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Abstract

Building on recent advances in the detection of appearadgesefrom
multiple local cues, we present an approach for detectimtusmn bound-
aries which also incorporates local motion information. &gue that these
boundaries have physical significance which makes themriapicfor many
high-level vision tasks and that motion offers a uniquegmftritical source
of additional information for detecting them. We provide ewndataset of
natural image sequences with labeled occlusion boundariesvhich we
learn a classifier that leverages appearance cues alongnttbn estimates
from either side of an edge. We demonstrate improved pedoce for pix-
elwise differentiation of occlusion boundaries from nareloding edges by
combining these weak local cues, as compared to using theanagely. The
results are suitable as improved input to subsequent mitigbrlevel rea-
soning methods.

1 Introduction

Occlusion boundaries are a rich source of information ingesa Not only do they pro-
vide boundary conditions for almoahyprocess which reasons spatially within an image
(e.g.optical flow, shape-from-X methods, feature extractiotefiihg,etc), but they also
capture important perceptual information about the 3D e¢2h Rather than being con-
sidered merely a nuisance to be “handled” or outliers to lnédad, as is often the case,
these boundaries offepportunitiesfor segmentation and object discovery [3, 12, 14],
and for reasoning about shape and structure [18].

Since occlusion boundaries correspond to locations wheeeobject or surface is
closer to the camera than another, we can exploit the regudépth discontinuity as an
indication of their existance. Noting that in many applicas, video rather than sin-
gle isolated images may be available, we can use loedionestimates as evidence of
those depth discontinuities. In addition, most occlusionr@aries are also visible as ap-
pearance edges (though we note that many appearance edgesotely due to surface
markings or illumination effects). Neither motion nor appce alone, however, is suf-
ficient for the detection of occlusion boundaries. Accutatal motion estimates may be
hard to obtain near occlusion boundaries, and appearages dd not always correspond
to occlusions. Thus we will combine multiple appearancescoaptured by state-of-the-
art edge detectors, with local motion cues to show thgetherthese distinct sources
of information produce superior results to using either alome. In particular, our goal
is to determine the subset of appearance edges that cancepocclusion boundaries,
thereby framing our problem as one of classification.

*This work was partially supported by a National Science [ation Graduate Fellowship.
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After explaining in Sections 2 and 3 the specifics of extragtiur motion and appear-
ance cues and their classification, we will describe our exynts in Section 4, demon-
strating improved occlusion boundary detection when coimgithese cues. These ex-
periments provide quantitative as well as anecdotal resulta novel dataset labeled for
this task.

2 Local Occlusion Boundary Features

Edge detectors generally assign a “strength” to each pixkich captures the degree
to which an edge exists there, based on the contribution ridus perceptual cues. At
occlusion boundaries, there is often an additional cueenfohm of inconsistent image
motion. This motion may be caused by camera movement, whidhces parallax at
depth discontinuities, or it may be a result of dynamic otgi@ét the scene. Our approach
handles either situation equivalently and is thus more igatigan motiordetectionwork
that relies on a static camera for background subtracéian[14, 19]. In the following
sections, we will describe our methods for extracting eddhese features, which will
then be used as cues for an occlusion boundary classifietilokxdn Section 3.

2.1 Oriented Edge Detection

While classical edge detectors based on filtering are pgpuoiast notably the Canny
detector, they rely on rather simple models of image intgresi edges. Even moving
beyond simple step edges to more complex edge types [18rlifiltering approaches
still perform poorly on edges which exist between cluttesetextured regions. This is a
serious concern for our work since we hope to extract motiaie vicinity of detected
edges (as described in the Section 2.2 below). Motion is obBervable when there
is sufficient intensity gradient due to texture or cluttey,vee need an edge detection
approach which works well in such cases.

Thus we seek a detector capable of combining multiple cueéshwdoes not rely on
overly simplistic edge models. An increasingly popularraggh to achieve these goals
computes edge strength using statistical comparisonsrepacametric distributions of
cues on either side of a sample image patch at various dilemég8, 10, 11, 15, 20].
These detectors produce good results even on edges ingextdiclutter and are therefore
more appropriate for our task. Furthermore, they were ebderio the spatio-temporal
domain in [17], yielding a detector also capable of estingatan edge’s normapeed
Though potentially useful for future work, here we focustéasl on integratingnultiple
appearance cuesvhereas [16, 17] only use intensity information.

Thus, we have chosen to use the popular BerkeRly tietector for our experiments
[10], which already incorporates three appearance cuéghfbess, color, and texture)
and offers a publicly available implementation. As an addedefit, thePb detector’s
default parameters were learned on a large set of humanesggchdata [9], allowing us
to avoid tedious parameter tuning. At each location in thage) we interpolate better
estimates for both orientatior®) and edge strengtte) by fitting parabolas around the
peakPbresponse over the set of sampled orientations. Then weesgttose responses
which are not local maxima along the edges’ normal direstifr8]. All edges which
survive this suppression are kept for the classificatiop, 8& we ignore edge strength at
this stage (effectively thresholding at zero) to avoid patumely ruling out edges simply
because of low strength before also considering motion.cues

In Figure 1, we provide an example of edges detected usirglgitmal linear filtering
approach (b), which is based on response to a quadraturefmaiented filters [1, 5, 13],
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of filters to (c) the Berkele?b detector (all non-zero responses after non-local maxima sujpmness
are shown). Only th@b detector fires consistently on the edges which lie on occlusion boundaries
of the pole, giving subsequent classification a chance of succeéhegyoal of this work, then, is

to utilize appearance and motion cues in order to classify which of thosedstgctions are also
occlusion boundaries, as shown in (d).

as compared to the output of tiRb detector (c). Each shows all non-zero responses
after non-local maxima suppression. Note how Biedetector finds more consistent
edges at the occlusion boundaries on the sides of the pgbtelése background clutter.
At this stage, we are most interested in providingpaltential occlusion boundaries to
the subsequent classifiere; we can tolerate false positives but not false negatives).
ThereforePb is much better suited to our classification task, an examphlhich is
shown in (d).

2.2 Local Multi-Frame Motion Estimation

As with edge detection, the estimation of image motic®, optical flow, is a classical
problem in computer vision (see [4] for a recent tutorialré] we will consider several
consecutive frames of video and computmalti-framemotion estimate. As compared
to using only two frames, we find that using multiple framesdurces substantially more
robust estimates that are more discriminative for our diaation task.

Given a set of framegl ™M }N_ our goal is to find the translational motion, with
componentas andv, which best matches a patch of pixétsin the central reference
image,| ©, with its corresponding patch in each of the other ima@g8) }nzo:
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This implicitly assumes constant translation for the dorabf the set of frames, which
we find to be reasonable over brief time periods.

We employ Gaussian-shaped weighting functiomss,y) andh(n) (with associated
bandwidthsay, and gy,), to decrease the contribution spatially and temporallpigéls
distant from the center of the reference patch. We iterigtiestimateu and v using
a multi-frame, Lucas-Kanade style differential approathis amounts to solving itera-
tively the following least squares problem for new traristaestimates (at iteratida+ 1),
given the previous ones (at iteratik)) based on spatial derivatives of the reference patch,
Ix andly, and temporal derivatives;
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where the sums are taken over all pixels within the patcrgsacall frames. (For clarity,
we have omitted the weightsy(x,y) andh(n), in this formulation.) In practice, we ini-
tially consider onlyl (9 and its two immediate neighbors. We then gradually incrézese
temporal window, initializing with the previous transtati estimate, until finally consid-
ering all frames from-N to N. This prevents frames at extremes of the temporal window
from pulling us to poor local minima of (1)

Aggregation of patches of data near occlusion boundarig®ldematic and address-
ing this problem specifically for optical flow estimation hetsubject of extensive re-
search, including multiple motion estimation, robustrestiors, line processes, and para-
metric models [2, 4]. Recently, impressive results comquutiense flow fields in spite
of significant occlusion boundaries by using a variationgdraach and bilateral filtering
were demonstrated in [21].

For our purposes, since we are interested only in motion
estimates near edges (rather than a dense flow field), we will s~
choose patches of daBaandPk on either side of each detected ; T
edge pixel, as shown in Figure 2. In addition, because we have / i
an estimate of each edge pixel's orientatién,we can align PL
information across a potential occlusion boundary. Thifite -/ i J

. . . . . . Detected _s™> "t~ _ ;
nigue is related to adaptive/multiple-window techniques. oriented Edge
in stereo vision [6, 71, gind was also recently used 'n.ocomS'Figure 2-patches for mo-
reasoning [16]. (Spatio-temporal alignment to moving edgtgon estimation aligned to
is also performed in [16], wh|ch could be used to'augme'nt_oégoriented edge.
approach as well.) Computing the necessary derivativesrwit
each window (via standard finite differencing), we can then e
timate the motionsy_ = [ u. v | andur=[ Ur Vg |T) of the patches on either
side of each edge using the least squares approach outbogd.aVe then compute the
difference in motion between the left and right patchgss u. — ur. Finally, we use the
Euclidean norm of thely vector to capture the relative motion between the surfanes o
either side of a potential occlusion boundary. This megiwss as the second feature, or
cue, used by the classifier described in the next section.

In our experiments, this Euclidean metric proved to be jastseful as a Mahalanobis
distance. This is likely due to the difficulty in obtaining agb estimates of the neces-
sary covariance information on the motion componeats. py using the Hessian in (2),
which is not sufficient), without resorting to expensive géing techniques [2]. More
advanced motion estimation methods and distance metecpaasible avenues of con-
tinued research. For example, it may be useful to use an affot®n model or to con-
sider separately the estimated components of motion nanthtangential to the edge’s
orientation.

3 Classification

Our goal is to label edges as occlusion boundaries or not.d/de ¢y using the posterior
probability of the existence of an occlusion boundary giwenfeatures, FB|f), where

f may represent the motion differendethe edge strengte, or both{d,e}. Given the
substantial, scene-dependent variation in the fracti@ppéarance edges that are also oc-
clusion boundaries, we assume a uniform prior ofBPand use Bayes’ Rule to estimate

1This is equivalent to gradually increasing the bandwidth(ai.



this posterior (note that estimating a prior from the tnagndata was not helpful):

p(fB)
(f[B)+ p(f|-B)’

Pr(B|f) = 0 ®)

Given training data, we can sample our edge strength andmdiiference freatures to
estimate the necessary data likelihoogéf|B) and p(f|—B), as described in the next
section. Thresholding this ratio yields the classifier u®dour experiments. In the
future, it may be possible to achieve better performanceagning adaptive priors for a
given image sequence.

4 Experiments

We first need a dataset with labeled occlusion boundariesiir o learn the likelihoods
for the classifier. Such a dataset currently does not%xi&us we have constructed a
new dataset for this task, which will also be made availablae for other researchers. It
contains 30 short image sequences, approximately 8-2@#amength with the ground
truth occlusion boundaries labeled in the referenee ihiddle) frame of each sequence.
Some example scenes from this dataset are depicted in Rguith their ground truth
occlusion/object boundary labels overlaid. The dataspiite challenging, with a variety
of indoor and outdoor scene types, significant noise and oessfon artifacts, uncon-
strained handheld camera motions, and some moving objéétsplan to augment this
dataset with further examples in the future.

Figure 3:Ground truth occlusion boundaries labeled for 12 of the 30 scenesiionataset. Each
example is the reference (middle) frame of a short sequence, ust2llframes. The images have
been lightened for clarity. The scene in Figure 1 is also in the dataset.

For our experiments, we first extract our edge strength fedty applying the Berke-
ley Pb code to the reference frame of each sequence, using allldpteametersi(e.
those learned from the BSDS training data). Next we aligh dgame of the sequence
to the reference frame using a global translational motgiimete, as suggested in [16].
This stabilization step removes gross camera motionsyaltpus to focus on the (poten-
tially small) relativepatch motions which are most important for our task. In addjthe
stabilized sequence better adheres to our constant wesmstimption. Then, as described
in Section 2.2, we align small patches< 12 pixels) on either side of each edge according
to the edges’ detected orientations (see Figure 2). Usirand (2), we estimate the trans-
lational motion of each patch separately and compute théd&an distance between the
two estimates. We use a temporal window radiull éf 3 frames and weighting function

2The popular Berkeley Segmentation Data Set (BSDS) [9] doeprowide imagesequencesecessary for
estimating motion, nor do the human-labeled edges necessarilyspond strictly to occlusion boundaries.



bandwidths oo, = N anda,, = r. As shown by the distribution in Figure 4, most relative
motionsug are quite small, with a mean of 0.14 pixels/frame. This sugpour claim
that the motion cue available for our task is quite subtle.

4.1 Training

We randomly select half of our dataset to use for training. We
first determine the correct label for all detected edge piiehn
image by matching them to occlusion boundary pixels from the
ground truth data. Because of localization inaccuracieda(
beling and detection), we use an approach similar in sjirihé
one outlined in Appendix B of [10], which seeks to find a one=s
to-one correspondence between detected edge pixels arigynea
hand-labeled boundary pixels. A given training set cossi$tl5 Figure 4: Empirical
scenes, yielding a total of approximately, 800 individual ex- distribution of relative
amples of edge pixels for training. Unfortunately, thesaneples Metionsug.

are taken from contiguous edges and therefore the patchdsrus

generating their appearance and motion cues overlap smilly. Thus they are highly
dependent samples, making it inappropriate to use theroraildining.

To alleviate this problem somewhat, we consider only a remdabset of the edges
available in the training set. This subset is selected shatrio two samples which come
from the same image could have utilized overlapping patohdata in estimating motion
or computingPb. Thus, for these experiments, we sample edges that aresat tedal2
pixels apart. The resulting subset contains approxim#&ed0 examples, which we use
for the training described below. (For testing in Sectid de classifyall edges detected
in a given image.)

Using the edge strength and motion features for all edgelpb@rresponding to
ground truth occlusion boundaries, we construct kernekitierestimates of each cue
likelihood independentlyp(e|B) and p(d|B), as well as their joint likelihoodp(e, d|B).
Similarly, we use any detected edges thatraseocclusion boundaries as negative exam-
ples to learnp(e|—B), p(d|—B), andp(e,d|—B). We use a Gaussian kernel with= 1
bin, and+30 support. For each cue, we use 50 bins (and thus the joiniHd@d estimate
contains 50< 50 bins). In our experience, using a kernel does offer imgadaesults, de-
spite the fairly coarse binning, particularly in terms ohgealization from training to test
data. To emphasize the importance of distinguishing thg smrall motion differences
(Figure 4), the bins used for estimating the likelihood & thotion-difference cue are
logarithmically spaced between 1Dand 16 (where very large motion is indicative of
noise or lack of texture). The bins for edge strength araliyespaced between 0 and 1.

The resulting independent cue likelihoods are shown infiéi§u As evidenced by the
separation of the distributions for each class, these anesmtain some distinct informa-
tion for our classification task. The distributions also ma@htuitive sense: higher edge
strength and larger motion differences more commonly spoead to occlusion bound-
aries. It is worth noting that the motion difference cue idyaveak (.e. the distributions
overlap significantly). While improved motion estimatiorcheiques may help, this fur-
ther supports our claim that the use of optical flow alone fatifig occlusion boundaries,
as is common practice in segmentation schemes based ompuidd produce poor re-
sults on natural scenes which lack texture at many true silboundaries.

The estimated joint likelihoods are shown in Figure 6. Weehastimated the full
two-dimensional joint distributionp(e,d|B) andp(e, d|-B) as well as approximate joint
distributionsp(e|B) p(d|B) and p(e|—B)p(d|—B), which assume our two cues are inde-
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Figure 6:Learned joint likelihood distributions and ratio scores for our two cuett.drel right of
each pair shows the result using the full and approximated joint, regpkycti

pendent. Given the visually similar estimates, it wouldegopsafe to make such an inde-
pendence assumption and approximate the joint in this rmaweewill test our classifier
with both versions below.

Next we compute the posterior probability according to (Byr the separate cues,
the result is overlaid on the likelihoods in Figure 5. For tloenbined cues, the posterior
estimates are found in the rightmost pair of Figure 6. Ratieanr fitting an arbitrary model
to the posterior, we have chosen to use the estimates asamamtric lookup tables.

Finally, we evaluate the learned classifier on the trainiatadtself. After estimat-
ing P(B|f) at each edge pixel, we generate Precision vs. Recall cusvearking the
threshold on that posterior estimate and counting the nuthléwere correctly labeled.
As seen in the left plot of Figure 7, each cue separately ges/some information, but
the two together perform better, with the full joint prowidithe best result. The precision
levels of these curves also capture a notion of the difficofityur task and dataset.

We can repeat the entire training process with a differentloanly-selected set of
sequences for training. Doing so allows us to compute thue bars on the precision recall
curves show in Figure 7. These error bars represent plugdmine standard deviation
(6) for n= 50 trials. Thus they indicate the typical distribution o tturves for various
divisions of the data. The confidence intervals based omlatdrerrors §/./n) are very
tight and visually imperceptible from the mean (and thusarteshown). This indicates a
statistically significant difference between the mean esiin the plots.

4.2 Testing

For testing, we use the remainder of the dataset, extractatmpn and edge strength cues
as before. This includes the other half of the scenes, agéimapproximately 80000

examples to be classified. We classify each edge pixel bgltbiding the estimated pos-
terior. We can vary this threshold to produce the PrecisiorRecall curves shown in the
right plot of Figure 7. Here we see confirmation that the ledradlassifier can generalize



Precision

Training Set Precision vs. Recall

Test Set Precision vs. Recall

0.3

Edge Strength Only
Motion Diff. Only
Edge Strength + Motion, Full Joint
Edge Strength + Motion, Approx Joint

Precision

"

Edge Strength Only
Motion Diff. Only
Edge Strength + Motion, Full Joint
Edge Strength + Motion, Approx Joint

\

0.2 L
0 0.2

L
0 3 0.4 0 5 0.9

Recall

0.6 0 7 O.B

1

0.2
0

0.3 0.4 O 5

Recall

0.6 0 7 O.B

0.9 1

Figure 7: Precision vs. Recall curves for the training and test sets (left and riggpectively),
using various combinations of cues. Error bars indicate plus/minustandasd deviation of the
curves for 50 randomly selected divisions of the dataset.
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Figure 8:Example classification result at a chosen operating point of 60% reaaihbing ap-
pearance and motion cues produces superior precision than eitrelooee Note in the combined
result the increased detection on the left of the leg as compared to ugjagedngth alone, and
the decreased spurious detections as compared to using motion alone.

to novel scenes. We see similar performance between thafdlapproximated joint dis-
tributions, with marginal improvement using the approxiim@ This may indicate that
the full joint estimate is slightly overfitting the trainimtata. And once again, by repeating
the experiment with different test sets, we can generatdiiptayed error bars.

Aggregated results as provided in Figure 7 give a generaesehperformance, but
here we also provide a few anecdotal examples from the datessehibit more concretely
the information sometimes hidden in such cumulative compas. Figure 8 shows a
scene with ground truth overlaid. To illustrate the impmest when using both cues
together, we have selected the threshold for each clasifieresults in 60% recall, as
indicated on the Precision vs. Recall plot. For the indidatendow of the original scene,
the right four boxes compare the ground truth labeling ardthssification results using
the cues individually and together. As shown, the best t¢aith significantly higher
precision) is achieved using both cues. For example, comdbines yield improved de-
tection with fewer false positives on the left side of thedsgcompared to the result using
individual cues alone. Similarly, the examples in Figureetndnstrate classification im-
provement using combined cues.

5 Discussion & Conclusion

Because the performance of any local edge detector is tim#eme edges will always
be missed. By restricting ourselves to the classificatioord§ the appearance edges
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Figure 9: Two additional example classification results. Combining appearancmatidn cues
produces superior precision at the selected recall operating pointiivam either cue alone. Note
the decreased false positives when using the combined cues.

which are detected, we therefore inherit those limitations. As dersamprove €.g. in
detecting very weak edges), so too will our approach. Fodataset, however, the edge
detector fires with non-zero strength on 83.5% of the grouuntth boundaries, indicating
that our technique is viable in practice. A complementanrapch may include finding
motion boundariefirst and subsequently incorporating appearance reasoning.nTdy
allow the detection of occlusion boundaries visibidy due to motion, but these cases are
relatively rare and such an approach could come at high ctatipoal cost.

Local estimates of any kind, including tHb detector and our motion difference
feature, are inherently noisy and ambiguous. They are neefuliwhen incorporated
into more global reasoning,g. using a graphical model. Rather than blindly using local
estimates for mid- and high-level tasks, however, we belieis important, if not crucial,
to evaluate the utility of these low-level cues themselgepérately and in combination).
Having verified here the benefit of using motion, we are culyaeveloping methods
of globally reasoning about object/occlusion boundarigs$ @bject segmentation which
build on the combined local cues described in this work.

Our goal of detecting occlusion boundaries could potdgttznefit many computer
vision methods, which often rely on spatial aggregatiorthla work, we have presented
experiments demonstrating anecdotal and quantitativetsdsr two local, low-level fea-
ture types useful for future research into globally reasgrabout occlusion boundaries.
While further investigation into augmenting and strengthgreach of our chosen fea-
tures is warranted, particularly in the better estimatiod eomparison of local motion,
we have demonstrated that considerable improvement igifylagy occlusion boundaries
is possible when combining these two distinct, individyalleaker cues. We have also
provided a novel, labeled dataset as an additional reséuréigure research on occlusion
boundary detection.
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