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Abstract 

An automated unsupervised technique, based upon a Bayesian framework, for 
the segmentation of low light level imagery is proposed. Primarily, Mixture 
Modelling is used to provide a baseline estimate. This estimate is then refined to 
consider spatial correlations using Markov Random Field (MRF) Modelling. The 
technique has been implemented assuming low-light level Poisson statistics, and 
the results compared to the more widely used assumption of Gaussian statistics. 
Investigations revealed the Poisson technique quantitatively outperforms the 
Gaussian technique for synthetic low light imagery, both before and after 
avalanche multiplication, via the multiplication register of a Low-light Level 
Charge Coupled Device (L3CCD). The technique was then applied to the task of 
segmenting a biomedical dataset obtained from a L3CCD. Qualitative results 
were promising, again showing improvement over the Gaussian technique. 

1 Introduction 
The high sensitivity of recently developed L3CCD sensors provides us with the ability 
to acquire multidimensional datasets at high temporal sampling rates under low-light 
level conditions. This allows, for the first time, the study of the dynamics of biomedical 
bodies such as cells, and their intra-cellular components. The novel imaging method 
allows vast multidimensional datasets to be regularly acquired. Novel statistical 
distributions are present within the data; due to both the initial low-light levels at which 
the data is acquired, and the avalanche multiplication to which the data is subjected via 
the L3CCD. Along with the size of these datasets, the statistical distributions present a 
new challenge to improve upon the existing methods currently in use within the area of 
biomedical image processing. In this work, an automated unsupervised technique, based 
upon the Bayesian framework and assuming low-light level statistics, is proposed for 
the segmentation of L3CCD imagery.  
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Related work in this area has included the segmentation of medical images using an 
automated volumetric segmentation system [1]. In this work, the authors combine 
techniques in the areas of statistical reasoning and multi-resolution analysis, to 
differentiate tissue types in brain images obtained from Magnetic Resonance Imaging 
(MRI) and Positron Emission Tomography (PET) imaging techniques. Similarly to 
Peng et. al. [2], in which a method is presented to segment 3D MRI brain images, a 
Spatial Gaussian Mixture Model is used to represent the intensity probability 
distribution of each of the brain tissues. Like the work presented here, this method 
consists firstly of a learning process based on the Expectation Maximisation (EM) 
algorithm to estimate parameters. A classification algorithm based upon the Iterated 
Conditional Modes (ICM) algorithm is then used to perform segmentation of the 
biomedical imagery; using these parameters. In both cases, the results found show an 
accurate method for the segmentation of the example images. Deng [3], using a similar 
method for unsupervised MRF modelling, has also found encouraging results. While 
related works [1-4] have adopted a Gaussian Maximum a Posterior-MRF (MAP-MRF) 
approach, we instead assume low-light level Poisson statistics for the optimisation of 
the novel L3CCD data; and apply the resulting technique. To the authors’ knowledge, 
this Poisson MAP-MRF approach has not previously been applied to this class of 
imagery. The paper is organised as follows. In section 2, our Poisson MAP-MRF 
approach is defined. In section 3, results obtained are reviewed and analysed. Finally, 
conclusions and future work are discussed in section 4.  

2 Poisson MAP-MRF Approach 
2.1 Low Light Level Statistics and L3CCD Theory 

At low light levels (up to approx. 50 photons per pixel per integration time), photon 
counts are distributed according to the Poisson distribution [5] 

 ( ) ( ) ( )( )| exp log log !p y y yμ μ μ= − −  (1) 

where y is a non-negative number of occurrences, and μ the mean number of 
occurrences. L3CCDs contain a multiplication register which implements electron 
avalanche multiplication so that a large mean gain can be realised prior to the 
conventional readout amplifier. When the photon input level is small and the gain large, 
the L3CCD output can be estimated by providing the probability distribution of the 
L3CCD with (1), giving the joint distribution [5] 
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This is the probability the output will be x when the mean light level is μ , with the 
input number of photons equal to n, and a  mean gain of g. 

 



  

2.2 Derivation of Poisson MAP-MRF Technique 

Using Bayes estimation, a risk is minimized to obtain an optimal estimate. In terms of 
the segmentation problem, according to the Bayes rule, the posterior probability of a 
labelling estimate X given an observation Y can be computed 
by ( ) ( ) ( ) ( )| |P X Y P Y X P X P Y= where P(X) is the prior probability of X, P(Y|X) is the 
likelihood function of X with respect to Y, and P(Y) is the density of Y. The minimal 
risk estimate is therefore ( )* arg max |

X
X P X Y= , the MAP estimate. As P(Y) is a 

constant for fixed Y, the MAP estimate is equivalently found by 
 ( ) ( ){ }* arg max |

X
X P Y X P X=  (3) 

In many applications, an initial estimate for X is obtained using mixture modelling, 
assuming a mixture density of Gaussian distributions. However, taking into account the 
Poisson nature of the low-light level imagery we wish to segment, we model the 
intensity distribution as a mixture of Poisson distributions, given by  
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where K is the number of assumed Poisson distributions, Yi = observed value at pixel i, 
kθ = the set of mean vectors { } ( ); |k k kfμ θ⋅  is a Poisson density with mean kμ ; 
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The algorithm used in practice to find the mixture of distributions that best 
model the dataset is the EM algorithm, first introduced by Dempster et al. [6]. This is an 
iterative algorithm, which estimates the parameters via a Maximum Likelihood (ML) 
criterion. The mixture density returned can then be used to associate pixel observations 
with a Poisson density k using a simple ML estimation 

 ( )* arg max |k i k
k

k f Y θ=  (5) 

A label Xi is then given to pixel i in the estimate X, corresponding to k*. 
In MAP-MRF labeling, P(X|Y) is the posterior distribution of a MRF. The prior 

model P(X) takes into account spatial correlations present in an image, and is dependent 
upon the type of scene. Assuming our scene to be a piecewise constant surface, we 
consider an indicator function, I(Xi,Xj) = 1 if Xi = Xj and otherwise = 0. The Potts model 
can be described by ( ) ( )( ),

e x p ,
i j

P X I X i X jφ∝ ∑ , where the sum is computed over 

all neighbour pairs. Spatial homogeneity in the model is expressed using the 
parameterφ , small values implying randomness, and large values implying uniformity 
[7]. Let N(Xi) be the neighbourhood of Xi, and let U(N(Xi),k) be the number of 
neighbourhood pixels with a label corresponding to a distribution k. The prior energy 
for each distribution labelled k can then be defined as the negative of the sum of all the 
clique potentials over X [8] 
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= −∑  (6) 

where S is the set of pixel sites, and i the site currently under consideration. 

The likelihood model P(Y|X) depends upon physical considerations. With the traditional 
approach, Y is assumed to be a degraded version of a MRF realization X due to 
independent additive Gaussian noise. Taking a Gaussian distribution as a special form 
of a Gibbs distribution, advantage is then taken of a MRF’s equivalence to a Gibb’s 
distribution [8], to then define the likelihood 
as ( ) ( )( ) 2| exp | 2 i

i S

P Y X E Y X πσ
∈

= − ∏ , where 2
iσ is the variance of the estimated 

Gaussian distribution at pixel i, and 
 ( ) ( ) 2| 2i i i

i S
E Y X X Y σ

∈

= −∑  (7) 

is the likelihood energy. Instead, we assume low-light statistics, taking each observed 
pixel value to be the output of a Poisson process. We then take (1) as a special form of 
the Gibbs distribution, as opposed to the Gaussian distribution. Next, we take advantage 
of a MRF’s equivalence to a Gibb’s distribution to define the likelihood as 

( )( )( | ) exp |P Y X E Y X=  where 

 ( ) ( )( )( | ) log logi i i i
i S

E Y X Y X X Y
∈

= − − −∑  (8) 

is the likelihood energy. Finally, the prior and likelihood energies are added to yield the 
posterior energy. In the Gaussian case, this gives  

 ( ) ( )2( | ) 2 ( , )i i i i
i S i S

E X Y X Y U N X kσ φ
∈ ∈

= − −∑ ∑  (9) 

For our updated Poisson technique, we replace (9) with 
 ( ) ( )( ) ( )( | ) l o g l o g ( , )i i i i i

i S i S
E X Y Y X X Y U N X kφ

∈ ∈

= − − − −∑ ∑  (10) 

The MAP estimate can then be found by then minimising the posterior energy. 
Practically, this can be performed by the use of the ICM algorithm, originally 
introduced by Besag [9]. This is an iterative algorithm that begins with the observed 
scene Y, and the initial estimate of the true scene X from mixture modelling. By 
considering each pixel site in turn, it then proceeds to provide a new estimate of the true 
scene iteratively, until convergence is reached, or a maximum number of iterations 
complete.  The optimal value of φ  for each iteration is chosen via Pseudo-Likelihood 
Information Criterion (PLIC) analysis. This is an automated Bayesian technique that 
considers the ratio of likelihoods of output models to determine the optimal model. In 
the Gaussian case, a single iteration of the ICM requires (11) for each pixel i, 
where k Gμ  is the Gaussian mean of state k. 

 ( ) ( )* 2a r g m i n 2 ( , )k G i i
k

k Y U N X kμ σ φ= − −  (11) 

A label Xi is then given to pixel i in the updated estimate X, corresponding to k*. For our 
updated Poisson technique, we replace (11) with 

 ( ) ( )( ) ( )* a r g m i n l o g l o g ( , )i k P k P i i
k

k Y Y U N X kμ μ φ= − − − −  (12) 

where k Pμ is the Poisson mean of state k. 



  

 

3 Results and Analysis 
3.1 Segmentation of Low-Light Data 

The proposed technique was initially applied to synthetic data with mean gain set to 1 
for analytical purposes. In the first case, an image is produced by the creation of a 
binary random pattern, by convolving a normally distributed 256x256 random array 
with a Gaussian filter. This allows us to quantify the spatial dependencies within the 
data by comparison of the Full Width at Half Maximum (FWHM) parameter of the 
filter used (The greater the FWHM, the greater the spatial dependencies). Pixels are 

then labelled depending upon value. This provides us with our “true scene” X
Λ

that we 
wish to recreate via our segmentation technique (Fig. 1(a)). Poisson noise is then added 
to each pixel, the mean Poisson value being dependent upon the initial labelling, to give 
low-light synthetic data (Fig. 1(b)). Figs. 1(c) and 1(d) show qualitative results giving 
the initial estimate returned from the mixture modelling step, and the application of the 
MAP-MRF technique. Here, Poisson noise is added to the true scene with means 
equivalent to light levels of 4 and 10 photons/pixel/integration time, dependent upon the 
initial labelling. The application of the MAP-MRF technique shows considerable 
improvement over the initial estimate returned from the mixture modelling step, as well 
as a close approximation to the true scene we are attempting to recreate. 

  
   (a)    (b) 

  
                     (c)     (d)  

Figure 1: Automated Segmentation of Synthetic Data (a) ‘True Scene’ with FWHM = 
11.77 (b) ‘Observed Scene’ (True Scene with Poisson noise added (c) Output - Mixture 
Modelling Segmentation of b (d) Output – Poisson MAP-MRF Segmentation of b 

 



  

Fig. 2 shows quantitative results obtained from the MAP-MRF technique compared 
to the initial estimate returned from the mixture modelling step, as φ is increased over 
10 iterations of the ICM algorithm for different initial true scenes with increasing 
spatial dependencies from 2(a) through 2(c). Segmentation was performed 10 times for 
each differing spatial dependency, and the average error rates calculated. 

 
    (a) 

 
        (b)                   (c)  

   
Figure 2: Output Error Rates obtained from technique over 10 iterations varyingφ  
(Solid Curve) compared to output from mixture modelling alone (Dotted Curve). Data 
created with Poisson distributed values of 4 and 10 photons/pixel/integration time (a). 
FWHM = 0.47 (b) FWHM = 2.4 (c) FWHM = 5.9 
 
Quantitative results were found by comparing returned estimates X with the true scene 
using the error rate ( )1 n

i S

err M S
∈

= −∑ ,where Sn is the total number of pixels and M = 

1 if Xi = iX
Λ

, M = 0 otherwise. Minimisation of the error rate corresponds to the best 
input prediction, i.e. an ideal segmentation should give an error rate of err = 0.  

It can be seen in each case that an optimal value for the error rate improves upon the 
error rate returned from mixture modelling alone. An optimal value of φ  is shown in 
each case where the error rate is minimised, i.e. where the Potts model with a value ofφ  
best represents the spatial dependencies present in the input image. The figures also 
show that as the spatial dependencies increase from 2(a) through 2(c), improvements in 
the corresponding results can be clearly seen. We can see that the optimal error rates 
returned are improved as the spatial dependencies within the original true scene are 
increased, and that the error rate is better than that returned with mixture modelling 
alone over a larger percentage of chosenφ . These results are intuitive with what we 



  

would expect, and were replicated for all synthetic imagery with average light levels 
less than 100 photons/pixel/integration time. 

Fig. 3 shows the average percentage improvement of our Poisson MAP-MRF 
technique over the more widely used Gaussian MAP-MRF technique in terms of 
optimal error rate returned. Results were obtained from averaging optimal error rates 
returned from both approaches with 15 different synthetic images. The figure shows 
that the Poisson approach outperforms the Gaussian approach as the average light level 
decreases. This follows intuitively, from our earlier investigation of low-light level 
statistics. 

 

 
Figure 3: Average % Improvement with Poisson MAP-MRF over Gaussian MAP-MRF 
as a function of average light level for low-light level Synthetic Imagery 

3.3 Segmentation of L3CCD Imagery 

Synthetic imagery was then created to approximate the output from a L3CCD sensor 
with varying mean gains. This was achieved by replicating the avalanche multiplication 
process applied by the multiplication register of a L3CCD on the low light synthetic 
imagery.  

Fig. 4 shows the average percentage improvement of the Poisson MAP-MRF 
technique over the Gaussian MAP-MRF technique in terms of optimal error rate 
returned; with differing mean gains applied.  

 

Figure 4: Average % Improvement with Poisson MAP-MRF over Gaussian MAP-MRF 
as a function of average light level for Synthetic L3CCD Imagery created with varying 
mean gains of 100 (Solid Curve), 500 (Dotted Curve), and 700 (Dash-Dotted Curve). 

 



  

The figure again clearly shows that the Poisson approach outperforms the Gaussian 
approach for all mean gains shown, improving as the average light level decreases. We 
can also see that, in general, as the mean gain increases, the percentage improvement 
decreases somewhat due to the fact the distributions present in the data tend to Gaussian 
as the gain increases. 

Finally, the technique has been applied to the segmentation of data obtained from a 
L3CCD sensor. The 3D dataset of dimension 208*235*100 used for these results 
consists of Green Fluorescent Protein labelled telomeres in a cell nucleus; acquired via 
a L3CCD sensor. These are a component of cells which act as a buffer at the end of 
chromosomes to prevent the loss of genetic information needed to sustain its activities; 
with implications in anti-aging and anti-cancer therapy [10]. The technique was also 
applied to a Poisson distributed PET imaging source, of dimension 128*128*35 for 
comparison; as the technique is applicable to any Poisson distributed dataset. The 
phantom data used was an oval shaped object containing six fillable spheres of variable 
diameters filled with fluorodeoxyglucose. Both datasets are shown in Fig. 5. 
 

  
               (a)     (b) 

Figure 5: (a) 3D PET Dataset (b) 3D L3CCD Dataset 
 
 Table 1 shows the error rate obtained from various segmentation techniques applied 
to both datasets, as compared to manual segmentation.  
 

 Otsu 
(Automated 
Thresholding) 
 
[*10e-3] 

Gaussian 
MAP-MRF 
 
 
[*10e-3] 

Sq-Root 
Gaussian 
MAP-MRF 
 
[*10e-3] 

Gaussian 
MAP-MRF 
with Median 
Filter 
[*10e-3] 

Poisson 
MAP-MRF 
 
 
[*10e-3] 

PET 
Imagery 

199 0.653 178 0.687 0.357 

L3CCD 
Imagery 

849 1.30 1.10 1.20 0.614 

 
Table 1: Error Rates obtained from various Segmentation Techniques as compared to 
Manual Segmentation 
 
In each automated MAP-MRF case, the number of total components in an image was 
chosen via Bayesian Information Criterion (BIC) analysis (3 in each case for the 
L3CCD data), and the value of φ  chosen via PLIC analysis. Like PLIC, BIC is an 



  

automated Bayesian technique that considers the ratio of likelihoods of output models 
to determine the optimal model. Included are the Otsu automated thresholding 
technique [11], the Gaussian MAP-MRF technique, the Gaussian MAP-MRF technique 
applied to the square-root values of the original dataset, and with a median filter 
applied; and the Poisson MAP-MRF technique. 

The results clearly show that the Poisson MAP-MRF technique provides a result 
closer to that obtained via the manual segmentation technique than the Otsu and 
Gaussian MAP-MRF techniques in both cases. The Poisson MAP-MRF technique also 
results in less noisy isolated pixels, and clearer isolated telomere bodies than the 
corresponding Gaussian results for the L3CCD data, as shown in the qualitative results 
of Fig. 6. The reason for this is that assuming Poisson statistics allows us to better 
model the true distributions present in the L3CCD datasets.  
 

   
     (a)         (b)            (c) 

Figure 6: Segmentation of L3CCD Dataset (a) Output From Manual Technique (b) 
Output from Gaussian MAP-MRF Technique (c) Output from Poisson MAP-MRF 
Technique 

Both fully-automated techniques gave comparable computational times of 
approximately 60 secs per ICM iteration for a 14-bit image of dimension 208x235; 
using a 2800Mhz x86 GenuineIntel processor. To conclude, better qualitative 
segmentation was found with the Poisson technique over the Gaussian using a fully 
automatic technique, with comparable processing times. 

4 Conclusions and Future Work 
We have presented a novel technique, using a Poisson MAP-MRF approach for the 
segmentation of low-light imagery which, to our knowledge, has not previously been 
applied to the described classes of imagery. We have shown that the technique provides 
improvement over a simple mixture modelling approach, and that improved results are 
seen as the spatial dependencies within the data are increased. The technique shows 
improvement over a Gaussian MAP-MRF approach at low light levels, and has been 
applied to real L3CCD data, with successful results. Future work shall include further 
investigations to take fuller advantage of the distributions present within L3CCD 
datasets. Application of the technique to 4D imagery shall be implemented. 
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