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Abstract

We present in this paper an algorithm inspired by the human visual sys-
tem to reconstruct images from irregularly placed samples. This algorithm
is based on linear spline approximations with control points on a hexagonal
grid. Several spline approximations are computed for different transforma-
tions of the control point grid (e.g. translations and rotations). These approx-
imations are then merged together after compensation of the transformations,
yielding a high-quality invariant image reconstruction. Evaluations show that
the use of hexagonal grids and of the “invariance by integration” principle
improves reconstruction quality.

1 Introduction
Non uniform sampling is a problem occurring in some imaging fields like e.g. geophysics,
medical imaging or motion estimation. An overview of existing methods to handle this
problem is given in [7]. We present in this paper a new algorithm inspired by the human
visual system which reconstructs images from few irregularly placed pixels, based on
spline interpolation. It gives a continuous scene representation, which can be used to
compute images of any resolution at any position or rotation. The obtained representation
is invariant to chosen image transformations, like rotations, translations, scalings, etc.

In the human visual system, images are sampled by irregularly placed sensors, with
a higher density of photoreceptors in the fovea than in the eye periphery. Saccades are
executed when viewing a scene. Between saccades, the eyes perform fixational eye move-
ments [4]. Because of these eye movements and of the varying photoreceptor density, our
eyes measure light intensity at irregular positions in the scene. Yet, we perceive a contin-
uous, aliasing–free image. Thus, the human visual system performs image reconstruction
from irregular samples. People are also able to recognise patterns independently of their
position and orientation, implying that this reconstruction is invariant to image transfor-
mations. Our work uses principles of the human visual system for image reconstruction.

In the primary visual cortex, complex cells achieve translation invariant feature de-
tection by combining the responses of several simple cells which detect the same feature,
each at different positions in the receptive field [2]. Invariance is hence obtained by inte-
grating simple responses over several transformations (in this case translations). The role
of fixational eye movements is largely unknown [4]. One hypothesis based on this “invari-
ance by integration principle” was proposed in [3]: microsaccades implement invariant
image reconstruction by integrating simple image reconstructions over a large number of
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sensor positions. For each position, a representation of the scene is reconstructed. All
representations are merged together after motion compensation, yielding a high quality,
invariant image. This “invariance by integration” principle was emulated in [3]: several
linear spline approximations were estimated from irregularly placed samples for differ-
ent grids of control points. These were merged after compensating the transformations
between grids, producing a higher quality image than each single spline approximation.

Here, we develop further this algorithm by introducing hexagonal grids, which mim-
ick the cell organisation in the fovea. For this, we use linear splines with control points
placed on a hexagonal grid. In addition to copying nature, hexagonal grids have several
advantages over square grids. More points can be fitted in 2D areas. Each grid point
has 6 equidistant neighbours instead of 4 for square grids. Hexagonal grids have more
symmetries than square grids. Further advantages of hexagonal grids can be found in [5].

We present in this paper a bio–inspired algorithm for invariant image reconstruction
from irregular samples. The novelty of this algorithm is the use of linear B-splines with
control points on hexagonal grids. Invariant image reconstruction is obtained by inte-
grating over transformations of the control point grids (translations, rotations, etc.) as in
[3]. We compare the performance of this new algorithm with the algorithm in [3] which
uses square grids and with normalised convolution [1] which is a state of the art algo-
rithm for reconstruction from irregularly placed samples. These comparisons allow us to
measure the benefits of hexagonal grids and of the bio–inspired invariance framework,
respectively. After an introduction to hexagonal grids in section 2, we present splines on
hexagonal grids in section 3. The reconstruction algorithm is then explained in section 4.
Last, the reconstruction results and conclusions are given in sections 5 and 6, respectively.

2 Hexagonal grids
We use the hexagonal grid shown in fig. 1 (a). When the distance between two grid points
is d, the distance between two rows is

√
3

2 d ' 0.866d. Hence, roughly 15% more grid
points can be fitted in a rectangular area than with a square grid. To describe a point
on a hexagonal grid, the oblique coordinate system (u,v) will be used instead of the
usual (x,y) orthogonal coordinate system, because it represents all three grid directions
more easily (see fig. 1 (b)). The coordinates of point P = uu + vv = xx + yy in the two
coordinate systems are related by:{

u = x+ 1√
3

y
v = 2√

3
y

and

{
x = u− 1

2 v
y =

√
3

2 v
(1)

To store data sampled on hexagonal grids, the simple framework of [6] will be used: the
hexagonal grid is approximated by a brickwall, so the data can be stored as usual in a 2D
array (see fig. 1 (c)). It is an efficient storage method but it must be kept in mind that
every second row is translated by d/2, which makes processing more difficult.

3 Splines on hexagonal grids
Splines are often used to reconstruct continuous image signals, e.g. for interpolation or
resampling. The B-spline framework was extended to hexagonal grids in [9, 8]: the
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Figure 1: Hexagonal grid: (a) properties, (b) oblique coordinate system and (c) brickwall
approximation for storage.

B-spline of degree 0 is the indicator function of the Voronoi cell of the hexagonal grid
(i.e. the hexagonal tile). The B-spline of degree n is built by successive convolutions:

β
n(u,v) =

(β n−1 ∗β 0)(u,v)
Ω

(n≥ 1) (2)

where Ω is the surface area of the Voronoi cell. Ω =
√

3
2 d2, where d is the distance

between two grid points. We shall base our algorithm on this spline family.
Here, we fit a linear spline to irregularly placed samples. This requires the analytic

form of the linear B-spline, which was not given in [9, 8]. We derived it with eq. (2) and
n = 1. This leads to the tiling shown in fig. 2. For the central 6 rhombi, the B-spline
function is:

β
1(u,v) = 1− 2

3
a(u,v)+b(u,v)

d
+

1
3

a(u,v)b(u,v)
d2 (3)

For the outer 6 rhombi, the B-spline function is:

β
1(u,v) =

1
3

(
2− a(u,v)

d

)(
2− b(u,v)

d

)
(4)

For both equations, variables a(u,v) and b(u,v) are given in fig. 2. Outside these 12
rhombi, the linear B-spline is equal to 0.

Linear spline approximations on hexagonal grids are obtained with:

s(u,v) = ∑
k∈Z

c(k)β 1(u−uk,v− vk) (5)

where (uk,vk) are the oblique coordinates of control point k. c(k) is the coefficient of
control point k. When the linear B-spline support is taken into account, the image plane is
tiled with 3 types of rhombus shown in white, light grey and dark grey in fig. 3 (a). This
tiling is identical to the tiling for the analytic form of the B-splines in fig. 2. Each pixel is
influenced by the 4 nearest control points as shown for the light grey rhombus in fig. 3 (a).
For the other two rhombus types, the 4 control points are obtained by rotation. As a
result, the sum defining the spline in eq. (5) has only 4 non zero terms for linear splines
on hexagonal grids. For comparison, the tiling resulting from linear spline approximation
on a square grid is given in fig. 3 (b): the plane is tiled with identical squares. Like for
hexagonal grids, each point in the plane is influenced by the 4 nearest control points:
the corners of the square tile. Figs. 3 (a) and (b) show that the tiling obtained with the
hexagonal grid is finer and more direction selective than with the square grid.
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Figure 2: Tiling for the analytic form of the linear B-spline for hexagonal grids. The
inequalities used to detect each rhombus are given in the grey rectangles. For the central
6 rhombi, a and b should be used with eq. 3. For the outer 6 rhombi, a and b should be
used with eq. 4. The colour coding of the rhombi reflects a and b.

The analytic form of the linear spline approximation is obtained from eq. (5) and the
B-spline formula in eqs. (3) and (4). For the configuration of control points shown in
fig. 3 (a), this gives after simplifications:

s(u,v) = c1 +
a(u,v)

3d
(c4 + c2−2c1)+

b(u,v)
3d

(c3 + c2−2c1)

+
a(u,v)b(u,v)

3d2 (c1 + c2− c3− c4) (6)

where ci is the spline coefficient of control point Ci. d is the distance between control
points. This formula can be used for the three rhombus types by rotating the control
points, with a(u,v) and b(u,v) given in fig. 2. The spline approximation is a continuous
signal. It can hence be used to estimate pixels placed on a square or on a hexagonal grid,
regardless of the grid formed by the control points.

4 Image reconstruction from irregularly placed samples
The reconstruction algorithm is based on [3]: several linear spline approximations, each
for a different transformation of the control point grid, are merged to obtain an invariant
image. We improve this using linear splines with control points on a hexagonal grid.
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Figure 3: Image plane tiling for the linear spline approximation for (a) hexagonal grids
and (b) square grids. The tiling is shown for the central hexagon and square (drawn in
thick lines). The supports and control points of all used B-splines are shown with thin
lines and dots respectively. Also shown is which four control points influence a tile.

4.1 Linear spline approximation from irregular samples
As in [3], we approximate the image represented by samples f (ui,vi) with a linear spline.
This is achieved by choosing spline coefficients c(k) that minimise:

∑
i
(s(ui,vi)− f (ui,vi))2 (7)

where s(ui,vi) is the linear spline approximation at sample point (ui,vi). This yields the
linear spline with the best fit to the samples. However, the samples are irregularly placed,
so the distance between adjacent samples can be greater than twice the distance between
control points. As a result, some spline coefficients might not have any constraint from
the samples. To overcome this, a regularisation term is used, as in [3]. It adds constraints
between coefficients of adjacent control points so that the function is linearly interpolated
between samples. The function to minimise becomes:

∑
i
(s(ui,vi)− f (ui,vi))2 + ε

∫ ∫
I
(s2

x + s2
y)dxdy (8)

where sx and sy are the partial derivatives of the spline in x and y directions. The integra-
tion is performed over the whole image. ε is a small parameter which should be adapted
to the desired amount of smoothing during spline fitting. In this paper, ε = 10−2.

The spline approximation is a linear combination of the spline coefficients: s(ui,vi) =
∑k c(k)β 1(ui−uk,vi−vk) (eq. (5)). The regularisation term will be expressed as a Tikhonov
regularisation matrix in section 4.2. Therefore, the optimal spline coefficients can be de-
termined by solving a regularised linear system of equations:

min
c

(‖Mc− f‖2 + ε‖Rc‖2) (9)

where matrix M contains the β 1(ui−uk,vi−vk) terms. Vectors c and f contain the spline
coefficients c(k) and the samples f (ui,vi). R is the regularisation matrix. M is built from



the sample positions and the analytic form of the linear B-spline (fig. 2, eqs. (3) and (4)).
Due to the limited support of the splines, M and R are band matrices (see sections 3 and
4.2). The system of equations can be solved with:

c = (MT M+ εRT R)−1MT f. (10)

4.2 Regularisation term for the linear spline approximation
The regularisation term R in eq. (8) is the integral of s2

x + s2
y over the whole image. It can

be expressed as the sum for all image tiles of the integral over each image tile:

R = ∑
i

∫ ∫
Ti

((sx(x,y))2 +(sy(x,y))2)dxdy = ∑
i

RTi (11)

where Ti represents an image tile. These tiles are chosen to be the tiles shown in fig. 3,
so the analytic form of the spline in a tile is given by eq. (6). Using the relation between
(u,v) and (x,y) in eq. (1), the resulting integral over one tile is:

RTi =
(c2(i)− c1(i))2

2
√

3
+

(c4(i)− c3(i))2

6
√

3
+

(c1(i)+ c2(i)− c3(i)− c4(i))2

27
√

3
(12)

for the control point configuration of fig. 3. c1(i), c2(i), c3(i) and c4(i) are the coefficients
of the control points C1, C2, C3 and C4 in fig. 3 for tile Ti. The integrals for the two other
rhombus types can be obtained from eq. (12) by rotating the control points.

R is hence a sum of regularisation terms, each modelled with a Tikhonov regular-
isation matrix Rj. Each matrix Rj models one term of eq. (12) for one rhombus type
(e.g. ∑i(c2(i)−c1(i))2). It results in 9 regularisation matrices (3 terms in (12) for 3 rhom-
bus types). For comparison, square grids result in 3 regularisation matrices because they
use only one sort of tile. These matrices are all combined in one single term for spline
fitting with eq. (10): RT R = ∑ j Rj

T Rj. The regularisation matrix RT R is a band matrix.
It depends only on the grid, so it is computed once and re-used for each spline fitting.

4.3 Complete reconstruction framework
Equation (10) provides a linear spline approximation from the irregularly placed samples.
To improve reconstruction, we merge several spline approximations with each other as in
[3] and according to the invariance by integration principle. For several transformations of
the control point grid, a linear spline approximation is computed with eq. (10). In a second
step, the obtained spline coefficients are used to estimate images of the scene. During
this step, the transformations of the control point grids are compensated, so that several
intensity estimations are obtained for the same scene point. Merging these estimations
improves the reconstruction without inducing any blurring. In our experiments, we used
the median value to merge intensities as it gave better results than averaging.

In [3], translations, rotations, scalings and affine transformations were applied. We
tested: small translations (amplitude smaller than the distance between control points),
rotations of the grid about the image centre or about the central control point, and small
scalings. We chose to apply in the experiments in section 5 only rotations about the
image centre as it was the most efficient. This approach results in both rotation and a
small translation of the grid because the image centre is usually between control points.
Integration over scales did not improve the results much.



MAE = 11.42 MSE = 372.2
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Figure 4: Invariance by integration. Top, from left to right: original image, random
sampling (7% of the pixels), linear spline on square grid. Bottom, from left to right: linear
spline on hexagonal grid, reconstruction with [3], reconstruction with our algorithm.

5 Reconstruction results
The algorithm was tested by subsampling 5, 7 and 10% of the pixels at random positions
for many images. The distance between control points was set to d = 4 pixels, so the num-
bers of control points and of samples are similar. All results were obtained by rotating
the control point grid about the image centre with an angle varying from 0 to π in steps
of π

20 . Thus, 20 linear splines were merged to get the reconstructed images. This gave a
good compromise between computation time and performance. Reconstruction could be
further improved by adding grid transformations or reducing the distance between control
points. The intensity was reconstructed at the original pixel positions, so reconstructed
and original pixels can be compared to assess reconstruction quality. Splines are con-
tinuous functions, so the fact that the original images were sampled on square grids did
not influence much the reconstruction performances for hexagonal control point grids. To
assess reconstruction quality, we use the mean absolute error (MAE, average of the abso-
lute differences between original and reconstructed intensities) and the mean square error
(MSE, average of the squared differences between original and reconstructed intensities).

In fig. 4, we show the influence of the “invariance by integration” framework for
our algorithm and the algorithm in [3]. The difference between both algorithms is that
square grids are used in [3], while hexagonal grids are used in our work. The same
parameters were applied for both methods, so performance differences are caused by the
grid. Reconstruction with a single linear spline is much worse than the final reconstruction
for both algorithms. The linear spline reconstruction is worse for the hexagonal grid than
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Figure 5: Reconstruction for 5% (top line) and 10% (bottom line) random sampling for
normalised convolution [1] (left column), invariant reconstruction on square grids with
[3] (middle column), and our algorithm (right column). A detail of the Lenna image is
shown for better visualisation, the performances were computed on the whole image.

for the square grid: due to its direction selectivity, some directions are well modelled
(e.g. left eyebrow) and some directions are badly modelled (e.g. vertical details). However
after “invariance by integration”, the reconstruction with the hexagonal grid is better than
the reconstruction with the square grid. It appears smoother, less noisy, and there are fewer
artifacts near edges and small details (see e.g. the nostril and the face contour). These
visual impressions are confirmed by the reconstruction performances given in fig. 4.

In fig. 5, the two previous algorithms are compared with the continuous normalised
convolution [1], the latest version of a good state of the art algorithm to reconstruct images
from irregularly placed samples. The kernel we used for [1] is (r + 0.25)−4 where r =√

x2 + y2, as it gave the best results. The results are given for two sampling rates to
show its influence on reconstruction. For all algorithms, reconstruction quality improves
with higher sampling rate. This effect is the strongest for normalised convolution. The
results of normalised convolution have a very different appearance from the other two
algorithms as it is not based on splines. With higher sampling rate, finer details appear
with normalised convolution. This is not the case for the other two algorithms as the
distance between control points is fixed. Like in fig. 4, hexagonal grids produce better
results than square grids. This difference decreases with higher sampling rate.

The mean performances for the three algorithms are given in table 1 for several im-
ages. They were obtained by averaging MAE and MSE over 50 trials to obtain results
independent of the sample positions. The images are representative of three image types
in which all tested images could be divided. The first image (Lenna) contains a mix



added sampling norm. convol. square grids hexagonal grids
noise image rate MAE MSE MAE MSE MAE MSE

5%
7%
10%

11.13
9.895
8.701

361.1
291.2
231.2

10.79
9.745
8.845

328.7
272.3
225.1

10.65
9.579
8.688

315.5
260.3
214.7

σ = 0
5%
7%
10%

5.788
5.016
4.338

114.4
89.81
69.74

5.318
4.687
4.160

92.38
72.60
56.98

5.406
4.739
4.222

95.18
74.98
59.24

5%
7%
10%

8.477
7.844
7.056

156.8
137.9
115.8

8.956
8.587
7.986

170.2
159.1
138.7

8.516
8.115
7.628

152.2
140.5
124.9

5%
7%
10%

11.78
10.67
9.546

368.9
303.0
241.6

11.68
10.72
9.673

347.9
296.7
241.3

11.34
10.31
9.359

330.1
275.6
226.5

σ = 5
5%
7%
10%

6.878
6.217
5.629

125.3
101.3
81.53

6.865
6.270
5.615

111.3
91.50
73.44

6.560
5.955
5.415

107.5
87.23
71.77

5%
7%
10%

9.241
8.608
7.954

170.9
148.9
127.8

9.853
9.408
8.773

191.2
175.2
154.8

9.208
8.767
8.292

166.8
151.9
137.7

Table 1: Mean performances over 50 trials (i.e. different random sampling and noise).
The best performance for each image and each sampling rate is highlighted in boldface.
The noise added to the data is zero mean Gaussian noise with standard deviation σ .

of small details and bigger objects. Our algorithm gives the best reconstruction quality
for this type of image. Normalised convolution gives the worst results because it cannot
model well slowly varying shading. The second image (peppers) contains mainly big
objects with slowly varying shading. The edges are mostly horizontal and vertical. The
algorithm in [3] performs best, as it can model best horizontal and vertical edges. How-
ever, when noise is added (bottom half of table 1), our algorithm performs best. Hence,
hexagonal grids yield a more robust, less noise sensitive reconstruction. The last image
(pears) contains objects with fine texture (little dots on the pear skin) which cannot be
modelled well with splines with d = 4. As a result, normalised convolution performs best
especially for higher sampling rate. For low sampling rates and noisy data, our algorithm
performs similarly or better. Yet our algorithm performs better than normalised convo-
lution if the distance between control point is reduced. For example, for d = 3 and 7%
sampling rate, the average MAE is 7.761 and the average MSE is 130.6 for our algorithm
(50 trials, no noise), which is better than the result of normalised convolution.

6 Conclusions
In this paper, we presented a method inspired by the human visual system to reconstruct
images from irregularly placed samples. Several linear spline approximations are com-
puted from the samples, each for a different transformation of the control point grid



(e.g. translations and rotations). These reconstructions are merged together after trans-
formation compensation, yielding a higher quality image which is invariant to transfor-
mations of the control point grid. This approach was introduced in [3] for linear splines
on square grids. In this work, we improved the algorithm using linear splines with control
points placed on a hexagonal grid. This is inspired by nature because photosensors are
roughly placed on a hexagonal grid in the fovea. Linear splines are more direction selec-
tive on hexagonal than on square grids, thanks to the resulting image tiling. In addition,
15% more control points can be fitted in an image with hexagonal than with square grids.

The reconstruction results showed that the hexagonal grid increases recontruction
quality. The images look smoother and contain fewer artifacts especially near sharp edges
and small details. The reconstruction on a hexagonal grid is also more robust to noise and
to small details which cannot be modelled with the spline. Last, the “invariance by inte-
gration” principle improves reconstruction more for hexagonal grids than for square grids
due to the direction selectivity of the spline. The algorithm was also compared with nor-
malised convolution. Our algorithm is usually better, especially for low sampling rates
and for noise. However, normalised convolution achieves better reconstruction for fine
texture which cannot be modelled well with the spline. This modelling problem may be
solved by reducing the distance between the control points.
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