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Abstract

This paper considers the problem of modelling a 3-D scene from calibrated
images taken from multiple viewpoints. The initial 3-D information is ac-
quired using probabilistic space carving which provides a voxel representa-
tion consistent with the given set of images. The scene is afterwards mod-
elled as an implicit surface using radial basis functions (RBF). The mixture
of multiorder basis functions models a smoothed 3-D scene representation
while providing compactness. We use correspondences between pairs of im-
age patches in order to update the RBF centres for improving the 3-D scene
representation. The RBF centre updating leads to improvingthe consistency
between the 3-D model and the given set of images. The proposed method is
applied on a complex 3-D scene displaying various objects.

1 Introduction
Three dimensional object reconstruction from several images has lately attracted con-
siderable research interest [1, 8, 9, 12]. Nevertheless, real scenes are very complex and
involve several objects, usually occluding each other, while the effects of illumination and
material reflectivity cannot be ignored. The aim of this study is to reconstruct the entire
3-D scene from a sparse set of images by estimating both shapeand texture.

Space carving is a method which assigns voxels to a 3-D objector to its background
using the photoconsistency of a specific point with all its corresponding pixels from the
given set of images [9, 10, 12]. There is a lot of uncertainty in the evaluation of the proba-
bilities required for space carving, caused by the presenceof occlusions, surface disconti-
nuities, variation in the illumination conditions, cameracalibration errors, etc. The result-
ing voxel model from space carving is invariably noisy and often contains disconnected
components. Holes and excessively enlarged 3-D features emerge in the resulting voxel
model [9]. Surface refinement for mesh models initialised from volumetric reconstruction
has been performed in [5, 6]. In this paper we propose to employ a radial basis function
(RBF) in order to model the surface of the space carved data. RBF methods are known for
their data fitting, interpolation and generalisation properties and have been widely used in
pattern recognition. In our case we want to represent a smooth surface which interpolates
the voxels from the surface as accurately as possible to the real scene. Moreover, the RBF
model would require only few parameters when compared to thevoxel model in order to
represent the scene. Implicit RBFs have been shown to represent well surfaces in [4, 11].
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In this paper we use the multiorder basis function, proposedby Chen and Suter, which
fulfils a smoothness constraint in the first, second and thirdorder Laplacian [2]. The sur-
face of the objects from the scene is calculated as the zero level set of a weighted mixture
of basis functions. The basis functions centres are randomly initialised by using a Poisson
sphere random sampling scheme [3, 4].

Certain errors are propagated from the voxel model to the implicit surface resulting
in surface variations that do not correspond to the actual scene. In this paper we propose
to correct such errors by improving the consistency of the 3-D model with the given set
of images. In order to achieve good reconstruction accuracywe need to select a wide
baseline pair of images with good texture. The pair of imagescontain the projection of
the same part of the 3-D scene, defined around radial basis function centres. An updating
formula is derived such that the centre of a certain RBF unit is modified in order to fulfil
the consistency between the two projections of the 3-D scene. The proposed methodol-
ogy is applied on a complex scene representing several objects. The modelling of a 3-D
scene using space carving and the modelling using RBF is described in Section 2. The
initialisation of the RBF parameters as well as their subsequent updating is described in
Section 3. Experimental results are provided in Section 4, while the conclusions of this
study are drawn in Section 5.

2 Model initialisation

2.1 Space carving

Let us assume that we haveN images of a scene{I j| j = 1, . . . ,N}, acquired from various
viewpoints by calibrated cameras whose projective matrices Pj with respect to the scene
have been properly calculated. We would like to reconstructthe 3-D scene represented
by geometry as well as colour (texture) information. One of the most popular approaches
for representing 3-D scenes from multiple images is the space carving algorithm [1, 10,
12]. Probabilistic space carving starts with a parallelepiped formed from voxels. At each
iteration, a set of voxels is selected and their consistencywith the given set of images is
verified. Two assumptions are tested: if a voxel is part of thescenex ∈ V , and if it is
not, x /∈ V , wherex represents a voxel andV is the volumetric scene to be estimated.
The evaluation of the probability in each imageI j takes into account its corresponding
projection matrixPj and checks the photoconsistency of a voxel with its corresponding
pixels. Usually, uncertainty arises in the evaluation of the probabilities associating voxels
with corresponding pixels from images. Consequently, the resulting volumetric model
is invariably noisy. Esteban and Schmitt [5] proposed to usethe visual hull in order to
initialise a surface mesh which can be deformed under the influence of photoconsistency
constraints. In the following we propose to use implicit function modelling estimated
from the 3-D voxel data provided by the space carving algorithm.

2.2 Implicit surfaces using radial basis functions

Radial basis functions (RBF) are known for their data fitting, interpolation and general-
isation properties [4, 11]. In our approach we use the voxel representation provided by
the space carving algorithm by properly interpolating the voxels and smoothing the sur-
faces in the scene. Moreover, an RBF model would require fewer parameters in order to



represent the scene. The surface of the 3-D scene is modelledas a zero level set of a func-
tion, f (z) ≥ 0. In our approach,f (z) is an RBF mixture consisting ofM basis functions
calculated at locationz as :

f (z) =
M

∑
i=1

wiφ(‖z−µi‖)+u(z) (1)

whereφ(·) is the basis function, considered radially symmetric,‖ · ‖ is the Euclidean
distance,µi is the basis function centre, andu(z) is a polynomial component. The function
f (z) is defined as positive inside the 3-D volume and negative outside. For f (z) = 0 we
obtain the surface enveloping the 3-D voxel model.

Gaussian RBF functions which are widely used in pattern recognition have been found
to oversmooth [4]. Chen and Suter derived a basis function which fulfils a constraint in
the first, second and third order Laplacian, [2] :

−δ∆ f (z)+∆2 f (z)− τ∆3 f (z) = 0 (2)

where∆ is the Laplacian operator in 3-D,δ is a parameter controlling the first order
smoothness andτ controls the third order smoothness. The function that minimises the
energy function from (2) is called multiorder basis function [2, 4] :
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1
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where
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√
1−4τ2δ 2

2τ2 ; β =
1−

√
1−4τ2δ 2

2τ2 (4)

are parameters which describe the shape of the basis function.

3 RBF parameter calculation

3.1 Initialising the RBF parameters

The RBF function has the property to approximate well the data in a specific neighbour-
hood as shown by the expression (3). The RBF function from (3)has the maximum in
the centreµi and quickly falls toward zero when the distance from its centre location
increases. In this study we use the Poisson sphere random sampling scheme for initial-
ising the RBF centres [4]. This algorithm has been proposed in [3] by Cook for solving
the aliasing problem in computer graphics. A Poisson spheredistribution is a 3-D ran-
dom point distribution in which all sphere centres are approximately equally distributed
in space. Let us consider a set of spheres asS(µk,ρ), k = 1, . . . ,M, each centred atµi and
with identical radius,ρ. The sphere radiusρ depends on the size of the voxel model,|V |.
The number of basis functionsM and consequently that of spheres depends on the desired
level of surface approximation and smoothness.

Centres of spheres are randomly generated within the given voxel space such that they
fulfil the following conditions :

‖µi −µ j‖ ≥ 2ρ (5)

where 2ρ is the minimum distance between two sphere centresi and j. Each sphere
determines a partition in the voxel model depending on the local compactness. Let us



consider a set of at leastT connected voxels which are located within a radius ofρ from
the centre of the sphere :

{xc ∈ S(µi,ρ)|xc ∈ V ,‖x−µi‖ < ρ, |xc| ≥ T} (6)

where| · | denotes set cardinality. The spheres which contain very fewvoxels as well as
unconnected voxels are discarded. The sphere generating algorithm terminates when the
voxel model is completely covered with spheres. Let us assume that a total ofM valid
spheresS(µi,ρ) are generated, each associated with an RBF centre,µi. The parameters
τ andδ determine the smoothing of the resulting implicit surface.These parameters are
chosen depending on the chosen resolution, the size of the voxel model|V |, and on the
desired level of smoothing [4].

We form the following system of equations :
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whereri j = ‖µi − µ j‖ is the Euclidean distance between two centres,λi for i = 1, . . . ,M
are added to the diagonal elements in order to condition better the matrix as in [4] and
u(z) = u0. For calculating the weighting factorswi, i = 1, . . . ,M we evaluate the basis
functionsφ(·) for the distances between pairs of centresri j. We considerf (µi) = 0 for
imposing the condition that most basis functions are located on the separation surface.
Certain centres correspond to the control basis functions,i.e. which have their centres
either inside the model or outside it. The weightswi, i = 1, . . . ,M are calculated by
inverting the matrix associated with basis function centres. Given the proposed RBF
centre initialisation described in the previous Section, the matrix from (7) is non-singular
and consequently invertible.

3.2 Updating the RBF centres using image disparity

The previous approaches adopted in space carving have been restricted to considering
per voxel consistency. In this Section we describe how the accuracy of the surface can
be improved by considering the image consistency across larger areas of the surface.
Invariably, given various sources of errors, the surface described by the implicit function
f (z) may not fit with its corresponding areas of the images. In thisSection we describe
how to find an updating transformation applied on the basis function parameters in order
to improve the consistency between the 3-D model given byf (z) and the image set{I j| j =
1, . . . ,N}. The surface, as defined by (7), passes through the radial basis function centres.
We can control the surface by changing the locations of the RBF centres. The first order
approximation of an RBF consists of the plane tangent to its surface in the neighbourhood
of its centre. For a small area well defined around the RBF centre we assume that the
surface functionf (z) can be locally approximated by a planar patch. Let us assume that
there are two images which contain projections of the 3-D patch. A plane in 3-D, such as
the one which approximates locally the surface around the basis function centre, induces
a homographyH between pairs of images [8]. By calculatingH from pairs of images it is
possible to recover the parameters of this plane and correctthe basis function centre and
thus that part of the surface, by constraining it to lie on that plane.



A surface patch, corresponding to an RBF centre, is selectedif it displays a sufficient
amount of detail which can be used for finding matches betweenpairs of images. For each
chosen patch we select a pair of images such that they providethe smallest angle between
their positions and the surface patch normal. The angle between the camera locations
and the surface patch should be as large as possible in order to provide an appropriate
baseline to recover positions. LetPandP′ be two 3×4 matrices which describe the camera
projection from 3-D coordinates to homogenous image coordinates for the selected pairs
of images representing the patch. Lety = [u,v,1]T be the projection of a point in the patch
from the first camera andy′ = [u′,v′,1]T be the corresponding point from the second
camera. These points are related byy′ = Hy. Let us assume that the selected patch
belongs to a planeψ, wherezT ψ = 0 for all the pointsz which lie onψ. The homography
H between the pair of images is given as, [8] :

H = A−avT (8)

whereA anda are a 3×3 matrix and a 3×1 vector, respectively, given by :

[A | a] = P′
[

P
0 0 0 1

]−1

(9)

andv is a 3×1 vector, representing the displacement between the two images, given by
the following expression :

[

v
1

]

=

(

[

P
0 0 0 1

]−1
)T

ψ (10)

Given a point in one image, the corresponding point in another image can be constrained
to lie on a line known as the epipolar line [8]. Epipolar linesdepend only on the imaging
geometry and not on the shape of the scene, so it is possible totransform the images, using
v, in order to correspond to a pair of rotated ‘virtual cameras’, whose epipolar lines are
all horizontal and co-linear. This process is known as rectification and is often performed
as an initial step in stereo algorithms [7].

Let R andR′ be the rectifying 3×3 matrix transformations. The rectified images of
the patch are now related by considering a matrixHR :

R′y′ = HRRy (11)

The homographyH can be calculated by taking into account the rectifying transforma-
tions :

H = R′−1HRR (12)

After the rectification, the epipoles are horizontal, andHR is guaranteed to map eachv-
coordinate to its corresponding value in each pair of images. Consequently, it can be
expressed as :

HR =





s k t
0 1 0
0 0 1



 (13)

wheres, k and t, correspond to scaling, skew and translation, respectively (all in the u
direction). To calculate these parameters, the images of the patch are divided intol rows



of pixels. When considering a single row of pixels, the skew and translation act together
to produce a single horizontal offset,o, since thev coordinate of each pixel is the same.

The normalised cross-correlation is computed between eachpair of rows at different
scale and offset values. The values which result in the lowest score, corresponding to the
best match, are recorded. As the scale should be the same for all rows, s is taken to be the
median of the values found for each row. Any values significantly outside the median are
deemed to be unreliable and are discarded. Using the offsetsfrom all rows, the skew and
translation parametersk andt can be calculated by solving a linear system:

[
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t

]
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wherevl is thev coordinate of rowl.
With H at hand from (12), we calculate the displacement vectorv between the pair

of images corresponding to the given patch from (8). Consequently, the location of the
planeψ which should contain the basis function is calculated using(10). The location of
the basis function centre is updated as :

µ ′
i = µi +n

µT
i ψ

nT n
(15)

wheren is the surface normal direction of the planeψ, and theith basis function centre
µi is updated toµ ′

i , while being constrained to lie on the planeψ.
The matching based on cross-correlation requires that the colour variance in the image

patch is above a certain threshold in order to find the offsetsuniquely. Basis functions cor-
responding to patches which do not fulfil this condition are not updated by this procedure.
Additionally, false matches may be obtained due to the imagenoise or to patches which
span the physical boundary of an object. A limit is placed on the maximum distance that a
centre can move in order to prevent this from causing furthererrors in the surface. Some
of the basis function centres will converge towards neighbouring locations on the 3-D
surface causing singularity in the matrix from equation (7). If centres of multiple basis
functions occur in the immediate proximity of each other after updating, only one will be
preserved while the others will be removed.

4 Experimental results

The method outlined in this paper was tested on a real scene comprised of multiple
objects. For the experiments, 12 images of the scene were captured from various view-
points. A selection of four images is shown in Fig. 1. As it canbe observed from this
Figure, the objects exhibit various shapes and surface properties and occlude each other
in different views. Voxel carving assumes the camera positions (extrinsic calibration) to
be knowna priori. Targets printed on rectangular boards were placed around the outside
of the scene in order to provide the necessary information for camera calibration.

The initial voxel model was provided by the probabilistic space carving algorithm [1].
This algorithm assumes the scene to be contained within a finite bounding volume. In
this case, the background was manually segmented. The resulting model, which contains
773660 voxels, is shown in Fig. 4(a) and Fig. 4(b) for two different viewpoints. Con-
sidering the voxel representation, 4440 radial basis functions were sampled and used to



(a) Frame 1 (b) Frame 3

(c) Frame 6 (d) Frame 9

Figure 1: Four images of a complex scene taken from various viewpoints.
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Figure 2: Two pairs of patches and their correction.
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(a) RBF centres after updating. (b) RBF centres correction vectors.
Updated centres are marked by ”*”.

Figure 3: Directions of centre updating and their correctedpositions.

fit the implicit surface as shown in Figs. 4(c) and 4(d). A total of 1408 basis functions
met the criteria for updating (the visibility and the presence of sufficient local variation as
given by the colour variance). Of these, a suitable match wasobtained in 1075 cases. The
smoothing parameters, considered identical for all RBFs, are δ = 25,τ = 0.01, while the
centres are scaled such that they fit in a cube of size 1×1×1. The functions which were
successfully updated are shown in Fig. 3(a), marked with stars, while all the other basis
functions are marked with dots.

Two pairs of patches from the raw images, which are the projections of two different
3-D scene regions, one corresponding to the book and anotherto the box, are shown in
Figs. 2(a) and 2(e), respectively. The images from each pairare related by means ofH,
according to (8). The epipolar correction, as given byHR from (13), is shown in Figs. 2(b)
and 2(f), the offset vectors calculated from equation (14) are provided in Figs. 2(c) and
2(g), and the aligned patches after applying the transformation H to the second image
of each pair is illustrated in Figs. 2(d) and 2(h). Vectors representing the movement of
centres in 3-D to the corrected positions, according to (15), are shown in Fig. 3(b). The
updated surface, after correcting the RBF centres, for the two viewpoints, is shown in
Fig. 4(e) and Fig. 4(f), respectively. The surface of the horizontal book and vertical box
is clearly improved. However, the shape of certain objects,the kettle in particular, is not
well modelled due to their irregular shapes, lack of textureand surface specularity.

For numerical assessment we check the consistency between the surface of the book
from the estimated 3-D model with that from the real scene. The surface of the book
in the centre of the scene is planar and we measure the deviation from the planarity in
the estimated 3-D model. This deviation, measured in millimetres, was estimated for
the voxel model, the initial RBF surface, calculated according to the description from
Section 3.1 as well as for the surface updated according to the algorithm provided in
Section 3.2. The mean deviation was found to be 11.59 mm for the voxel model, 3.63
mm for the initial RBF estimation and 1.04 mm for the updated model. These numerical
results together with the visual interpretation from Fig. 4prove the capabilities of the
proposed algorithm to improve the surface representation when considering the proposed
RBF centre updating method based on image disparity estimation.



(a) (b)

(c) (d)

(e) (f)

Figure 4: Voxel representation and RBF surface modelling ofthe scene for two different
view angles. (a), (b) voxel representation; (c), (d) initial RBF model; (e), (f) updated RBF
model.



5 Conclusion
A complex 3-D scene surface modelling method using multipleimages, taken from var-
ious viewpoints, is proposed in this paper. A voxel representation is estimated using the
space carving algorithm. Implicit multiorder radial basisfunctions are employed in or-
der to model the separation surface between the voxel model and the exterior. The RBF
model produce a smoother 3-D scene than the voxel representation while requiring much
less parameters. The 3-D representation is improved by using an RBF centre updating
algorithm. The proposed algorithm estimates the disparityerrors between pairs of images
after recovering their perspective distortions. The resulting 3-D surface representation
can be easily rendered and manipulated by geometrical transformations.

References

[1] A. Broadhurst, T. W. Drummond, and R. Cipolla. A probabilistic framework for
space carving. InProc. ICCV, vol. 1, pages 388–393, Vancouver, BC, Canada, 2001.

[2] F. Chen and D. Suter. Multiple order Laplacian spline - including slines with tension.
Technical Report MECSE 1996-5, Monash University, Australia, July 1996.

[3] R. L. Cook. Stochastic sampling in computer graphics.ACM Transactions on
Graphics, 5(1):51–72, 1986.

[4] H. Q. Dinh, G. Turk, and G. Slabaugh. Reconstructing surfaces by volumetric regu-
larization using radial basis functions.IEEE Trans. on Pattern Analysis and Machine
Intelligence, 24(10):1358–1371, 2002.

[5] C. H. Esteban and F Schmitt. Silhouette and stereo fusionfor 3D object modeling.
Computer Vision and Image Understanding, 96(3):367–392, 2004.

[6] Y. Furukawa and J. Ponce. Carved visual hulls for image-based modeling. InProc.
ECCV, part I, LNCS 3951, pages 564–577, Graz, Austria, 2006.

[7] A. Fusiello, E. Trucco, and A. Verri. A compact algorithmfor rectification of stereo
pairs.Machine Vision and Applications, 12(1):16–22, 2000.

[8] R. I. Hartley and A. Zisserman.Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2nd edition, 2004.

[9] H. Kim and I. S. Kweon. Appearance-cloning: photo-consistent scene recovery
from multi-view images.Int. Journal of Computer Vision, 66(2):163–192, 2006.

[10] K. Kutulakos and S. M. Seitz. A theory of shape by space carving. Int. Journal of
Computer Vision, 38(3):198–218, 2000.

[11] B. Scholkopf, J. Giesen, and S. Spalinger. Kernel methods for implicit surface mod-
eling. InProc. of Neural Information Proc. Systems (NIPS), pages 1193–1200, 2004.

[12] G. G. Slabaugh, W. B. Culbertson, T. Malzbender, M. R. Stevens, and R. W. Schafer.
Methods for volumetric reconstruction of visual scenes.Int. Journal of Computer
Vision, 57(3):179–199, 2004.


