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Abstract
Building on recent advances in the detection of appearance edges from

multiple local cues, we present an approach for detecting occlusion bound-
aries which also incorporates local motion information. Weargue that these
boundaries have physical significance which makes them important for many
high-level vision tasks and that motion offers a unique, often critical source
of additional information for detecting them. We provide a new dataset of
natural image sequences with labeled occlusion boundaries, on which we
learn a classifier that leverages appearance cues along withmotion estimates
from either side of an edge. We demonstrate improved performance for pix-
elwise differentiation of occlusion boundaries from non-occluding edges by
combining these weak local cues, as compared to using them separately. The
results are suitable as improved input to subsequent mid- orhigh-level rea-
soning methods.

1 Introduction

Occlusion boundaries are a rich source of information in images. Not only do they pro-
vide boundary conditions for almostanyprocess which reasons spatially within an image
(e.g.optical flow, shape-from-X methods, feature extraction, filtering,etc.), but they also
capture important perceptual information about the 3D scene [2]. Rather than being con-
sidered merely a nuisance to be “handled” or outliers to be avoided, as is often the case,
these boundaries offeropportunitiesfor segmentation and object discovery [3, 12, 14],
and for reasoning about shape and structure [18].

Since occlusion boundaries correspond to locations where one object or surface is
closer to the camera than another, we can exploit the resulting depth discontinuity as an
indication of their existance. Noting that in many applications, video rather than sin-
gle isolated images may be available, we can use localmotionestimates as evidence of
those depth discontinuities. In addition, most occlusion boundaries are also visible as ap-
pearance edges (though we note that many appearance edges arise solely due to surface
markings or illumination effects). Neither motion nor appearance alone, however, is suf-
ficient for the detection of occlusion boundaries. Accuratelocal motion estimates may be
hard to obtain near occlusion boundaries, and appearance edges do not always correspond
to occlusions. Thus we will combine multiple appearance cues, captured by state-of-the-
art edge detectors, with local motion cues to show thattogetherthese distinct sources
of information produce superior results to using either cuealone. In particular, our goal
is to determine the subset of appearance edges that correspond to occlusion boundaries,
thereby framing our problem as one of classification.
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After explaining in Sections 2 and 3 the specifics of extracting our motion and appear-
ance cues and their classification, we will describe our experiments in Section 4, demon-
strating improved occlusion boundary detection when combining these cues. These ex-
periments provide quantitative as well as anecdotal results on a novel dataset labeled for
this task.

2 Local Occlusion Boundary Features

Edge detectors generally assign a “strength” to each pixel,which captures the degree
to which an edge exists there, based on the contribution of various perceptual cues. At
occlusion boundaries, there is often an additional cue in the form of inconsistent image
motion. This motion may be caused by camera movement, which induces parallax at
depth discontinuities, or it may be a result of dynamic objects in the scene. Our approach
handles either situation equivalently and is thus more general than motiondetectionwork
that relies on a static camera for background subtraction,e.g. [14, 19]. In the following
sections, we will describe our methods for extracting each of these features, which will
then be used as cues for an occlusion boundary classifier described in Section 3.

2.1 Oriented Edge Detection

While classical edge detectors based on filtering are popular, most notably the Canny
detector, they rely on rather simple models of image intensity at edges. Even moving
beyond simple step edges to more complex edge types [13], linear filtering approaches
still perform poorly on edges which exist between clutteredor textured regions. This is a
serious concern for our work since we hope to extract motion in the vicinity of detected
edges (as described in the Section 2.2 below). Motion is onlyobservable when there
is sufficient intensity gradient due to texture or clutter, so we need an edge detection
approach which works well in such cases.

Thus we seek a detector capable of combining multiple cues which does not rely on
overly simplistic edge models. An increasingly popular approach to achieve these goals
computes edge strength using statistical comparisons of non-parametric distributions of
cues on either side of a sample image patch at various orientations [8, 10, 11, 15, 20].
These detectors produce good results even on edges in texture and clutter and are therefore
more appropriate for our task. Furthermore, they were extended to the spatio-temporal
domain in [17], yielding a detector also capable of estimating an edge’s normalspeed.
Though potentially useful for future work, here we focus instead on integratingmultiple
appearance cues, whereas [16, 17] only use intensity information.

Thus, we have chosen to use the popular Berkeley “Pb” detector for our experiments
[10], which already incorporates three appearance cues (brightness, color, and texture)
and offers a publicly available implementation. As an addedbenefit, thePb detector’s
default parameters were learned on a large set of human-segmented data [9], allowing us
to avoid tedious parameter tuning. At each location in the image, we interpolate better
estimates for both orientation (θ ) and edge strength (e) by fitting parabolas around the
peakPb response over the set of sampled orientations. Then we suppress those responses
which are not local maxima along the edges’ normal directions [13]. All edges which
survive this suppression are kept for the classification step, i.e. we ignore edge strength at
this stage (effectively thresholding at zero) to avoid prematurely ruling out edges simply
because of low strength before also considering motion cues.

In Figure 1, we provide an example of edges detected using a traditional linear filtering
approach (b), which is based on response to a quadrature pairof oriented filters [1, 5, 13],
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Figure 1:For an input image (a), we compare (b) classical edge detection using aquadrature pair
of filters to (c) the BerkeleyPbdetector (all non-zero responses after non-local maxima suppression
are shown). Only thePb detector fires consistently on the edges which lie on occlusion boundaries
of the pole, giving subsequent classification a chance of succeeding.The goal of this work, then, is
to utilize appearance and motion cues in order to classify which of those edge detections are also
occlusion boundaries, as shown in (d).

as compared to the output of thePb detector (c). Each shows all non-zero responses
after non-local maxima suppression. Note how thePb detector finds more consistent
edges at the occlusion boundaries on the sides of the pole despite the background clutter.
At this stage, we are most interested in providing allpotentialocclusion boundaries to
the subsequent classifier (i.e. we can tolerate false positives but not false negatives).
ThereforePb is much better suited to our classification task, an example of which is
shown in (d).

2.2 Local Multi-Frame Motion Estimation

As with edge detection, the estimation of image motion,i.e. optical flow, is a classical
problem in computer vision (see [4] for a recent tutorial). Here, we will consider several
consecutive frames of video and compute amulti-framemotion estimate. As compared
to using only two frames, we find that using multiple frames produces substantially more
robust estimates that are more discriminative for our classification task.

Given a set of frames{I (n)}N
n=−N our goal is to find the translational motion, with

componentsu and v, which best matches a patch of pixelsP in the central reference
image,I (0), with its corresponding patch in each of the other images,{I (n)}n6=0:

[
u
v

]

= argmin
N

∑
n=−N

h(n) ∑
(x,y)∈P

w(x,y)
(

I (n)(x+nu,y+nv)− I (0)(x,y)
)2

︸ ︷︷ ︸

It (u,v,n)

(1)

This implicitly assumes constant translation for the duration of the set of frames, which
we find to be reasonable over brief time periods.

We employ Gaussian-shaped weighting functions,w(x,y) andh(n) (with associated
bandwidthsσh andσw), to decrease the contribution spatially and temporally ofpixels
distant from the center of the reference patch. We iteratively estimateu and v using
a multi-frame, Lucas-Kanade style differential approach.This amounts to solving itera-
tively the following least squares problem for new translation estimates (at iterationk+1),
given the previous ones (at iterationk), based on spatial derivatives of the reference patch,
Ix andIy, and temporal derivatives,It :

[

∑ I2
x ∑ IxIy

∑ IyIx ∑ I2
y

][
uk+1
vk+1

]

= −
[

∑ IxIt(uk,vk,n)
∑ IyIt(uk,vk,n)

]

, (2)



where the sums are taken over all pixels within the patch, across all frames. (For clarity,
we have omitted the weights,w(x,y) andh(n), in this formulation.) In practice, we ini-
tially consider onlyI (0) and its two immediate neighbors. We then gradually increasethe
temporal window, initializing with the previous translation estimate, until finally consid-
ering all frames from−N to N. This prevents frames at extremes of the temporal window
from pulling us to poor local minima of (1)1.

Aggregation of patches of data near occlusion boundaries isproblematic and address-
ing this problem specifically for optical flow estimation is the subject of extensive re-
search, including multiple motion estimation, robust estimators, line processes, and para-
metric models [2, 4]. Recently, impressive results computing dense flow fields in spite
of significant occlusion boundaries by using a variational approach and bilateral filtering
were demonstrated in [21].

Detected 
Oriented Edge

r

PL
PR

θθθθ

r
2

r
2

Figure 2:Patches for mo-
tion estimation aligned to
an oriented edge.

For our purposes, since we are interested only in motion
estimates near edges (rather than a dense flow field), we will
choose patches of dataPL andPR on either side of each detected
edge pixel, as shown in Figure 2. In addition, because we have
an estimate of each edge pixel’s orientation,θ , we can align
those windows to the edge in order to prevent the collection of
information across a potential occlusion boundary. This tech-
nique is related to adaptive/multiple-window techniques,e.g.
in stereo vision [6, 7], and was also recently used in occlusion
reasoning [16]. (Spatio-temporal alignment to moving edges
is also performed in [16], which could be used to augment our
approach as well.) Computing the necessary derivatives within
each window (via standard finite differencing), we can then es-
timate the motions (uL = [ uL vL ]T anduR = [ uR vR ]T ) of the patches on either
side of each edge using the least squares approach outlined above. We then compute the
difference in motion between the left and right patches,ud = uL −uR. Finally, we use the
Euclidean norm of theud vector to capture the relative motion between the surfaces on
either side of a potential occlusion boundary. This metric serves as the second feature, or
cue, used by the classifier described in the next section.

In our experiments, this Euclidean metric proved to be just as useful as a Mahalanobis
distance. This is likely due to the difficulty in obtaining good estimates of the neces-
sary covariance information on the motion components (e.g.by using the Hessian in (2),
which is not sufficient), without resorting to expensive sampling techniques [2]. More
advanced motion estimation methods and distance metrics are possible avenues of con-
tinued research. For example, it may be useful to use an affinemotion model or to con-
sider separately the estimated components of motion normaland tangential to the edge’s
orientation.

3 Classification
Our goal is to label edges as occlusion boundaries or not. We do so by using the posterior
probability of the existence of an occlusion boundary givenour features, Pr(B| f ), where
f may represent the motion differenced, the edge strengthe, or both{d,e}. Given the
substantial, scene-dependent variation in the fraction ofappearance edges that are also oc-
clusion boundaries, we assume a uniform prior on Pr(B) and use Bayes’ Rule to estimate

1This is equivalent to gradually increasing the bandwidth ofh(n).



this posterior (note that estimating a prior from the training data was not helpful):

Pr(B| f ) =
p( f |B)

p( f |B)+ p( f |¬B)
. (3)

Given training data, we can sample our edge strength and motion difference freatures to
estimate the necessary data likelihoods,p( f |B) and p( f |¬B), as described in the next
section. Thresholding this ratio yields the classifier usedfor our experiments. In the
future, it may be possible to achieve better performance by learning adaptive priors for a
given image sequence.

4 Experiments
We first need a dataset with labeled occlusion boundaries in order to learn the likelihoods
for the classifier. Such a dataset currently does not exist2. Thus we have constructed a
new dataset for this task, which will also be made available online for other researchers. It
contains 30 short image sequences, approximately 8-20 frames in length with the ground
truth occlusion boundaries labeled in the reference (i.e. middle) frame of each sequence.
Some example scenes from this dataset are depicted in Figure3 with their ground truth
occlusion/object boundary labels overlaid. The dataset isquite challenging, with a variety
of indoor and outdoor scene types, significant noise and compression artifacts, uncon-
strained handheld camera motions, and some moving objects.We plan to augment this
dataset with further examples in the future.

Figure 3:Ground truth occlusion boundaries labeled for 12 of the 30 scenes fromour dataset. Each
example is the reference (middle) frame of a short sequence, usually8-20 frames. The images have
been lightened for clarity. The scene in Figure 1 is also in the dataset.

For our experiments, we first extract our edge strength feature by applying the Berke-
ley Pb code to the reference frame of each sequence, using all default parameters (i.e.
those learned from the BSDS training data). Next we align each frame of the sequence
to the reference frame using a global translational motion estimate, as suggested in [16].
This stabilization step removes gross camera motions, allowing us to focus on the (poten-
tially small) relativepatch motions which are most important for our task. In addition, the
stabilized sequence better adheres to our constant velocity assumption. Then, as described
in Section 2.2, we align small patches (r = 12 pixels) on either side of each edge according
to the edges’ detected orientations (see Figure 2). Using (1) and (2), we estimate the trans-
lational motion of each patch separately and compute the Euclidean distance between the
two estimates. We use a temporal window radius ofN = 3 frames and weighting function

2The popular Berkeley Segmentation Data Set (BSDS) [9] does not provide imagesequencesnecessary for
estimating motion, nor do the human-labeled edges necessarilycorrespond strictly to occlusion boundaries.



bandwidths ofσh = N andσw = r. As shown by the distribution in Figure 4, most relative
motionsud are quite small, with a mean of 0.14 pixels/frame. This supports our claim
that the motion cue available for our task is quite subtle.

4.1 Training
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Figure 4: Empirical
distribution of relative
motionsud.

We randomly select half of our dataset to use for training. We
first determine the correct label for all detected edge pixels in an
image by matching them to occlusion boundary pixels from the
ground truth data. Because of localization inaccuracies (in la-
beling and detection), we use an approach similar in spirit to the
one outlined in Appendix B of [10], which seeks to find a one-
to-one correspondence between detected edge pixels and nearby
hand-labeled boundary pixels. A given training set consists of 15
scenes, yielding a total of approximately 80,000 individual ex-
amples of edge pixels for training. Unfortunately, these examples
are taken from contiguous edges and therefore the patches used in
generating their appearance and motion cues overlap significantly. Thus they are highly
dependent samples, making it inappropriate to use them all for training.

To alleviate this problem somewhat, we consider only a random subset of the edges
available in the training set. This subset is selected such that no two samples which come
from the same image could have utilized overlapping patchesof data in estimating motion
or computingPb. Thus, for these experiments, we sample edges that are at least r = 12
pixels apart. The resulting subset contains approximately6000 examples, which we use
for the training described below. (For testing in Section 4.2, we classifyall edges detected
in a given image.)

Using the edge strength and motion features for all edge pixels corresponding to
ground truth occlusion boundaries, we construct kernel density estimates of each cue
likelihood independently,p(e|B) and p(d|B), as well as their joint likelihood,p(e,d|B).
Similarly, we use any detected edges that arenot occlusion boundaries as negative exam-
ples to learnp(e|¬B), p(d|¬B), and p(e,d|¬B). We use a Gaussian kernel withσ = 1
bin, and±3σ support. For each cue, we use 50 bins (and thus the joint likelihood estimate
contains 50×50 bins). In our experience, using a kernel does offer improved results, de-
spite the fairly coarse binning, particularly in terms of generalization from training to test
data. To emphasize the importance of distinguishing the very small motion differences
(Figure 4), the bins used for estimating the likelihood of the motion-difference cue are
logarithmically spaced between 10−3 and 102 (where very large motion is indicative of
noise or lack of texture). The bins for edge strength are linearly spaced between 0 and 1.

The resulting independent cue likelihoods are shown in Figure 5. As evidenced by the
separation of the distributions for each class, these cues do contain some distinct informa-
tion for our classification task. The distributions also make intuitive sense: higher edge
strength and larger motion differences more commonly correspond to occlusion bound-
aries. It is worth noting that the motion difference cue is fairly weak (i.e. the distributions
overlap significantly). While improved motion estimation techniques may help, this fur-
ther supports our claim that the use of optical flow alone for finding occlusion boundaries,
as is common practice in segmentation schemes based on motion, could produce poor re-
sults on natural scenes which lack texture at many true occlusion boundaries.

The estimated joint likelihoods are shown in Figure 6. We have estimated the full
two-dimensional joint distributionsp(e,d|B) andp(e,d|¬B) as well as approximate joint
distributionsp(e|B)p(d|B) and p(e|¬B)p(d|¬B), which assume our two cues are inde-



0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Edge Strength (e)

Li
ke

lih
oo

d,
 p

(e
|c

la
ss

)

 

 

0

0.2

0.4

0.6

0.8

1

 

P
os

te
rio

r,
 P

r(
B

|e
)

Edge Strength Likelihoods & Posterior

 

 

10
-2

10
-1

10
0

10
1

0

0.01

0.02

0.03

0.04

0.05

0.06

Motion Difference (d)

Li
ke

lih
oo

d,
 p

(d
|c

la
ss

)

 

 

0

0.2

0.4

0.6

0.8

1

 

Motion Difference Likelihoods & Posterior

P
os

te
rio

r,
 P

r(
B

|d
)

 

 
p( e | B )
p( e | ~B )
Pr( B | e )

p( d | B )
p( d | ~B )
Pr( B | d )

Figure 5:Independent distributions and ratio scores for our two cues.
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Figure 6:Learned joint likelihood distributions and ratio scores for our two cues. Left and right of
each pair shows the result using the full and approximated joint, respectively.

pendent. Given the visually similar estimates, it would appear safe to make such an inde-
pendence assumption and approximate the joint in this manner. We will test our classifier
with both versions below.

Next we compute the posterior probability according to (3).For the separate cues,
the result is overlaid on the likelihoods in Figure 5. For thecombined cues, the posterior
estimates are found in the rightmost pair of Figure 6. Ratherthan fitting an arbitrary model
to the posterior, we have chosen to use the estimates as non-parametric lookup tables.

Finally, we evaluate the learned classifier on the training data itself. After estimat-
ing Pr(B| f ) at each edge pixel, we generate Precision vs. Recall curves by varying the
threshold on that posterior estimate and counting the number that were correctly labeled.
As seen in the left plot of Figure 7, each cue separately provides some information, but
the two together perform better, with the full joint providing the best result. The precision
levels of these curves also capture a notion of the difficultyof our task and dataset.

We can repeat the entire training process with a different randomly-selected set of
sequences for training. Doing so allows us to compute the error bars on the precision recall
curves show in Figure 7. These error bars represent plus/minus one standard deviation
(σ̂ ) for n = 50 trials. Thus they indicate the typical distribution of the curves for various
divisions of the data. The confidence intervals based on standard errors (̂σ/

√
n) are very

tight and visually imperceptible from the mean (and thus arenot shown). This indicates a
statistically significant difference between the mean curves in the plots.

4.2 Testing

For testing, we use the remainder of the dataset, extractingmotion and edge strength cues
as before. This includes the other half of the scenes, again with approximately 80,000
examples to be classified. We classify each edge pixel by thresholding the estimated pos-
terior. We can vary this threshold to produce the Precision vs. Recall curves shown in the
right plot of Figure 7. Here we see confirmation that the learned classifier can generalize
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Figure 7: Precision vs. Recall curves for the training and test sets (left and right,respectively),
using various combinations of cues. Error bars indicate plus/minus one standard deviation of the
curves for 50 randomly selected divisions of the dataset.
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Figure 8:Example classification result at a chosen operating point of 60% recall. Combining ap-
pearance and motion cues produces superior precision than either cuealone. Note in the combined
result the increased detection on the left of the leg as compared to using edge strength alone, and
the decreased spurious detections as compared to using motion alone.

to novel scenes. We see similar performance between the fulland approximated joint dis-
tributions, with marginal improvement using the approximation. This may indicate that
the full joint estimate is slightly overfitting the trainingdata. And once again, by repeating
the experiment with different test sets, we can generate thedisplayed error bars.

Aggregated results as provided in Figure 7 give a general sense of performance, but
here we also provide a few anecdotal examples from the dataset to exhibit more concretely
the information sometimes hidden in such cumulative comparisons. Figure 8 shows a
scene with ground truth overlaid. To illustrate the improvement when using both cues
together, we have selected the threshold for each classifierthat results in 60% recall, as
indicated on the Precision vs. Recall plot. For the indicated window of the original scene,
the right four boxes compare the ground truth labeling and the classification results using
the cues individually and together. As shown, the best result (with significantly higher
precision) is achieved using both cues. For example, combined cues yield improved de-
tection with fewer false positives on the left side of the legas compared to the result using
individual cues alone. Similarly, the examples in Figure 9 demonstrate classification im-
provement using combined cues.

5 Discussion & Conclusion

Because the performance of any local edge detector is limited, some edges will always
be missed. By restricting ourselves to the classification ofonly the appearance edges
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Figure 9:Two additional example classification results. Combining appearance andmotion cues
produces superior precision at the selected recall operating point thanusing either cue alone. Note
the decreased false positives when using the combined cues.

which are detected, we therefore inherit those limitations. As detectors improve (e.g. in
detecting very weak edges), so too will our approach. For ourdataset, however, the edge
detector fires with non-zero strength on 83.5% of the ground truth boundaries, indicating
that our technique is viable in practice. A complementary approach may include finding
motion boundariesfirst and subsequently incorporating appearance reasoning. This may
allow the detection of occlusion boundaries visibleonlydue to motion, but these cases are
relatively rare and such an approach could come at high computational cost.

Local estimates of any kind, including thePb detector and our motion difference
feature, are inherently noisy and ambiguous. They are most useful when incorporated
into more global reasoning,e.g.using a graphical model. Rather than blindly using local
estimates for mid- and high-level tasks, however, we believe it is important, if not crucial,
to evaluate the utility of these low-level cues themselves (separately and in combination).
Having verified here the benefit of using motion, we are currently developing methods
of globally reasoning about object/occlusion boundaries and object segmentation which
build on the combined local cues described in this work.

Our goal of detecting occlusion boundaries could potentially benefit many computer
vision methods, which often rely on spatial aggregation. Inthis work, we have presented
experiments demonstrating anecdotal and quantitative results for two local, low-level fea-
ture types useful for future research into globally reasoning about occlusion boundaries.
While further investigation into augmenting and strengthening each of our chosen fea-
tures is warranted, particularly in the better estimation and comparison of local motion,
we have demonstrated that considerable improvement in classifying occlusion boundaries
is possible when combining these two distinct, individually weaker cues. We have also
provided a novel, labeled dataset as an additional resourcefor future research on occlusion
boundary detection.
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[19] Thomas Veit, Fŕed́eric Cao, and Patrick Bouthemy. An a contrario decision framework for
region-based motion detection.IJCV, 68(2):163–178, June 2006.

[20] Lior Wolf, Xiaolei Huang, Ian Martin, and Dimitris Metaxas. Patch-based texture edges and
segmentation. InECCV, 2006.

[21] Jiangjian Xiao, Hui Cheng, Harpreet Sawhney, Cen Rao, and Michael Isnardi. Bilateral
filtering-based optical flow estimation with occlusion detection. InECCV, volume I, pages
211–224, 2006.


