i−1+α

ηnew, ηnew ∼ G0 with probability α
i−1+α

(3)

where ml denotes the number of occurrences of η∗l in η1:i−1 for 1≤ l ≤ L. If the random
variables η1:N are exchangeable, the marginal distribution of ηi given η−i is formulated
as:

p(ηi|η−i) ∝ αG0(ηi)+ ∑
j∈−i

δ (ηi−η j) (4)

where −i denotes the remainder of the indices 1 : N except i.
If the DP is exploited as a nonparametric prior in a hierarchical Bayesian model, we

have the following Dirichlet process mixture model (DPMM):
Yi ∼ p(·|ηi); ηi ∼ G; G∼DP(α,G0). (5)

In what follows, we give a brief introduction to Bayesian inference for DPMM. Given
the exchangeable data instances y1:N , we wish to obtain the posterior p(η1:N |y1:N) where
η1:N denote the state random varibales associated with y1:N . Thus, p(η1:N |y1:N) can be
approximated by sampling from p(ηi|η−i,y1:N) iteratively using the Gibbs sampler for
1≤ i≤ N, and p(ηi|η−i,y1:N) can be calculated as:

p(ηi|η−i,y1:N) ∝ p(yi|ηi)p(ηi|η−i)
∝ αG0(ηi)p(yi|ηi)+ ∑

j∈−i
p(yi|ηi)δ (ηi−η j) (6)

where p(yi|ηi) denotes the likelihood of the data.

2.2 Theoretical analysis of DPMM
Due to the intrinsic properties of the Dirichlet process, DPMM is a mixture model with a
countably infinite number of components. The data associated with the same parameter
value drawn from G will be grouped into a cluster by DPMM. By integrating over the
latent variable G, the joint distribution on the collection of latent state (cluster) variables
η1:N exhibits a clustering effect. After Bayesian inference for DPMM, we obtain the pos-
terior p(η1:N |y1:N) approximated by Gibbs sampling from (6). By maximum a posteriori
(MAP) estimate of the state (cluster) variables from p(η1:N |y1:N), the latent cluster labels
associated with the data y1:N are obtained . The analytical proof of DPMM is given in
[10, 11, 12, 16, 17].



3 Time-sensitive Dirichlet process mixture model
The following is a brief introduction to the time-sensitive Dirichlet process mixture model
(tDPMM)[14]. Consider a time series of observations: (o1, t1), . . . ,(oN , tN) where oi de-
notes the observation associated with the time ti for 1≤ i≤ N, and t1 < .. . < tN . Let s1:N
be the state sequence associated with o1:N . tDPMM introduces a weight function ω(t,c)
which characterizes the influence of the state c at time t given the history s1:i s.t. ti < t.
Consequently, ω(t,c) can be determined as:

ω(t,c) = ∑
{m|tm<t,sm=c}

k(t− tm) (7)

where k(t) = e−λ t if t > 0, and k(t) = 0 otherwise. The parameter λ in k(t) is a positive
constant. In tDPMM, the state transition distribution p(si|s−i) derived from [14] has the
following form:

p(si|s−i) ∝ p(si|s1:i−1)

(
N

∏
n=i+1

p(sn|s1:n−1)

)
(8)

in which s−i denotes the remainder of s1:N except si, and p(si|s1:i−1) is defined as:

p(si|s1:i−1) =





ω(ti,si)
α+∑V

v=1 ω(ti,s∗v)
if si in s1:i−1

α
α+∑V

v=1 ω(ti,s∗v)
otherwise

(9)

where V denotes the number of unique values in s1:i−1, s∗v denotes the v-th unique value
in s1:i−1. Notice that p(si|s−i) (8) is parameterized by Θ = {α,λ}, i.e., p(si|s−i) =
p(si|s−i,Θ). Furthermore, p(si|s−i,o1:N) is formulated as:

p(si|s−i,o1:N) ∝ p(si|s−i)p(oi|o−i :s−i=si) (10)

in which o−i :s−i=si denotes the set of observations except oi, such that their correspond-
ing states s−i are equal to si. Thus, p(s1:N |o1:N) is approximated by sampling from
p(si|s−i,o1:N) iteratively using the Gibbs sampler used in [14]. Besides, a stochastic EM
algorithm proposed in [14] is applied to train a tDPMM for a given observation sequence.
See [14] for the details of the parameter learning procedure for tDPMM.

3.1 Theoretical analysis of tDPMM
tDPMM is capable of modeling long-range interacting dependencies of the latent state
variables corresponding to the observations. Its state transition distribution (8) is gov-
erned by the kernel-weighted Dirichlet process (9). Due to the intrinsic properties of the
Dirichlet process, tDPMM is very suitable for modeling the time-series data with count-
ably infinite states. After Gibbs sampling from (10), we obtain the posterior p(s1:N |o1:N).
By maximum a posteriori (MAP) estimate of the state variables from p(s1:N | o1:N), the
most probable latent state label sequence associated with the observation sequence can be
obtained.

In particular, a novel Gibbs sampling based likelihood estimation algorithm for tDPMM
is proposed in this paper. To the best of our knowledge, this algorithm is new in the lit-
erature. Now we are ready to discuss the determination of the likelihood probability of
the retrieval model given a particular observation sequence and the tDPMM parameters
Θ = {α,λ} in Section 3.2.

3.2 Likelihood estimation for tDPMM
Given a particular observation sequence O = o1:N , the likelihood conditioned on the
learned model parameters Θ = {α,λ} can be computed as:



Figure 1: The architecture of the video retrieval framework.

p(O|Θ) =
∫

p(O|S)p(S|Θ)dS (11)

where S = s1:N is the latent state sequence corresponding to O = o1:N . However, the com-
putational cost of (11) is expensive due to integrating over S. To simplify the computation,
p(S|Θ) is approximated by sampling from p(si|s−i) = p(si|s−i,Θ) (8) through the Gibbs
sampler. In addition, we assume that O = o1:N are mutually independent given S = s1:N .
As a result, the likelihood p(O|Θ) can be efficiently computed as:

p(O|Θ) = Ep(S|Θ)[p(O|S)]≈ 1
Ml

∑Ml
m=1 p(O|S(m))

= 1
Ml

∑Ml
m=1 p(o1:N |s(m)

1:N) = 1
Ml

∑Ml
m=1

(
∏N

n=1 p(on|s(m)
n )

) (12)

where S(m) = s(m)
1:N denotes a collection of particles sampled from (8) at the m-th Gibbs

sampling iterative step, and Ml denotes the total number of Gibbs sampling iterative steps
after a sufficient burn-in period.

4 The framework for video retrieval
4.1 Overview of the framework
The video retrieval framework includes two stages: 1) the off-line learning; 2) the on-
line retrieval. In the off-line learning stage, object trajectories are first extracted using
an existing method [9]. Following the observation in [8], we employ DFT coefficients
to represent the object trajectories. Then the extracted object trajectories are clustered
into several clusters by learning the full trajectories using DPMM in the DFT-coefficient
feature space. In order to precisely characterize time-varying information of a trajectory,
it is necessary to segment a trajectory into several smaller units called subtrajectories.
We also employ a DFT-coefficient feature vector to represent a subtrajectory. Thus, a
trajectory is represented as a DFT-coefficient sequence. A tDPMM is subsequently trained
for each cluster of trajectories using their corresponding DFT-coefficient sequences. The
cluster information is obtained automatically from the DPMM learning. As a result, each
trajectory cluster has its own tDPMM reflecting its unique spatio-temporal characteristics.
The retrieval model consists of the tDPMMs of all the trajectory clusters. In the on-
line retrieval stage, we take a sketch-based scheme to represent a user-specified query.
Users can retrieve trajectories of any shape they expect. A probabilistic retrieval model is



developed such that the retrieved videos are ranked by their likelihoods. The architecture
of the proposed framework is shown in Figure 1.

4.2 Trajectory feature extraction
Following the observation [8] that the DFT-coefficient feature is more robust than the orig-
inal point-based feature, DFT coefficients are used to represent the object trajectories in
our framework. In order to precisely characterize time-varying information of a trajectory,
it is necessary to segment a trajectory into atomic subtrajectories. A common approach
(such as [18]) to segmenting trajectories into subtrajectories is based on the variance of
curve curvature. However, the curvature-based methods are sensitive to noise. Sun et al.
[13] propose a trajectory segmentation algorithm based on spectral clustering (SC). This
method assumes that the number of clusters needs to be specified in advance as it uses
K-means clustering in the last step of SC. In order to tackle this problem, we propose an
improved version of SC (referred here as ISC), which replaces K-means clustering with
the non-parametric adaptive mean-shift clustering algorithm (referred as AMC) [19]. As
a result, ISC is capable of identifying the number of subtrajectories automatically. After
the trajectory segmentation, the DFT-coefficient feature [8] is extracted for each subtra-
jectory, leading to an E-dimensional DFT-coefficient representation so (E = 18 in the
experiments). As a result, the trajectory is represented by a DFT-coefficient sequence
SO = (soi)

T
i=1, where soi corresponds to the i-th word’s DFT-coefficient representation

for 1≤ i≤ T (T denotes the number of subtrajectories).

4.3 Model matching and growing
After the query is represented by a feature vector in the DFT-coefficient feature space,
model matching is performed via the following posterior probability distribution:

p(Θ j|R) ∝ p(R|Θ j)p(Θ j) (13)

where R denotes the querying trajectory’s observation sequence associated with SO re-
ferred in Section 4.2, Θ j = {α j,λ j} represents the tDPMM’s parameters of the j-th tra-
jectory cluster, and p(R|Θ j) denotes the likelihood function of the j-th trajectory cluster
defined in (12). The matching results are ranked according to the posterior distribution
(13).

For model growing, if new videos are added to an indexed video database based on
this framework, the new trajectory clusters may be automatically determined based on the
following formula derived from (6):

p(ηi|η−i,y1:N+A) = p(ηi|η1:N = W1:N ,ηnew
−i ,y1:N+A)

∝ p(yi|ηi)p(ηi|η1:N = W1:N ,ηnew
−i ) (14)

where N +1≤ i≤ N +A, A denotes the number of newly added data instances, yN+1:N+A
represents A newly added data instances, W1:N denotes the known state sequence associ-
ated with y1:N , p(yi|ηi) denotes the likelihood of the data , ηnew

−i represents the remainder
of ηN+1:N+A except ηi. In this way, we only need to draw ηN+1:N+A from (14) itera-
tively using the Gibbs sampler without needing to learn the whole dataset y1:N+A over
again. Subsequently, for each new trajectory cluster, we may train a tDPMM using SO
referred in Section 4.2. The tDPMMs of the newly-generated trajectory clusters may then
be added to the original retrieval model already developed under this framework in the
indexed database. This model growing capability eliminates the need to redo the training



or indexing for a video database which is typical for many existing retrieval models in the
literature, when the database is updated with new data, resulting in a nice scalability and
adaptability of this framework.

5 Experiments
In order to evaluate the performance of the proposed framework, three datasets are used
in the experiments. They are the synthetic trajectory dataset1, the hand sign dataset from
the Australian Sign Language (ASL) collection2, and the traffic scene dataset collected
for a real traffic scene. The first two datasets are labeled while the last one is not. The
synthetic trajectory dataset contains 2500 trajectories from fifty clusters, each of which
consists of 50 trajectories of complex shapes. For the ASL dataset, there are in total
35 clusters of hand sign words. Each cluster consists of 20 trajectories generated from
different signers’ hand movement. 1500 real object trajectories collected in a real traffic
scene constitute the third dataset. Object trajectories are learned by DPMM in the DFT-
coefficient feature space, and then grouped automatically into several clusters based on
the sampling scheme (6). The scaling parameter α of DPMM is initialized as 0.2. The
base measure G0 of DPMM is assumed to be a Dirichlet distribution in the experiments.
p(·|ηi) in (5) is chosen as a multinomial distribution, which is conjugate to the Dirichlet
distribution G0. To learn a tDPMM for each trajectory cluster, given the i-th trajectory
cluster, the model parameters Θi = {αi,λi} of tDPMM are learned via the stochastic
EM algorithm described in Section 3 in the feature subspace represented by SO referred
in Section 4.2. Ml in (12) is set as 200. For the model matching in Section 4.3, each
trajectory cluster is assumed to have the same prior probability.

Three experiments are conducted to demonstrate the claimed contributions of the pro-
posed framework. The first experiment is to compare the trajectory learning accuracy of
our framework with those of the other learning techniques. The second experiment is to
evaluate the retrieval accuracy of our framework against two existing methods from the
recent literature. The last experiment is to test the adaptive growing capability of our
framework.

The first experiment aims to compare the learning accuracy of DPMM with those
of four classic unsupervised learning algorithms in the literature: Mean Shift clustering
[15], Spectral clustering [4], self-organizing map (SOM) [3], and K-Means. The synthetic
dataset, which is the most complicated of the three datasets used in the experiments, is
used to evaluate the learning accuracies of the aforementioned five algorithms. The pa-
rameter settings of the four other learning algorithms are obtained from the experiments.
The learning accuracy L is defined as: L = 1

N ∑N
i=1

ni
Ni

, where N denotes the learned
number of clusters, Ni represents the number of the samples belonging to the i-th learned
cluster and ni is the number of the samples whose true cluster labels have the highest pro-
portion in the i-th learned cluster. The final clustering accuracies of these five algorithms
are shown in Figure 2(a) . From Figure 2(a), it is clear that DPMM’s learning accuracy is
always higher than those of the four comparing methods. Furthermore, DPMM’s learn-
ing accuracy tends to be more stable than those of the four comparing methods when the
number of trajectory clusters increases.

1http://mmplab.eed.yzu.edu.tw/trajectory/trajectory.rar
2http://kdd.ics.uci.edu/databases/auslan2/auslan.data.html
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Figure 3: Retrieval results using the synthetic dataset.

In the second experiment, we aim to compare the proposed retrieval framework with
two other trajectory-based video retrieval frameworks [9, 18] in the recent literature (re-
ferred here as PCA and String+Poly, respectively) using the synthetic trajectory dataset.
The average recall-precision curves are shown in Figure 2(b). Clearly, the area underneath
the precision-recall curve for our framework is larger than those for the two comparing
methods (over 11.2% and 4.9% improvements, respectively). This fact indicates that our
framework has a higher retrieval accuracy than the comparing methods.

To showcase the performance of our framework, two retrieval examples on the syn-
thetic trajectory dataset are given in Figures 3(a)-(f). One is the full trajectory retrieval
example shown in Figures 3(a)-(c), and the other is the partial trajectory retrieval example
shown in Figures 3 (d)-(e). In Figure 3(a), a pentacle-like full trajectory is drawn man-
ually as a query. The matching results are shown in Figure 3(b), where there are twelve
figures ranked from left to right for each row and from up to down for each column. Each
of these figures represents a trajectory cluster. We call the trajectories shown in those
figures template trajectories, each of which is the one with the maximum likelihood to
its own trajectory cluster tDPMM. The final retrieval results for this query are shown in
Figure 3(c). In Figure 3(d), an “α”-like partial trajectory is queried. Twelve ranked tra-
jectory clusters are returned in Figure 3(e). The final retrieval results are shown in Figure
3(f), which indicates that the framework has the capability of partial trajectory matching
in response to partial querying in video retrieval due to the fact that tDPMM precisely
captures the local details of a trajectory.



1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

Ground truth number of newly added classes

A
ve

ra
g

e 
fo

u
n

d
 n

u
m

b
er

 o
f 

n
ew

ly
 a

d
d

ed
 c

la
ss

es

 

 
Reference line
Learning curve

Figure 4: Learning results on model growing using the synthetic dataset.

We also give another example on the traffic scene dataset to demonstrate the promise
and the power of the framework. Figure 5(a) shows a query posed to the video database
of the traffic scene dataset indexed by the framework to indicate that the user intends to
retrieve all the traffic video similar to the scene of a vehicle moving down and then turning
right. Thus, a down-left trajectory is drawn in Figure 5(a). Figure 5(b) displays all the
retrieved video shots that match what the user intends to retrieve. Note that though this
example only shows a retrieval with a 2D query trajectory, this framework is valid for any
shaped 3D trajectories. Since we do not have the ground truth for the real traffic scene
video dataset, we are unable to report more systematic evaluations for this dataset.

The last experiment is to evaluate the performance of our framework on model grow-
ing using the synthetic dataset. In this experiment, we test how good the model growing
capability of the framework is on identifying the correct number of newly added trajec-
tory clusters given several already learned trajectory clusters. Specifically, we took five
different numbers of newly added clusters (1, 3, 5, 7, and 9). In each case, we randomly
selected data with that number of new clusters from the database ten different times, and
then observed the discovered number of new clusters by the framework in each time. Fig-
ure 4 reports the average identified number of new clusters over the ten times for all the
five cases vs. the ground truth number where the dashed line indicates the perfect match.
We see that the fluctuant range of the learning curve along the perfect match line is small.
In other words, the framework identifies new clusters with a very small error.

6 Conclusion
In this paper, we have proposed a trajectory-based video retrieval framework using Dirich-
let process mixture models. In the framework, a Dirichlet process mixture model (DPMM)
has been applied to unsupervised trajectory learning. DPMM is a countably infinite mix-
ture probabilistic model whose components can grow by itself. Moreover, a time-sensitive
Dirichlet process mixture model (tDPMM) has been used to capture the time-series char-
acteristics of trajectories in the framework. In particular, a novel likelihood estimation
algorithm for tDPMM is proposed for the first time. Furthermore, the framework has a
nice scalability and adaptability in the sense that when new cluster data are presented, the
framework automatically identifies the new cluster information without having to redo
the training. A probabilistic model matching scheme based on tDPMM is adopted by the
framework. The scheme is able to deliver higher retrieval accuracy than the peer methods
in the literature. Experimental results have demonstrated the superiority of the proposed



Figure 5: Retrieval results using the traffic scene dataset.

framework to the peer methods in the recent literature.
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