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Abstract

3D reconstruction with missing data has been a challenging computer vision
task since the late 90s. This paper proposes a novel metric reconstruction al-
gorithm dealing with the missing data problem. The algorithm is the adaption
of the Fast Alternation method published by us in CAIP2007. We concentrate
on metric instead of affine reconstruction because the quality of metric recon-
struction is significantly better as it is demonstrated in this study. The solution
is an alternation which consists of several substeps. All of these substeps are
optimal with respect to the parameters that are being optimized. It is proved
that the proposed algorithm converges to a local minimum. The solutions
to the optimization subproblems in our approach are given by closed-form
formulas, therefore the proposed method is relatively fast.

1 Introduction

Recovering scene geometry and camera motion has been attracting attention of the com-
puter vision community since the late 80s. The classical factorization method for the full
case — when the so-called measurement matrix is factorized into 3D motion and structure
matrices — was developed by Tomasi and Kanade[12] in 1992. The weak-perspective ex-
tension was published by Weinshall and Kanade [13]. The factorization was extended to
the paraperspective [8] case as well as to the real perspective [11] one.

The problem of missing data has already been addressed by Tomasi and Kanade [12].
They proposed a naive approach which transformed the missing data problem to the full
matrix factorization by estimating the missing entries. Shum et al. [10] proposed a method
to reconstruct the objects from range images. Their method is successfully applied to the
Structure from Motion (SfM) problem by Buchanan et al. [3].

The mainstream idea to the factorization with missing data is to factorize the rank 4
measurement matrix into affine structure and motion matrices which are of size 4. (The
Shum-method [10, 3] also computes affine structure and motion matrices, but the size of
those matrices is 3.) This can be done by the mathematical method called Principal Com-
ponent Analysis with Missing Data (PCAMD). This problem has been already addressed
by mathematicians since the middle 70s [9]. These methods can be applied directly to the
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SfM problem as it is written in [3]. Hartley & Schaffalitzky [6] proposed the PowerFac-
torization method which is based on the Power method. Power method is an iteration to
compute the dominant n-dimensional subspace of a given matrix. Buchanan & Fitzgib-
bon [4] handled the problem as an alternation consisting of two nonlinear iterations to be
solved. They suggested using the Damped-Newton method with line search to compute
the optimal structure and motion matrices.

We consider the weak-perspective factorization in this paper. The weak-perspective
methods can be used for perspective reconstruction if the elements of the measurement
matrix are multiplied with the corresponding projective depths as it is proposed by Sturm
et al. [11], or the perspective camera parameters can be estimated from weak-perspective
camera reconstruction. Finally, the results can be refined by the well-known bundle ad-
justment method [2].

2 The factorization problem

Given P feature points of a rigid object tracked across F frames, the goal of the recon-
struction is to recover the structure of the object as well as the 3D motion of the camera.

If the weak-perspective camera model is applied, a feature point can be written as
Wrp = qrRsS,+1s, where S, is the 3D vector of the p™ point of the object to be recon-
structed, Ry is the first two rows of the 3D orientation matrix of the £ camera, ¢ 1 1is the
nonzero scale factor of the same camera. ¢/ is the 2D offset vector of the origin while wy,
is a 2D vector containing the position of the p* point in the f* frame.

If all feature points are collected, the StM problem can be written in matrix form:

W=t} . (1)

where the measurement matrix W consists of the trajectories of the feature points.
Matrix M = [M;,M,,...,Mr]" is called motion matrix, while S = [S},S5, ..., Sp] structure
matrix. Motion submatrix My is written as My = g¢Ry. Therefore the following equation
can be written: MfIM = qj%l Vf. We call this the weak-perspective motion constraint in
the rest of this paper.

The goal of this study is to compute structure and motion matrices from the measure-
ment matrix considering the motion constraint. Our solution is an alternation one that
minimize the following reprojection error:

s 2
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subject to M fM} = qj%l , V1. ||-||r denotes the Frobenius norm of the error matrix,

A ® B denotes the Hadamard product of matrices A and B'. H is the mask matrix: if
hpi—1,;j = hy; j = 1 then the j" feature point is seen in the i frame. It that is not seen,
hoi—1,j = haij =0.
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Proposed method: Fast Alternation with Missing Data
(FAMD)

As it is discussed in the introduction, the published SfM methods dealing with missing or
uncertain data give affine and not metric results. We propose a novel method which is the
modification of the Fast Alternation (FA) method published by us [5] in 2007. The FA
algorithm does not deal with the missing data problem. With our modification, the case
of missing data is handled as well.

Algorithm 1 Summary of FAMD algorithm
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The proposed method is a down-hill alternation to minimize the reprojection error
defined in Eq. 2. Each cycle is divided into the following main steps:

1.

Parameter Initialization: The reprojection error is based on the difference between
the feature points and the reprojected points. For the M-step (which is described
later) 3D vectors are needed. For this reason, the measurement matrix W and mo-
tion matrix M should be completed.

The completion should be carried out for the motion matrix M and the offset vector
t. The motion submatrix My can easily be completed: My consists of two rows
which are (quasi) orthogonal. It is completed by the third row which should be
orthogonal to the first two row-vectors. Its length is chosen to be the average length
of the other two vectors. This third row is denoted by m; 3). The offset vector #;
is simply completed by a zero element. (The third element of the offset vector is
denoted by 7(; 3) in the rest of this paper.)

The corresponding measurement matrix Wy is completed by applying the projection
of the corresponding part. Therefore the third row of Wy is computed as Wy 3) =
my.3)S-

S-step: Tha aim of this step is to determine the structure matrix optimally. The

elements of the structure matrix can be arbitrary. This is a linear problem w.r.t.
the structure matrix which can be solved by the pseudoinverse operator both for



full factorization and for factorization with missing data. The solution is described
in [10] in detail.

3. M-step. The goal of the M-step is to improve the motion matrix My while the
other matrices and vectors are fixed. It is trivial that the value of M; is independent
from that of M; if i # j. Therefore, the task is to minimize the following error for
all f: [|Wy —MpS||, where matrices Wy and S are fixed. The problem should be
solved considering the M?M = q%l constraint. This is a 3D point set registration
problem where the 3D points are contained by the columns of matrices Wy and S.
The solution to the registration problem is given in the appendix.

4. t-step. The optimal offset #; is also given in the appendix: it is the difference
between the centers of gravity of the vectors contained by matrices S, and Wr.

5. Line Search. Numerous iteration steps might be needed if the surface of the re-
projection error is very flat. To speed up the algorithm, a line search method can
be inserted. We have applied a line search method based on the stronge Wolfe-
conditions using cubic interpolation.

6. Completion Step. After each iteration, the third rows of the measurement subma-
trices (Wy-s) should be completed. This is carried out by the following equation:

W(f’3) = M(f.3)S+t(f’3) . [1,...,1].

The proposed method guarantees that a local optimum will be reached because each
step of the algorithm descreases the reprojection error. The algorithm runs until the dif-
ference between the subsequent error values drops below a given limit €.

4 Parameter initialization

The proposed method requires initial values of the matrices. The key idea of our initial-
ization is that the factorization with missing data can be divided into full matrix factoriza-
tions.

- -
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Figure 1: Problem divided into factorization of submatrices.
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The Tomasi-Kanade factorization needs at least 3 frames to compute structure and
motion. Therefore, the selected feature points should be visible in frames 1, 2, and 3 as
it is visualized in the left image of Fig. 1. Then the Tomasi-Kanade factorization [12]
with the extension of Weinshall and Kanade [13] is run with the selected feature points.
Motion and structure matrices (M) and S;) and offset vector #; are obtained by full matrix
factorization.

Then another full matrix is formed with the feature points visible in frames 2, 3, and 4.
By applying the factorization, motion matrix M,, structure matrix S», and offset vector #,
are computed. Matrices M3, S3, and offset vector #3 are computed from the points visible



in frames 3,4, and 5. This process is repeated until the matrices Mg_j, Sp_», and tp_, are
obtained. The steps of parameter initialization are summarized in Algorithm 2.

Algorithm 2 Parameter Initialization

W) « Feature points common in frames 1,2,3.

M,,S1,t; +— TomasiKanade(W))

fori=2to (F—2)do
W; «+— Common feature points of frames i,i + 1,i + 2.
M;, S;, t; < TomasiKanade(W;)
Put points common in § and S; into S” and S}, respectively.
Register matrices S’ and S/ to each other.
Update matrices M and S and offset vector ¢

end for

The key problem of the initialization is to register the results of the new factorization
to the already registered ones which are contained by matrices M, S, and vector t. New
factorization in the i’ cycle can be written as

Wil { o ] . )

The feature points common in S and S; are denoted by §', and S/, respectively. These point
sets should be registered to each other by the method described in the appendix. If s/ and
s;j denote the j* elements of the point sets, the registration is given by

S qR(s;j —072)+o0y, )

where ¢, R, 01, and o; are the scale factor, rotation matrix, center of gravity of the first,
and that of the second point set, respectively. The original structure matrix S; should be
transformed as well. After transformation, the new points are added to the point set S.

The last two rows of M; and #; are inserted at the end of M, and ¢, respectively, if the
matrices M; and ¢; are transformed as follows:

M; — MR, (5)
ti— ti+Moy— éMl‘RTOL (6)

S Tests on synthesized data

Several experiments with synthetic data have been carried out to study the properties of
the proposed method. In this section, our FAMD method is compared with the follow-
ing methods: (i) PowFac: PowerFactorization [6] of Hartley&Schaffalitzky. (ii) Shum-
Bucha: The method of Shum et al. [10] applied to the SfM problem as it is written in [3].
(iii) DamNew: Damped Newton by Buchanan&Fitzgibbon [4].

In order to compare the affine methods listed above to the proposed alternation algo-
rithm, the computation of the metric 3D structure is carried out by the classical weak-
perspective Tomasi-Kanade factorization. The 2F x 4 affine motion is multiplied by
the 4 x P affine structure matrix, and a full measurement matrix is obtained. Then this



Figure 2: Structure of mask matrix.

measurement matrix is factorized by Tomasi-Kanade algorithm [12] with the Weinshall-
Kanade [13] extension.

The rival algorithms were coded in Matlab by Buchanan and they can be downloaded
from the author’s homepage 2. The FAMD algorithm was also implemented in Matlab.
The methods were run under Octave® on an Intel P4 2.4 GHz PC with 512 MByte memory.

5.1 Generation of the measurement matrix

The input (measurement matrix) is composed of 2D trajectories. These trajectories are
generated in the following way: (i) Random three-dimensional coordinates are generated
by a zero-mean Gaussian random number generator with variance o3p. (ii) The gener-
ated 3D points are rotated by random angles. (iii) The rotated points are projected onto
the image plane using weak perspective projection. (iv) Noise is added to the projected
coordinates. It is generated by a zero-mean Gaussian random number generator as well.
Its variance is set to opp. (v) Finally, the measurement matrix W is composed with the
projected points. (vi) Motion and structure parameters are initialized as it is described in
Sec. 4. For each test case, 40 measurement matrices are generated and the rival recon-
stuction methods are executed 40 times. The results shown in this section is calculated as
the average of the 40 executions.

5.2 Generation of the mask matrix

The mask generator algorithm has three parameters: (i) P: Number of the visible points
in each frame, (ii) F': Number of frames, (iii) O: Offset between the neighboring frames.
For the tests, offset was set to O = 2.

The structure of the generated mask is illustrated in Fig. 2. The missing data ratio in
the matrix is calculated by the following equation: mdy, = 100PF / (F (P+ (F —5) O)).

General remarks. The tests show that the FAMD algorithm outperforms the other
methods in every test case. Only the Shum-Buchanan algorithm [10, 4] can be up to
the proposed algorithm in the second test (Fig. 4). Examining the time demand, it is
clear that the fastest algorithm is the Damped-Newton [4], the second one is the proposed
FAMD algorithm. Note that the measured time does not contain the time required for
initialization.

Zhttp://www.robots.ox.ac.uk/~amb/
3Qctave is a Matlab compatible interpreter. See www.octave.org
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Figure 3: Reconstruction error and time demand w.r.t. 2D noise.
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Figure 4: Reconstruction error and time demand w.r.t. number of points.
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Error versus noise (Figure 3) The methods are run with gradually increasing noise
level. The reconstruction error increases approximately in a linear way for all the meth-
ods. The test sequence consists of 10 frames, and P = 10 was set. The missing data ratio
is 50%. The noise level is calculated as 10002p/03p.

The test indicates that the proposed FAMD significantly outpowers the rival algo-
rithms. The FAMD algorithm is fast, only the Damped Newton is faster.

Error versus number of points (Fig. 4) P increases from 10 to 30. (The missing data
rate decreases from 50% to 25%.) The noise level is 5%, and the sequence consists of 10
frames. The FAMD yields better results than the other algorithms, except for 3 test cases
when the Shum-Buchanan [10, 4] algorithm achieves the better reconstruction. The other
two algorithms yield significantly more error.

Error versus number of frames (Fig. 5). F increases from 10 to 50. The missing
data ratio increases from 50% to 90%.The noise level was 5%, and P = 10 was set. In each
test case, the most efficient algorithm was the proposed one. The plot shows that the error
increases with the number of frames because the missing data ratio is high when the test
sequence consists of many frames. It is important to note that the Shum-Buchanan [10,
3] and PowerFactorization [6] methods are very slow, their time demand seems to be a
nonlinear function of the number of frames while the running time of the Damped Newton
and the FAMD algorithms are approximately linear w.r.t. frame number.

Figure 6: Original images and corresponding masks of ‘Cat’ sequence.

6 Test on real data

We have tested the proposed FAMD algorithm on our ‘Cat’ sequence. The cat statuette
was rotated on a table and 92 photos were taken by a commercial digital camera. The
regions of the statuette in the images were automatically determined as it is demonstrated
in fig 6.

Feature points were detected using the widely used KLT algorithm, and the points
were tracked by correlation-based template matching method. The measurement matrix
of the sequence consists of 2290 points and 92 frames. The missing data ratio is 82%.

The 3D reconstructed points are visualized on Fig. 7. The running time of the FAMD
algorithm was 3914 sec. The reconstruction is made by DampedNewton, PowerFactor-
ization, Shum-Buchanan algorithms as well. The time demand was 29656, 48540, and
41840 seconds, respectively. The FAMD algorithm is significantly faster in the real test
case than the rival ones. The test on synthesized data have suggested that DampedNew-
ton is the fastest algorithm. This is not true for the real test, because the main iteration in



DampedNewton has a matrix inversion and the size of this matrix is 16PF x 16PF where
P is the number of points, F that of frames. Thus, the algorithm can be very slow when
F and/or P are high which is tipical when real object reconstruction is carried out.

Figure 7: Reconstructed 3D points of ‘Cat’ sequence.

7 Conclusion

We have presented a novel algorithm to compute metric reconstruction from measurement
matrix containing the moving feature points of a rigid object. Elements are allowed to be
missing in the matrix. Our tests imply that the proposed algorithm gives better results than
the previously published ones. The novel algorithm is relatively fast because the steps of
the proposed alternation method solve subproblems for which closed-form solutions exist.
Acknowledgement. The authors would like to express his gratitude to Prof. Dmitry
Chetverikov for his council and for providing his mask generator algorithm.
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A Optimal 3D point set registration

Given two point sets, both containing N points, the goal is to minimize the registration er-
ror with respect to the rotation matrix R, scale factor s and 3D offset vector o. The registra-
tion error is defined by the following formula: YV, (a; — (sRb; +0))" (a; — (sRb; + 0)),
where a; and b; are the ' 3D vector of the first and second point set, respectively. Horn et
al. [7] proved that the registration error defined above is minimized optimally with respect
to the offset vector if o is the difference between the centers of gravity of the two 3D point
sets.

Let us subtract the center of gravity from the datasets. Let denote the i’ points of the
new point sets by a} and b/, respectively. The registration error is modified as follows:
YN, (d)—sRb))" () — sRb)) Tt can be shown by calculating the derivative of the error
function with respect to R that the minimization problem is equivalent to maximizing the

N | saT Rb/ expression w.r.t. R. Scale vector does not influence the maximum, thus the
problem is to maximize YN, a/ Rb!. Arun et al. [1] proved that if the SVD of matrix
N, bialT is UDVT, then the optimal solution is R = VTU.

Let us rotate the second point set by R. The rotated vectors are denoted by double
prime: b} = Rb|. The registration error becomes Y| (@} — sb/)" (a; — sb}'). The scale
factor can be calculated optimally by differentiating the registration error with rescpect to
the scale: Y | (sb!7 b/ — a/Tb!) = 0 The solution is given by the following formula:s =

N, dTp! /YN | b”Tb”;. Note that Horn et al. [7] also proposed a formula to compute the
scale, but their solution is not optimal.



