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Abstract

Current assessment of progress in construction projects is a manual task
that is often infrequent and error prone. Images of sites are extremely clut-
tered and rife with shadows, occlusions, equipment, and people - making
them extremely hard to analyse. We present a first prototype system capa-
ble of detecting changes on a building site observed by a fixed camera, and
classifying such changes as either actual structural events, or as unrelated.
We exploit a prior building model to align camera and scene, thus identify-
ing image regions where building components are expected to appear. This
then enables us to home in on significant change events and verify the actual
presence of a particular type of component. We place our approach within an
emerging paradigm for integration in the construction industry, and highlight
the benefits of automated image based feedback.

1 Introduction

1.1 Context and Motivation
We propose a system capable of automatically detecting changes on a building site ob-
served by a fixed camera, and to identify such changes as parts of the construction plan.
Within the construction industry, the pressure is to always seek to deliver on time and
on budget. Regular progress monitoring on construction sites is a fundamental part of
project management required to achieve this. It allows payments to contractors to be paid
periodically on the basis of the amount of work completed, and to respond to the many
unexpected events affecting work (e.g., weather, supplies, accidents). Monitoring is cur-
rently carried out by independent surveyors, who inspect a site to check advancements
against project schedule. However, these traditional approaches are often infrequent, sub-
jective and manually intensive,

Recent trends in construction aim to represent every aspect of a whole project in a
single, integrated Building Information Model (BIM). A BIM can include various as-
pects of a project, giving rise to “nD-systems” [1], containing not only the structural,
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geometric and material properties captured by traditional architectural designs but also
schedule, health and safety, and cost information [8]. The BIM can furthermore be based
on assemblages of standardised components, organised in turn into a hierarchy of work-
packages [11]. The latter identify manageable and distinct project stages, and are defined
by project-specific criteria, e.g., contractor, site location, or structure. Such a model, cou-
pled with a suitable, interactive GUI, provides managers with complete visibility over a
project in time. Importantly, the expected state at any time can be visualised, that is: what
should have been built by a given date.

This ideally would be directly related to progress by keeping the model aligned with
reality, i.e., the actual status of work on site. Unfortunately this proves very difficult. Cur-
rently, information collected from site surveys provide rather general assessments. Au-
tomated monitoring techniques have been proposed for tracking components, including
bar-code labelling, RF tagging and embedded sensors, but their costs and practical aspects
limit applicability [13]. Photographs of a site are taken as a matter of course but mainly
just for recording purposes. Memon et al. [12] is one of the very few construction studies
investigating imaging for progress assessment. The authors use a commercial package to
recover a 3D model of the structures on site; these are then compared to the CAD model
of the planned bulding. The process is however entirely manual and only works for simple
structures, and is not so scalable to the complexities found of real construction sites.

1.2 Objectives and Contributions
We are partnering with the University of Salford to investigate the potential of computer
vision as a progress assessment tool within a BIM framework. In general, this involves
assessing automatically which elements of a building have been completed, by when, and
consequently what stage of progress has been reached. Our main contribution is indeed
an initial system detecting changes in image sequences acquired by a single, fixed camera
placed in an uncontrolled location, and identifying changes as planned, i.e., expected
events in the construction plan, or not. This system differs from other reported vision
research by focusing on detecting close-range structural change, by bringing together a
number of different techniques as follows.

Firstly, the system estimates the unknown position of the camera with respect to the
building by line-based 3-D model matching similar to [5]. However, implementations of
algorithms such as Simplex and SoftPOSIT failed to align given the complexity of the
building model and the high clutter of real-site images. We achieved reasonably good
results with a powerful evolutionary optimizer, Particle Swarm Optimization (PSO) [7].

Secondly, the aligned images in the sequence are normalized photometrically to as-
suage the effects of uninteresting lighting changes. This is followed by identification of
regions in which changes have taken place since previous photographs. We use Simoncelli
filters [16] to get good estimates of time derivatives. Currently we focus and retain only
those change regions in which changes are actually scheduled within the BIM around the
time the image was taken.

Thirdly, image changes do not per se imply that the expected component has been put
in place. For this reason changes must be classified as significant (part of the building
plan) or not. In other words, the component expected must be recognized in the target
region; if not, the change is deemed uninteresting. Recognition is performed by an Ad-
aBoost implementation with simple, Haar-like filters as per [18].



1.3 Related Work
The advantages of an integrated IT framework for the construction industry have been
laid out by Bjork [3]. Trucco and Kaka [17] have then first discussed the potential of
computer vision for progress assessment within such a framework. Their work presented
a prototype vision system dealing with localisation of specific structures on a construction
site using an iconic image matching approach. To our best knowledge, no papers exist in
the computer vision literature on the automatic assessment of progress on building site as
part of an integrated construction model. However, work exists on various related topics
between the intersection of CV and buildings in general.

One topic that forms the focus of related research is in reconstructing building models
from images. Traditionally, photogrammetry is the tool often employed by construction to
measure a building from images. Many of these techniques underpin the core approaches
in CV which focus on the multiple view recovery of structure. Building on previous de-
velopments in [2], Dick et al. [6] present a powerful framework in which a dictionary of
common building elements and their learned distribution is fitted to observed geometry.
Exploiting structural knowledge constrains the combinatorics of the problem. Cantzler
and Fisher [4] presented an algorithm exploiting geometric constraints to improve the
quality of automatically reconstructed building models. Schindler et al. [15] adopt sim-
ilar techniques in the recent trend for “urban modelling” of entire cities from video as a
structure from motion problem. They use the vanishing points to categorise and match the
linear features often found on buildings. Notice that all this work is concerned with recon-
struction, not with measuring building progress, and that the final models do not generally
have the level of detail to accurately measure individual elements of the structure.

A second topic is quality assurance, e.g., tolerance verification, a typical task of pho-
togrammetry [19]. This is a research area that is also founded on interpreting 3D data. For
example, Gordon et al. [9] present a complete system to match scans of buildings to origi-
nal 3D plans, in order to find and highlight elements deviating from prescribed tolerances.
This approach to detecting defects can visually show and compare the “as-built” state to
the original model. Scanning technology implies that the results can be very accurate, but
there are issues related to the sheer volume of data to be interpreted.

The work above concerns change detection in close-range imagery, within 100 me-
tres of the sensor. A great deal of other research exists on observation and verification
of buildings using remote, long-distance imagery, including LIDAR and visible-spectrum
images. For example, Huertas and Nevatia [10] report a system detecting specific changes
in the overall structure of buildings. They exploit linear structure and seek to discard false
edges created by shadows. Generalised 3D models are fitted to the result; and discrepan-
cies used to justify identify changes.

Finally, we observe that progress assessment hinges on change, defined either as de-
parture from an a-priori model [9, 10], or as difference between images taken at different
times. An important realization is that the more prior knowledge of the nature of the
change is modelled, the more the task becomes akin to model-based detection and lo-
cation. Finding significant changes between images relates to the vast research area of
change detection, especially for surveillance applications. For reasons of space, here we
point the reader only to the excellent survey by Radke et al. [14].

In summary, our work fills a niche in that several vision algorithms have been reported
for automatic model building, model improving and quality control, but nothing seems to
exist on the automatic assessment of progress on building sites.



2 System Overview
The key problem is that construction sites offer some of the worst instances of a cluttered
scene. The complexities of the structure, especially while it is being built, will result in
certain ambiguities and self-occlusion. Furthermore, changes to the true structure over
time, which indicate the progress we are interested in, may be surrounded by a large
number of additional spurious events. These can broadly be classified as uninteresting
changes, and include effects that are environmental (light and shadows, rain, snow, etc),
partial (longer cumulative periods of work, such as pouring concrete), and occasional
(people and equipment moving or staying still for a period of time).

The task of spotting correct changes can be split down into a number of modules:

• Localisation - to align a model of the building components to a sequence of images.
• Detection - to spot changes occurring over time within the region of components.
• Verification - to confirm after a change if a component is indeed present.

To make the task easier, we can engineer the camera set-up and leverage the knowl-
edge we have from the construction model. For example, we assume that input is based
on a fixed, single camera so that the initial camera-model localisation need only be per-
formed once. Given the complete and accurate construction model, which includes CAD
descriptions of the building elements, we can partition the image into regions where com-
ponents should occur. Observing over time the intensity variations within these regions
allows us to detect potential changes for verification.

3 Processing Modules

3.1 Camera to Model Alignment
This is effectively a model-based fitting approach in which we use a standard Canny edge
detector with further post processing to join up strong neighbouring collinear lines in
the image (within 0.1 radians similar direction and 30 pixels separation). The lines are
represented as segments with end-point and angle (x,y,ρ) in a ℜ3 space. We represent
the camera pose by 6 parameters, and the model is then rendered from this viewpoint and
the same edge detection algorithms run to create a further set of model segments.

Non-linear optimisation of the camera pose then proceeds using a Particle Swarm
based approach [7] to minimise the Sum of Squared Distances between the two sets of
segments. PSO is a stochastic technique that iteratively searches across the multidimen-
sional problem domain using a “swarm of particles” that are each guided by their own
best solution, and by knowledge of the current global best for the entire swarm. Each par-
ticles velocity is thus governed by a weighing between these locations (which are updated
on discovering new optima) and by inertia and randomising terms. This allows the fitting
to initially proceed from a large number of possible solutions before rapidly converging
towards the overall best global solution. This approach is well suited to a complex search
space created by unrelated structures.

Additional constraints in the camera location (between 5 and 100 metres away, and
not below the ground plane) also restricts the search. The output of this process is to
produce a set of component regions, or template masks, created from the projection of the
model onto the aligned image.



3.2 Component Change Detection
The biggest factor influencing false detection of changes in the image are the sudden
effects of lighting. To remove as much as possible these variations, the image is first
converted to grayscale, and the pixels within n× n sub-blocks are normalised to have
zero mean and variance of one - as shown in Figure 1. Since we are considering such
relatively small areas (in terms of the overall image) this approach is justified for removing
a considerable amount of localised brightness and shadowing.

Figure 1: Gray-scale image (top left), and same scene 20 minutes later with changed
lighting conditions (bottom left). Normalisation sub-blocks are then used to produce the
respective corrected images shown retaining only low-frequency structure (right).

We then wish to observe and mark sudden change occurring within particular regions
with respect to time. For this, robust derivative estimation is achieved using a combina-
tion of 5×5×5 two-stage low-pass (noise reduction) and high-pass (differentiate) 5-tap
filters as developed by [16]. This is performed as a convolution first over the regions
spatially using the smoothing kernel [0.036,0.249,0.431,0.249,0.036] followed by the
differentiation kernel [−0.108,−0.283,0.0,0.283,0.108] across time. We then calculate
the mean for all the pixel temporal derivatives in the components template mask. A sensi-
tivity threshold can then be set (as demonstrated experimentally in Section 4) to nominate
peaks in the sequence as significant changes for further verification.

3.3 Verification of Components
We must now verify that detected changes are due to the appearance of scheduled com-
ponents. We use a classifier constructed by the Adaboost algorithm based on a collection
of “weak” classifiers [18]. We train the classifiers on a collection of 100 image samples



of the component (taken from other source images) which are further modified by vary-
ing degrees of rotation and intensity to mimic an increased training set of 1000 images.
A further 2000 negative random samples from images of construction sites in which the
component does not appear are also used. We employ the Gentle Adaboost algorithm
based on a core set of non-rotated, linear Haar features to learn from this data.

The output of the classifier cascade when applied to an image is the location and scale
of strong responses above a certain size as shown in Figure 2. This also highlights some of
the Haar features learnt by the algorithm, showing the strong prevalence for “column like”
edges and corners. Notice that in the output there are a number of false negatives, and
also false positives in the incorrect matching to the smaller scaffolding poles at the top.
However, what it important for the system is the presence of a column around the same
time as change is detected. These locations can be directly compared to the distance from
the centres of the component template mask in question. If verified, then the component
is said to be present for the time of the originally detected peak.

Figure 2: Example output for column detection (left), with Haar features used (right).

4 Experimental Results
To illustrate this approach, we now describe a working implementation based on input
from a real construction site. We use data from the construction of the new School of
Informatics building at the University of Edinburgh. From this we consider a sequence of
1280×1024 images taken by a fixed camera every 20 minutes from 09:00 to 15:40 over 4
months (November ’06 to February ’07). We delete images taken over the weekend for a
total of 1806 frames. As shown in Figure 3 this represents the construction of effectively
three work packages of columns over increasing levels in the structure. Also shown is
the 3D model which we we align on the basis of the ground floor components already
in view. The resulting component template mask for 17 columns are further indicated in
the figure. Notice we only consider those columns that are entirely in view, although it
would be possible to also assess others which are not completely visible - especially when
considering data from other cameras.



Figure 3: Input data sequence showing typical frames by month (top), with aligned 3D
model and resulting template masks for individual columns by work package (bottom).

The alignment to perform this requires a degree of fine tuning to recover a good fit
to the intrinsic parameters of the camera, particularly the focal length. This could be
performed in advance by a calibration procedure. Optimisation of the pose proceeds based
on the strong vertical and horizontal structure in the lower portion of the initial image.
This is performed using 100 particles, taking 1000 iterations to converge to a reasonable
solution. Following this, the template masks are generated from the projected outline of
the final column positions. Each frame for a six-day period around expected construction
time is loaded, converted to grayscale, and corrected for localised illumination using 64×
64 blocks. The pixel values are then convolved with the smoothing and derivative filters.
Taking the mean of the positive temporal derivative for each component template region
reveals the plots as shown in Figure 4 for each period of construction, comparing the
effects of illumination correction to the same process performed without.

The actual complexity and effectiveness of the graphs over these periods depends on
the amount of overall work visible to the camera, and environmental factors during that
time (i.e. periods of clear weather). For example, there is more activity and a large
proportion of the rest of the site is still in view during the building of floor two. Notice
that these can still cause numerous false negatives. However, illumination correction is
able to remove many of these, especially the peaks caused by variation in the morning
and evening (when the sun hits the site) as shown by the graphs on the right.

The performance of the final verification phase of the system is shown in Figure 5.
ROC curves are established by comparing the correct timings of the columns against
verification by Adaboost for detection thresholds ranging from 0.01 to 1.3 using both
corrected and raw grayscale images. The best result is gained for corrected images with
threshold 0.05, in which a total 16 of the 17 columns are correctly detected when they are
actually installed.
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Figure 4: Change detection for 6 day period with illumination correction (left) and without
(right). Over the second floor (top), third floor (middle), and fourth floor (bottom) .

5 Conclusions
In this paper we have presented the application of techniques from computer vision to the
task of reporting construction progress. We have shown how this is feasible by a com-
bination of geometric model matching followed by statistical analysis of template mask
regions to identify interesting changes for verification by an image based classifier. We
have demonstrated how this approach can produce reasonable robust and reliable detec-
tion of key events during the construction process. The prospect of automated assessment
represents huge potential for how large scale construction projects are managed.

However, a number of improvements are certainly possible. Firstly, in refining the
model based fitting for image alignment, and to include input from other camera angles.
This would enable us to handle occlusions in a more rigourous way (currently we ig-
nore what we cannot see). Secondly, in making the detection algorithm more reliable by
including texture and colour as indicators of change. In addition, more complex mod-
els of lighting could be used to remove illumination changes. Thirdly, in improving the
verification classifier, especially for other types of component and differing materials.
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Figure 5: ROC curves for overall detection of 17 columns applying illumination correc-
tion (left) and without (right) with varying detection thresholds.

We are currently integrating this approach within an actual BIM framework in order
to measure the true benefits for construction progress monitoring of an entire site. Even
the simplest automatic confirmation of completion would enable further,more complex
assessment (e.g. second floor activities require that the first floor be complete). In ad-
dition, individual work can be related to entire work-package progress, which will allow
more meaningful and useful reports to be generated.
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