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Abstract

Using simultaneous localization and mapping to deterntiee3D surroundings and
pose of a wearable or hand-held camera provides the geecaldtundation for sev-
eral capabilities of value to an autonomous wearable visystem. The one explored
here is the ability to incorporate recognized objects ih®map of the surroundings
and refer to them. Established methods for feature clustmgnition are used to
identify and localize known planar objects, and their gewynis incorporated into
the map of the surrounds using a minimalist representa@amtinued measurement
of these mapped objects improves both the accuracy of dstihmaps and the ro-
bustness of the tracking system. In the context of wearaileand-held) vision, the
system’s ability to enhance generated maps with known thjacreases the map’s
value to human operators, and also enables meaningful atitboannotation of the
user’s surroundings.

1 Introduction

Three principal threads run through research into wearabteputing. The first is the
creation of strata of portable and genuinely wearable hardwand the second is the
development of unobtrusive and socially acceptable serssut interfaces to gather data
and feed information back to the user. These two alone alldegaee of environmental
and self monitoring by the user, or monitoring of the user bigmote operator. The
last thread involves the exploration of perceptual moeslitvhich can assess the user’s
environment, the user’s relationship to it and activitigthim it, and thence augment the
user’s capabilities by offering contextually pertinenvie.

Work in the first thread has been greatly aided by the inexerialsrease in the inte-
gration of electronic components. Wearability, howevequires account to be taken of
human factors which must still be determined empiricallgoseveral cycles of design,
build, and test. The hardware series from Smailagic, Sielvand coworkers at CMU
(e.g. [24]) and more recently by Troster and colleaguesTad Ee.g. [1]) are ones where
the design methodology is particularly clear. Within them®d thread, sensors can be
grouped into those sensing the wearer or sensing the sutireys A raft of physiological
signals has been used to determine muscle, brain and h&witi/askin conductance, res-
piration, blood pressure, and body temperature; and awrekters and motion-sensitive
textiles have measured user activity [17] [22] [20] [31]. t@ard looking environmental
sensors include those for ambient quantities like noiséemperature (e.g. [5]); those
giving just the user’s position (e.g. [2]); and those givanmore fine-grained understand-
ing of the surroundings (e.g. [27] [11] [19] [30]). Of thisslagroup, it is visual sensing
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that provides the strongest first-person perspective osuh®undings. The breadth of
information available from imagery (or potentially so) neskit the “must-have” sensor
for the third research thread.

Key to providing a wearable camera system with a greateredegf autonomy are
the abilities both to locate the camera in the environmedttadetermine what is where
around it [18]. In [18] it was demonstrated that once a pb&ia map of the camera’s
environment is established, locations can be selectethéoramera to fixate upon, coun-
teracting movements of the wearer, while continuing bothdoumulate scene structure
and to determine the camera pose. Whilst that process dératmtsthe ability of a wear-
able system to direct attention independently of the wéaneovements, the 3D structure
had no intrinsic significance to the wearable system. Thddk&8D pointsmay have
been related to known objects, but the semantic link betvpeémt and object had to be
established by the wearer.

In [4] this limitation was removed by using learned appeaeamodels to recognize
objects in the scene. As well as permitting graphical audgatem of the recovered map,
it was found that incorporating the recognized objects’rgetsy into the map improved
the robustness and accuracy of localization. A minimalesentation of the objects was
used, which had the benefit of causing minimal disruptiorh@aunderlying localization
mechanism, meaning they could run independently.

In this paper we advance the method in [4] by proposing a noeplementation
with a solution to providing synchronization between thesllization process, which runs
regularly at video rate, and the recognition process wtikks both a considerably longer
and variable time. We adapt the method of delayed decisidkiingaf Leonard and
Rikoski [12], a method developed to enable the initializatbf features using data from
multiple steps. We demonstrate the method working on ailmedtesk top environment,
showing that a spatially-aware dialogue can be establiskegeen the wearable system
and its wearer.

The following two sections briefly review the methods of e$ithing the camera po-
sition and map using monocular SLAM, and object identifmatusing SIFT features.
Section 4 describes the new method of organizing the cortibmaf localization and
recognition, and Section 5 gives an experimental evaloatithe paper closes with re-
marks on current work to combine fixation with recognition.

2 MonoSLAM

In contrast to batch methods of structure from motion recg\@multaneous localization
and mapping [26] [14] [28] places emphasis on continual veppof the state of the
camera and structure, and on maintaining information onctireclation between state
members — not only to allow re-matching after neglect, babab allow uncertainty to
be reduced throughout the camera and map state vector wheiellasing occurs.

Early applications were based on the extended Kalman fRgrjsing landmarks in
the sensor data, whether sonar [13] [14] or visual [3] [7].euadratic computational
complexity of the EKF has made finding other methods to hadade-scale maps a major
concern (e.g. [9] [10] [15] [29]), and EKF-SLAM is no longesed in its general formin
field robotics. However, it remains well-suited to wearalil#on using sparse landmark
points. First, for wearables, sparseness of representiatioo hindrance to navigation —
one can rely on the wearer to get around. Secondly, the nemdpose a limit on the



Figure 1: Typical initialization and evolution of structurand camera track in
MONoSLAM.

growth of the feature map in order to maintain video-ratdfgranance is quite compat-
ible with the notion of a local “workspace” of fixed volume aral the wearer. Thirdly,
such points may be annotated or recognized as points ortsljéintrinsic interest to
the wearer. Sparseness does make for fragility however. dna8LAM with uncon-
strained camera motion, depth is not recovered from a siiigle or multiple views of a
single point. Information comes from all points collectiyébut, as processing has to be
completed in a fixed time, a limit must be imposed on the featuap size.

In this paper we use the EKF monoSLAM formulation of Daviséj [8]. The state is
X =l[e,X1,...,X,] where theX are 3D locations of map features, ame- [¢t, q, v, w]
is the camera position, orientation, translational vejoand angular velocity, all defined
in the world frame. The usual non-linear state update eqoati; 1 = f( Xk, ur) + ek,
from time-stepk to k+1 is assumed, whergy, is a control input, anéy, is an uncorrelated
zero-mean Gaussian noise sequence. Here, as there is ©e sbodometry, the control
input is taken to be zero. In the update, the 3D positions sseraed to be static, but the
camera’s state is updated according to a constant veloatiein The projections of the
scene points are assumed to be related to the state at gépe4dsy m; = h (X;) + di
wheredy, is an uncorrelated zero mean Gaussian noise sequence. darfuast EKF
update of the state and fully populated covariance matifialiswed.

For this implementation, “standardfeatures for (potential) insertion into the 3D map
are detected with the Shi-Tomasi saliency operator [23],faatures that are eventually
inserted are stored with an £11 pixel appearance template. Active search for corre-
spondence is made within the predicted match region usingal@ed sum-of-squared
difference correlation. Standard features are initiainsing an inverse depth represen-
tation, using the state representation of Morgighl. [21]. Figure 1 shows a typical view
of recovered structure and camera track from monoSLAM thaeupins the recognition
process discussed below.

3 Object detection and identification

The aim now is to detect and identify known objects in the scamd to determine their
location in the world frame from just a single image, whileintaining frame-rate opera-
tion. The location of a detected object will serve as an exteasurement for the SLAM

1The description standard merely distinguishes featured e SLAM from those used for recognition.



process. To unify recognition and localization, a poinsdxirepresentation is adopted
throughout, and ideally the same point features would bd &meboth purposes. How-
ever, Shi-Tomasi is insufficiently discriminating for repgtion, making necessary a more
robust method, invariant to scale and orientation chargesthis we adopt Lowe’s SIFT
[16], which is known to perform well, but is too computatidigaxpensive for frame-rate
operation.

3.1 The object database

The database includes at present only planar objects. Tstro@han entry, an image
of the object is captured and, after correcting for radiatafition, SIFT descriptors*

and their positions?, i = 1...I are computed. The image need not be fronto-parallel,
and so the homograpfiybetween the scene and image is found by choasirgd image
points whose corresponding scene poikts= [X, Y, 1] can be located in a object-based
Euclidean plane. The database entry

O; = {Ig,{6", X' =0 'x}icq 1, { X5 ke1 o, (K1, ko, k3 € 1K}

contains (i) the imag&g of the object rectified by the homography so that it appears as
a fronto-parallel view, (ii) the list of SIFT descriptors@itheir scene locations, (iii) the
locations of several scene boundary polfxt@ to define the object extent, and (iv), as
explained later, the indices of three boundary points flddgeuse in the SLAM map.

3.2 Object detection and localization

During arun, avideo frame is selected at regular intervads@I F T features are extracted.
The detected feature locations are corrected for radi@bdisr?, and are then matched
to the stored keypoints of the known objects. Candidate Imragodescriptors are found
using a pre-computed kd-tree based method [16] to searctiafadase. If the number
of matched points from any given object’s database entripéactirrent image is greater
than a threshold, we regard that object as a candidate. Beaduepeated structure or
other scene confusion, some of the features may be inclyrreatched. However, as the
database objects are known to be planar, the database smeteX and currently ob-
served image points are related by a plane-to-plane homography H' X. RANSAC

is used to estimate the homograghyand, if a sufficiently large consensus set is found,
we infer that the database object is visible in the curreartte.

Having determined an object is visible we recover its lamatby decomposing the
homography between scene and current image. In the Euclolgact-centred coordi-
nate frame, the object lies in the pla#e= 0, and 3D homogeneous points on the object
arex V) — [X,Y,0,1]T. In any view, the projection can therefore be written in term
of extrinsic and intrinsic parameters as= K[R|t] X **Y. Hencez = KAX , where
A = [r; 7o t] contains the translatiohand the first two columns of the rotation matrix
R, all modulo a scaling factor. Using the homography alreaaiyputed as the output of
RANSAC and assuming known camera caIibratl'or[rl T t} = K~'H, again up
to scale. Because the estimdtés noisy, there is no guarantee thatandr, found as
above will be orthogonal (which they are required to be ag #re columns of a rotation
matrix). The closest rotation matrix, and hence the ovesadlle for the translation, is
determined using singular value decomposition.

2This is faster than undistorting the whole image, and theodien is not significant enough to effect SIFT.



The rotation matrix and translation vector calculated is thay specify the transfor-
mation of the camera from the frame of reference of an olgeethonical database image.
We apply this transformation in reverse to place the obje¢hée frame of reference of
the camera at the time the image was selected; and then ajfpfthar transformation
determined by the camera’s pose at the time of captureveltdithe world coordinate
frame defined by the SLAM map to derive the position of the ocbijgworld coordinates.

3.3 Adding recognized object locations to the SLAM map

A number of methods for adding objects to the 3D map can besaged. The straight-
forward, but certainly effective, approach used here idltmathe recovered 3D position
of the planar object to define 3D point measurements. Therfeaositions themselves
are not entered, but instead the three poiﬁ@, k = ki, ko, ks from the object’s bound-
ary designated in the object database entry are used. Forpéxafor the rectangular
pictures used in experiments, three of the four cornersrageried into the map. The
benefits in this approach are, firstly, no additional mecéranis required in the SLAM
process. Provided reasonable values are supplied fontpiedtly much lower) 3D error
in these points, constraints on the scene will propagategshp through the covariance
matrix. Secondly, there is no reliance on any particularfSatures being re-measured
over time. Thirdly, the boundary points provide a convehiepresentation of the extent
of the object for graphical augmentation.

4 A novel implementation with delayed object insertion

The detection, localization, and SLAM methods have beemmemented to take ad-
vantage of the capabilities of a dual core processor (2.13até¢l Pentium Core 2 Duo).

Including operating system overheads, monoSLAM, exegutimone core with around
20 point features, takes approximately 10 ms féré x 480 image, leaving some 20 ms
per frame to perform any further computation. Object dédecand localization is run in

a separate thread on the second core, continuously grabthgrocessing frames.

For a typical frame, SIFT detects around 500 keypoints akelstan average 700 ms
to complete. Matching against a database of 16 objectsioimga.2 x 10* features takes
around 100 ms. While the point based SLAM runs at 30 Hz theablojetection runs at
around 1.5 Hz at best. These timings will of course vary withsize of the database, the
number of features found in a frame, and the number of obfeatsd in the scene.

4.1 Delayed object insertion

Because object detection takes a variable amount of tintebacause it runs much more
slowly than SLAM, the process must be done in the backgrounthat-is, it must al-
ways defer to the needs of monoSLAM to run at frame-rate. Almaaism is required to
permit measurement updates using recognized objeutsatevertime the detection and
recognition processes manage to complete processing a.fram

We use the delayed decision making proposed by Leonard &udiki12]. Suppose
the single camera SLAM system runs as normal, and that at §omeestepk the object
recognition and object localization module described3r2 is able to start processing.
At this point the current state vector is augmented by theeramoses = [t, g|,

Xh=[c s X; - X, , (1)



No. Obiject label No. of keypoints  Image Size  Metric Size (m)
1 Colosseum 2562 480 x 640  0.198 x 0.264

2 Durdle Door 3026 600 x 480 0.246 x 0.198

3 Grasshopper 1362 600 x 480  0.246 x 0.198

14  Multiple View Geometry 1245 446 x 637  0.174 x 0.247

15 Pansy 940 600 x 480 0.246 x 0.198

16 Pots of Fire 596 480 x 640  0.198 x 0.264

Total 31910

Table 1: Database objects, keypoints, and the sizes.

initialized to the current pose valug. The covariance matrix is similarly augmented

Pcc Pcs PcX1 e Pan
Psc Pss PsX1 e Pan

PA — Pch PXls PX1X1 e PX1Xn , (2)
Pch Pan PXnXl e PXan

wherep,. = P..[0s/0c]T. After the saved camera pose has been added to the state, its
value can no longer be directly measured. However, the letioa values contained in
P4, between this saved pose and other elements of the stabde éisavalue to be updated
as EKF updates continue. Therefore, as the state contiolesupdated, the saved pose
will be refined such that it remains consistent with neweteststimates. Once the object
detection and localization completes, saframes later, the updated saved camera pose
Sk+n IS Used to determine the position of any recognized objedtsa world, rather than
si. Then the saved pose is deleted from the state vector anda&osa matrix. Although
only one saved state is used here, the mechanism allows ftiplauletection processes
to start and finish at different times, were further processwailable.

Using a saved camera pose to calculate the location of ghjglets on the monoSLAM
system maintaining a good estimate of the camera pose gecttny during the interven-
ing frames. In [4] it was shown that the inclusion of recoguinbject locations improved
the quality of the map, and examples of object localizatestuing a failing SLAM pro-
cess have been observed. However, this cannot be reliedawgag to the varying and
relatively long time between object measurements. Thiayeel insertion method pro-
vides a faster and less complex update compared with theatiee of rolling back the
EKF, inserting the measurement, and then rolling forwaradmnalculating all measure-
ments from the frame the object detection was performed on.

5 Experimental evaluation

In the tests of the system reported here, a database of 1&rpajects with a total of
31,910 features was used (a sample of which is shown in Tgbleui only a subset of
these objects appear in the scene. The database was crgatathing SIFT on each
object image to generate the keypoints and measuring thécraizes of the objects.
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Figure 2: The sequence runs from top to bottom with the cawiera shown on the left
and the map on the right.



(a) Perspective view (b) Along theaxis (c) Along they-axis

Figure 3: (a) View of the whole 3D map. (b,c) Individually ogmized and located planar
objects on theX'Y wall are recovered as coplanar to within map error. See Table

Object label Actual angle’] Measured angle’]  Error (°)
Colosseum 90 91.2 +6
Grasshopper 90 84.7 +3
Multiple View Geometry 90 87.1 +3
Pots of Fire 0 5.0 +9

Table 2: Angles between the calibration plate and the object

Fig. 2 shows the evolution of processing, from initial cedition of the SLAM system
to a time when there are four recognized planar objects isth®M map. The 2D views
show the automatically generated overlaid identities atergs of the objects, typical of
that which would be useful to the user of a wearable or hand-¢temera. The views on
the right show the evolution of the 3D map with recognizeckoty represented by their
database image.

Fig. 3 shows various views around a particular 3D map in wttiene are four picture
objects, one of which (Pots of Fire) should be coplanar with ¢alibration plate (and
hence in theXY'-plane), two of which (Multiple View Geometry, Grasshopyete in the
X Z plane and the final object (Colosseum) is in 1€ plane. It can be seen that all of
the objects are in their respective planes to within expenital error. Table 2 shows the
angles between the planes recovered from the SLAM map. Tuhia performance to
the size of the covariance suggest that the lateral and @equfs are of order 10 mm and
20 mm respectively.

6 Discussion

This paper has described a system able to detect and reeoglaizar objects using
appearance-based methods and to insert both their geoametiigentity into a map — a
map which is initialized and updated by an underlying moiac8LAM process which
runs at fixed frame-rate using for the most part more cheaptyputed features. In par-
ticular here, the variable and relatively slow rate of defivof geometry from the recog-
nition process has been properly accommodated in SLAMtssttal framework using



Leonard and Rikoski's method of delayed decision-makinlgictv inserts a temporary

“place-holder” location in the state and covariance. Thispdated during the time the
recognition takes to complete, and is then deleted oncesibkean used to calculate the
geometry of recognized objects. The paper demonstratesyfiem working in a desk

top environment, providing automatic feedback on locatiod identity to the user.

Two avenues of application are being explored, one in the afband-held cameras,
the second using an active wearable camera. With input frédvanal-held camera, the
system has no direct control over what imagery is captureslak® exploring guiding the
user to different parts of the scene to search for new or @jreléscovered objects using
directional feedback provided on screen and by auditotyuation. Street frontages and
art galleries are areas where the use of planarity is not icpkar constraint to experi-
mentation. When an active wearable camera supplies theeimahe system has some
autonomy to explore the world itself. As mentioned in thedduction, in [18] 3D point
positions in the map were hand-labelled to allow a remoteaipeto command an active
wearable to fixate on objects of interest while continuingnt@p. This method can now
be automated to command the system to locate and fixate upiicufsr objects, without
intervention of the wearer. Another avenue of explorat®that of extending the method
to non-planar objects. There seems no fundamental impedimeoing so.
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