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Abstract

Using simultaneous localization and mapping to determine the 3D surroundings and
pose of a wearable or hand-held camera provides the geometrical foundation for sev-
eral capabilities of value to an autonomous wearable visionsystem. The one explored
here is the ability to incorporate recognized objects into the map of the surroundings
and refer to them. Established methods for feature cluster recognition are used to
identify and localize known planar objects, and their geometry is incorporated into
the map of the surrounds using a minimalist representation.Continued measurement
of these mapped objects improves both the accuracy of estimated maps and the ro-
bustness of the tracking system. In the context of wearable (or hand-held) vision, the
system’s ability to enhance generated maps with known objects increases the map’s
value to human operators, and also enables meaningful automatic annotation of the
user’s surroundings.

1 Introduction
Three principal threads run through research into wearablecomputing. The first is the
creation of strata of portable and genuinely wearable hardware, and the second is the
development of unobtrusive and socially acceptable sensors and interfaces to gather data
and feed information back to the user. These two alone allow adegree of environmental
and self monitoring by the user, or monitoring of the user by aremote operator. The
last thread involves the exploration of perceptual modalities which can assess the user’s
environment, the user’s relationship to it and activities within it, and thence augment the
user’s capabilities by offering contextually pertinent advice.

Work in the first thread has been greatly aided by the inexorable increase in the inte-
gration of electronic components. Wearability, however, requires account to be taken of
human factors which must still be determined empirically over several cycles of design,
build, and test. The hardware series from Smailagic, Sieworek and coworkers at CMU
(e.g. [24]) and more recently by Tröster and colleagues at ETH (e.g. [1]) are ones where
the design methodology is particularly clear. Within the second thread, sensors can be
grouped into those sensing the wearer or sensing the surroundings. A raft of physiological
signals has been used to determine muscle, brain and heart activity, skin conductance, res-
piration, blood pressure, and body temperature; and accelerometers and motion-sensitive
textiles have measured user activity [17] [22] [20] [31]. Outward looking environmental
sensors include those for ambient quantities like noise, ortemperature (e.g. [5]); those
giving just the user’s position (e.g. [2]); and those givinga more fine-grained understand-
ing of the surroundings (e.g. [27] [11] [19] [30]). Of this last group, it is visual sensing
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that provides the strongest first-person perspective on thesurroundings. The breadth of
information available from imagery (or potentially so) makes it the “must-have” sensor
for the third research thread.

Key to providing a wearable camera system with a greater degree of autonomy are
the abilities both to locate the camera in the environment and to determine what is where
around it [18]. In [18] it was demonstrated that once a partial 3D map of the camera’s
environment is established, locations can be selected for the camera to fixate upon, coun-
teracting movements of the wearer, while continuing both toaccumulate scene structure
and to determine the camera pose. Whilst that process demonstrated the ability of a wear-
able system to direct attention independently of the wearer’s movements, the 3D structure
had no intrinsic significance to the wearable system. The fixated 3D pointsmayhave
been related to known objects, but the semantic link betweenpoint and object had to be
established by the wearer.

In [4] this limitation was removed by using learned appearance models to recognize
objects in the scene. As well as permitting graphical augmentation of the recovered map,
it was found that incorporating the recognized objects’ geometry into the map improved
the robustness and accuracy of localization. A minimal representation of the objects was
used, which had the benefit of causing minimal disruption in the underlying localization
mechanism, meaning they could run independently.

In this paper we advance the method in [4] by proposing a novelimplementation
with a solution to providing synchronization between the localization process, which runs
regularly at video rate, and the recognition process which takes both a considerably longer
and variable time. We adapt the method of delayed decision making of Leonard and
Rikoski [12], a method developed to enable the initialization of features using data from
multiple steps. We demonstrate the method working on a localized desk top environment,
showing that a spatially-aware dialogue can be establishedbetween the wearable system
and its wearer.

The following two sections briefly review the methods of establishing the camera po-
sition and map using monocular SLAM, and object identification using SIFT features.
Section 4 describes the new method of organizing the combination of localization and
recognition, and Section 5 gives an experimental evaluation. The paper closes with re-
marks on current work to combine fixation with recognition.

2 MonoSLAM
In contrast to batch methods of structure from motion recovery, simultaneous localization
and mapping [26] [14] [28] places emphasis on continual recovery of the state of the
camera and structure, and on maintaining information on thecorrelation between state
members — not only to allow re-matching after neglect, but also to allow uncertainty to
be reduced throughout the camera and map state vector when loop closing occurs.

Early applications were based on the extended Kalman filter [25] using landmarks in
the sensor data, whether sonar [13] [14] or visual [3] [7]. The quadratic computational
complexity of the EKF has made finding other methods to handlelarge-scale maps a major
concern (e.g. [9] [10] [15] [29] ), and EKF-SLAM is no longer used in its general form in
field robotics. However, it remains well-suited to wearablevision using sparse landmark
points. First, for wearables, sparseness of representation is no hindrance to navigation —
one can rely on the wearer to get around. Secondly, the need toimpose a limit on the



Figure 1: Typical initialization and evolution of structure and camera track in
monoSLAM.

growth of the feature map in order to maintain video-rate performance is quite compat-
ible with the notion of a local “workspace” of fixed volume around the wearer. Thirdly,
such points may be annotated or recognized as points or objects of intrinsic interest to
the wearer. Sparseness does make for fragility however. In monoSLAM with uncon-
strained camera motion, depth is not recovered from a singleview or multiple views of a
single point. Information comes from all points collectively, but, as processing has to be
completed in a fixed time, a limit must be imposed on the feature map size.

In this paper we use the EKF monoSLAM formulation of Davison [6], [8]. The state is
X = [c, X1, . . . , Xn] where theX are 3D locations of map features, andc = [t, q, v, ω]
is the camera position, orientation, translational velocity and angular velocity, all defined
in the world frame. The usual non-linear state update equation,Xk+1 = f (Xk, uk) + ek,
from time-stepk tok+1 is assumed, whereuk is a control input, andek is an uncorrelated
zero-mean Gaussian noise sequence. Here, as there is no source of odometry, the control
input is taken to be zero. In the update, the 3D positions are assumed to be static, but the
camera’s state is updated according to a constant velocity model. The projections of the
scene points are assumed to be related to the state at time-stepk by mk = h (Xk) + dk

wheredk is an uncorrelated zero mean Gaussian noise sequence. The standard EKF
update of the state and fully populated covariance matrix isfollowed.

For this implementation, “standard”1 features for (potential) insertion into the 3D map
are detected with the Shi-Tomasi saliency operator [23], and features that are eventually
inserted are stored with an 11×11 pixel appearance template. Active search for corre-
spondence is made within the predicted match region using normalized sum-of-squared
difference correlation. Standard features are initialized using an inverse depth represen-
tation, using the state representation of Montielet al. [21]. Figure 1 shows a typical view
of recovered structure and camera track from monoSLAM that underpins the recognition
process discussed below.

3 Object detection and identification
The aim now is to detect and identify known objects in the scene and to determine their
location in the world frame from just a single image, while maintaining frame-rate opera-
tion. The location of a detected object will serve as an extrameasurement for the SLAM

1The description standard merely distinguishes features used for SLAM from those used for recognition.



process. To unify recognition and localization, a point-based representation is adopted
throughout, and ideally the same point features would be used for both purposes. How-
ever, Shi-Tomasi is insufficiently discriminating for recognition, making necessary a more
robust method, invariant to scale and orientation changes.For this we adopt Lowe’s SIFT
[16], which is known to perform well, but is too computationally expensive for frame-rate
operation.

3.1 The object database
The database includes at present only planar objects. To construct an entry, an image
of the object is captured and, after correcting for radial distortion, SIFT descriptorsσi

and their positionsxi, i = 1...I are computed. The image need not be fronto-parallel,
and so the homographyH between the scene and image is found by choosingn ≥ 4 image
points whose corresponding scene pointsX = [X, Y, 1]⊤ can be located in a object-based
Euclidean plane. The database entry

Oj = {IR, {σi, Xi = H
−1xi}i=1...I , {X

k
B}k=1...K , {k1, k2, k3 ∈ 1...K}}j

contains (i) the imageIR of the object rectified by the homography so that it appears as
a fronto-parallel view, (ii) the list of SIFT descriptors and their scene locations, (iii) the
locations of several scene boundary pointsXk

B to define the object extent, and (iv), as
explained later, the indices of three boundary points flagged for use in the SLAM map.

3.2 Object detection and localization
During a run, a video frame is selected at regular intervals and SIFT features are extracted.
The detected feature locations are corrected for radial distortion2, and are then matched
to the stored keypoints of the known objects. Candidate matching descriptors are found
using a pre-computed kd-tree based method [16] to search thedatabase. If the number
of matched points from any given object’s database entry to the current image is greater
than a threshold, we regard that object as a candidate. Because of repeated structure or
other scene confusion, some of the features may be incorrectly matched. However, as the
database objects are known to be planar, the database scene pointsX and currently ob-
served image pointsx are related by a plane-to-plane homographyx = H

′X. RANSAC
is used to estimate the homographyH

′ and, if a sufficiently large consensus set is found,
we infer that the database object is visible in the current frame.

Having determined an object is visible we recover its location by decomposing the
homography between scene and current image. In the Euclidean object-centred coordi-
nate frame, the object lies in the planeZ = 0, and 3D homogeneous points on the object
areX(4×1) = [X, Y, 0, 1]⊤. In any view, the projection can therefore be written in terms
of extrinsic and intrinsic parameters asx = K[R|t]X(4×1). Hencex = KAX , where
A = [r1 r2 t] contains the translationt and the first two columns of the rotation matrix
R, all modulo a scaling factor. Using the homography already computed as the output of
RANSAC and assuming known camera calibrationK,

[

r1 r2 t
]

= K
−1

H
′, again up

to scale. Because the estimateH
′ is noisy, there is no guarantee thatr1 andr2 found as

above will be orthogonal (which they are required to be as they are columns of a rotation
matrix). The closest rotation matrix, and hence the overallscale for the translation, is
determined using singular value decomposition.

2This is faster than undistorting the whole image, and the distortion is not significant enough to effect SIFT.



The rotation matrix and translation vector calculated in this way specify the transfor-
mation of the camera from the frame of reference of an object’s canonical database image.
We apply this transformation in reverse to place the object in the frame of reference of
the camera at the time the image was selected; and then apply afurther transformation
determined by the camera’s pose at the time of capture relative to the world coordinate
frame defined by the SLAM map to derive the position of the object in world coordinates.

3.3 Adding recognized object locations to the SLAM map
A number of methods for adding objects to the 3D map can be envisaged. The straight-
forward, but certainly effective, approach used here is to allow the recovered 3D position
of the planar object to define 3D point measurements. The feature positions themselves
are not entered, but instead the three pointsXk

B, k = k1, k2, k3 from the object’s bound-
ary designated in the object database entry are used. For example, for the rectangular
pictures used in experiments, three of the four corners are inserted into the map. The
benefits in this approach are, firstly, no additional mechanism is required in the SLAM
process. Provided reasonable values are supplied for the (typically much lower) 3D error
in these points, constraints on the scene will propagate properly through the covariance
matrix. Secondly, there is no reliance on any particular SIFT features being re-measured
over time. Thirdly, the boundary points provide a convenient representation of the extent
of the object for graphical augmentation.

4 A novel implementation with delayed object insertion
The detection, localization, and SLAM methods have been re-implemented to take ad-
vantage of the capabilities of a dual core processor (2.13 GHz Intel Pentium Core 2 Duo).
Including operating system overheads, monoSLAM, executing on one core with around
20 point features, takes approximately 10 ms for a640 × 480 image, leaving some 20 ms
per frame to perform any further computation. Object detection and localization is run in
a separate thread on the second core, continuously grabbingand processing frames.

For a typical frame, SIFT detects around 500 keypoints and takes on average 700 ms
to complete. Matching against a database of 16 objects containing3.2×104 features takes
around 100 ms. While the point based SLAM runs at 30 Hz the object detection runs at
around 1.5 Hz at best. These timings will of course vary with the size of the database, the
number of features found in a frame, and the number of objectsfound in the scene.

4.1 Delayed object insertion
Because object detection takes a variable amount of time, and because it runs much more
slowly than SLAM, the process must be done in the background —that is, it must al-
ways defer to the needs of monoSLAM to run at frame-rate. A mechanism is required to
permit measurement updates using recognized objects atwhatevertime the detection and
recognition processes manage to complete processing a frame.

We use the delayed decision making proposed by Leonard and Rikoski [12]. Suppose
the single camera SLAM system runs as normal, and that at sometime stepk the object
recognition and object localization module described in§3.2 is able to start processing.
At this point the current state vector is augmented by the camera pose,s = [t, q],

XA = [c s X1 · · · Xn]
⊤

, (1)



No. Object label No. of keypoints Image Size Metric Size (m)
1 Colosseum 2562 480 × 640 0.198 × 0.264

2 Durdle Door 3026 600 × 480 0.246 × 0.198

3 Grasshopper 1362 600 × 480 0.246 × 0.198

...
...

...
...

...
14 Multiple View Geometry 1245 446 × 637 0.174 × 0.247

15 Pansy 940 600 × 480 0.246 × 0.198

16 Pots of Fire 596 480 × 640 0.198 × 0.264

Total 31910

Table 1: Database objects, keypoints, and the sizes.

initialized to the current pose valuesk. The covariance matrix is similarly augmented

P
A =















Pcc Pcs PcX1
· · · PcXn

Psc Pss PsX1
· · · PsXn

PX1c PX1s PX1X1
· · · PX1Xn

...
...

...
. . .

...
PXnc PXns PXnX1

· · · PXnXn















, (2)

wherePsc = Pcc[∂s/∂c]⊤. After the saved camera pose has been added to the state, its
value can no longer be directly measured. However, the correlation values contained in
P

A, between this saved pose and other elements of the state, enable its value to be updated
as EKF updates continue. Therefore, as the state continues to be updated, the saved pose
will be refined such that it remains consistent with newer state estimates. Once the object
detection and localization completes, sayn frames later, the updated saved camera pose
sk+n is used to determine the position of any recognized objects in the world, rather than
sk. Then the saved pose is deleted from the state vector and covariance matrix. Although
only one saved state is used here, the mechanism allows for multiple detection processes
to start and finish at different times, were further processors available.

Using a saved camera pose to calculate the location of objects relies on the monoSLAM
system maintaining a good estimate of the camera pose and trajectory during the interven-
ing frames. In [4] it was shown that the inclusion of recognized object locations improved
the quality of the map, and examples of object localization rescuing a failing SLAM pro-
cess have been observed. However, this cannot be relied uponowing to the varying and
relatively long time between object measurements. This delayed insertion method pro-
vides a faster and less complex update compared with the alternative of rolling back the
EKF, inserting the measurement, and then rolling forward byrecalculating all measure-
ments from the frame the object detection was performed on.

5 Experimental evaluation
In the tests of the system reported here, a database of 16 planar objects with a total of
31,910 features was used (a sample of which is shown in Table 1), but only a subset of
these objects appear in the scene. The database was created by running SIFT on each
object image to generate the keypoints and measuring the metric sizes of the objects.



(i) Start of the sequence with the calibration plate visiblein the map.

(ii) Two objects already initialized (Pots of Fire and Colosseum) and Multiple
View Geometry just initialized.

(iii) Final object (Grasshopper) located.

(iv) All objects have been detected and successfully localized.

Figure 2: The sequence runs from top to bottom with the cameraview shown on the left
and the map on the right.



(a) Perspective view (b) Along thex-axis (c) Along they-axis

Figure 3: (a) View of the whole 3D map. (b,c) Individually recognized and located planar
objects on theXY wall are recovered as coplanar to within map error. See Table2.

Object label Actual angle (◦) Measured angle (◦) Error (◦)
Colosseum 90 91.2 ±6

Grasshopper 90 84.7 ±3

Multiple View Geometry 90 87.1 ±3

Pots of Fire 0 5.0 ±9

Table 2: Angles between the calibration plate and the objects.

Fig. 2 shows the evolution of processing, from initial calibration of the SLAM system
to a time when there are four recognized planar objects in theSLAM map. The 2D views
show the automatically generated overlaid identities and extents of the objects, typical of
that which would be useful to the user of a wearable or hand-held camera. The views on
the right show the evolution of the 3D map with recognized objects represented by their
database image.

Fig. 3 shows various views around a particular 3D map in whichthere are four picture
objects, one of which (Pots of Fire) should be coplanar with the calibration plate (and
hence in theXY -plane), two of which (Multiple View Geometry, Grasshopper) are in the
XZ plane and the final object (Colosseum) is in theZY plane. It can be seen that all of
the objects are in their respective planes to within experimental error. Table 2 shows the
angles between the planes recovered from the SLAM map. Tuning the performance to
the size of the covariance suggest that the lateral and deptherrors are of order 10 mm and
20 mm respectively.

6 Discussion
This paper has described a system able to detect and recognize planar objects using
appearance-based methods and to insert both their geometryand identity into a map — a
map which is initialized and updated by an underlying monocular SLAM process which
runs at fixed frame-rate using for the most part more cheaply-computed features. In par-
ticular here, the variable and relatively slow rate of delivery of geometry from the recog-
nition process has been properly accommodated in SLAM’s statistical framework using



Leonard and Rikoski’s method of delayed decision-making, which inserts a temporary
“place-holder” location in the state and covariance. This is updated during the time the
recognition takes to complete, and is then deleted once it has been used to calculate the
geometry of recognized objects. The paper demonstrates thesystem working in a desk
top environment, providing automatic feedback on locationand identity to the user.

Two avenues of application are being explored, one in the area of hand-held cameras,
the second using an active wearable camera. With input from ahand-held camera, the
system has no direct control over what imagery is captured. We are exploring guiding the
user to different parts of the scene to search for new or already discovered objects using
directional feedback provided on screen and by auditory instruction. Street frontages and
art galleries are areas where the use of planarity is not a particular constraint to experi-
mentation. When an active wearable camera supplies the imagery, the system has some
autonomy to explore the world itself. As mentioned in the introduction, in [18] 3D point
positions in the map were hand-labelled to allow a remote operator to command an active
wearable to fixate on objects of interest while continuing tomap. This method can now
be automated to command the system to locate and fixate upon particular objects, without
intervention of the wearer. Another avenue of exploration is that of extending the method
to non-planar objects. There seems no fundamental impediment to doing so.
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