
All Pairs Shortest Path Formulation for
Multiple Object Tracking with Application to

Tennis Video Analysis

F.Yan W.Christmas J.Kittler
Centre for Vision, Speech and Signal Processing

University of Surrey
Guildford, GU2 7XH, UK

{f.yan,w.christmas,j.kittler}@surrey.ac.uk

Abstract

In previous work, we developed a novel data association algorithm with
graph-theoretic formulation, and used it to track a tennis ball in broadcast
tennis video. However, the track initiation/termination was not automatic,
and it could not deal with situations in which more than one ball appeared in
the scene. In this paper, we extend our previous work to track multiple tennis
balls fully automatically. The algorithm presented in this paper requires the
set of all-pairs shortest paths in a directed and edge-weighted graph. We
also propose an efficient All-Pairs Shortest Path algorithm by exploiting a
special topological property of the graph. Comparative experiments show
that the proposed data association algorithm performs well both in terms of
efficiency and tracking accuracy.

1 Introduction
In automatic video annotation, high-level descriptions rely on low-level features. In the
context of a ball game, such as cricket, football, tennis, table tennis or snooker, the tra-
jectory of the ball provides important information for high level annotation. Indeed, re-
constructing the ball trajectory is essential for a complete understanding of a ball game.
However, tracking a ball in a complex scene can be a difficult task. In the case of tennis
ball tracking, the ball’s small size, high velocity, abrupt motion change, occlusion, and
the presence of multiple balls all pose strong challenges. The scope of this paper is to
develop a robust algorithm for tracking tennis balls in broadcast tennis video.

Let us assume we have a ball candidate generation module, where a ball is detected as
a candidate with a certain probability along with some clutter-originated false positives.
The data association problem, i.e. the problem of determining which candidates are ball-
originated and which are clutter-originated, is the key problem to solve in tennis ball
tracking. In [5], a data association algorithm was proposed under the name of Robust
Data Association (RDA), and was used to track a tennis ball. The key idea of RDA is
to treat data association as a dynamic model fitting problem. In RDA, a RANSAC [2]
paradigm is employed. A sliding window containing several frames is moving over a

BMVC 2007 doi:10.5244/C.21.69



sequence. Candidate triplets are randomly drawn from all the candidates in the current
interval, and are used to fit dynamic models. The fitted models are evaluated using a cost
function. The model is found that is best at explaining the candidates inside the interval.
An estimate of the ball position in one frame, e.g. the middle frame in the interval, is then
given by this model. As the sliding window moves, eventually ball positions in all frames
are estimated.

RDA works well under moderate clutter level, and when certain assumptions are sat-
isfied. However, several weaknesses of RDA have been noticed (see [8] for details).
Inspired by RDA’s model fitting approach to the data association problem, in our previ-
ous work [8], we proposed a two-layer data association algorithm (dubbed L2DA in this
paper) to remedy some of the weaknesses of RDA. Although L2DA provides improved
speed and robustness over RDA, like RDA, it is a single-object tracking algorithm, and
requires an additional track initiation/termination mechanism. This means L2DA is not
applicable for real world tennis sequences that have complex track initiation/termination
scenarios of multiple balls. In this paper, we extend L2DA to handle multiple objects and
to automate the track initiation/termination. This is achieved by using an All-Pairs Short-
est Path (APSP) formulation instead of the Single-Pair Shortest Path (SPSP) formulation
at the second layer of L2DA, and by adding a third layer, path level analysis, onto L2DA.
The resulting algorithm is dubbed L3DA in this paper.

The rest of this paper is organised as follows: Section 2 gives a brief review of L2DA.
Section 3 describes the third layer, path level analysis, of L3DA. This layer works on
the set of all-pairs shortest paths in a graph. In Section 4, we propose an efficient APSP
algorithm. Experimental results are presented in Section 5. Finally, conclusions are given
in Section 6.

2 The L2DA Algorithm
In L2DA, the data association problem is sliced into two layers: candidate level associa-
tion and tracklet level association. Assume the frames in a sequence are numbered from
1 to K. At the candidate level, a sliding window containing 2V + 1 frames is moving
over the frames. At time i, the interval Ii centres on frame i and spans frame i−V to
frame i+V , where i ∈ [1+V,K−V ]. Now instead of randomly sampling as in RDA, we
exhaustively evaluate for each candidate in frame i whether a small ellipsoid around it in
the column-row-time 3D space contains one candidate from frame i−1 and one candidate
from frame i + 1. If it does, we call the 3 candidates inside the ellipsoid a “seed triplet”,
and fit a constant acceleration dynamic model to it. The fitted model is then “improved” by
re-fitting another model using candidates in the sliding window that are consistent with it.
This process is repeated recursively until convergence, forming what we call a “tracklet”:
a small segment of a trajectory. Compared to RDA, this “hill-climbing” scheme signifi-
cantly reduces the algorithm’s complexity: as the proportion of true positives drops, the
complexity grows approximately linearly.

A tracklet T consists of a parameterised dynamic model M (position and velocity at
time i, and the constant acceleration), and a set S of candidates that support the converged
model (“supports” of the model). In other words, T , {M,S }. At time i, there may
be multiple tracklets generated. We threshold them based on the number of candidates
in their support sets, or their “strengths”. Only tracklets that are “strong enough” are



Figure 1: An illustrative example of the topology of G . Each node is a tracklet. Nodes
generated in the same sliding window position are aligned vertically. Striped red nodes:
the first and last ball-originated nodes. Red nodes and red edges: the shortest path between
these two nodes.

retained, and the jth retained tracklet in interval Ii is denoted by T j
i = {M j

i ,S
j

i }.
As the sliding window moves, a sequence of tracklets is generated. These tracklets

may have originated from the ball or from clutter. Now we need a data association method
at the tracklet level. We formulate tracklet level association as a SPSP problem. A
directed and edge-weighted graph G = {N ,E } is constructed, where each node n j

i ∈
N represents the tracklet T j

i , and the weight wl,m
u,v of a directed edge el,m

u,v ∈ E , which
connects nl

u to nm
v , is defined according to the “compatibility” of T l

u and T m
v , i.e. the

smaller the wl,m
u,v , the more likely T l

u and T m
v have originated from a same object (see [8]

for details). We assume that there is only one ball in the sequence, and that the first and
last tracklets (nodes) that have originated from this ball are already known. The ball-
originated candidates are then contained in the support sets of the nodes in the shortest
path between these two nodes, i.e. the path with smallest total edge weight (see Fig. 1).

3 Extending L2DA to L3DA
L2DA assumes there is only one ball to track in a sequence. However, this is not always
the case. For example, there may be multiple plays in one sequence, and the second play
can start while the ball used for the first play is still in the scene. Moreover, track initia-
tion/termination, which is taken for granted in L2DA, is not a trivial problem, especially
when multiple objects are present.

In this section, we extend L2DA to L3DA to deal with multiple objects and to automate
the track initiation/termination. This is achieved by using APSP instead of SPSP at the
tracklet level, and by introducing one more layer on top of that, namely, path level analysis
with a Paths Reduction (PR) algorithm.

For a given pair of nodes nl
u and nm

v in G , there may be paths connecting nl
u to nm

v ,
or there may not. Assume the shortest paths between all pairs of nodes that have at least
one path connecting them have already been identified. Let P be the set of such all-pairs
shortest paths, and p is the number of paths in P . p is in the order of N2, where N is the
number of nodes in the graph. Now observe that no matter how many balls there are to
track, or where each of the ball trajectories starts and terminates in the graph, the paths
that correspond to the ball trajectories form a subset of P . The question now is how to
reduce the original set of APSP P to its subset that contains only paths that correspond
to the ball trajectories.

We propose a simple Paths Reduction (PR) algorithm to achieve this. The PR algo-
rithm reduces the set of APSP to the Best Set of Compatible Paths (BSCP) B, providing



two assumptions are satisfied: first, the p paths in P can be ordered according to their
“qualities”; and second, a pair-wise “compatibility” of the paths in P is defined. The PR
algorithm is summarised as follows:

• Initialisation: P has p paths, and B is empty.

• While P is not empty:

– Remove the best path P∗ in P from P;

– If P∗ is compatible with all paths in B, add P∗ to B.

Now we define the relative quality of the paths. Recall that the weight of a path is the
sum of the weights of all edges the path goes through. Note that the term “shortest path”
used in the previous sections should have been “lightest path”. However, we chose to
use “shortest path” for the sake of consistency with the terminology used in other papers.
We define the strength of a path to be the number of supports in all its nodes, or more
precisely, the size of the union of the support sets in all its nodes. Intuitively, a “good”
path is one that is both “light” and “strong”. However, there is usually a trade-off between
the weight and the strength of a path: a stronger path tends to be heavier. Taking this into
account, we define the relative quality of two path P1 and P2 as follows:

P1

 >
=
<

P2 if (W1−W2)

 <
=
>

α · (S1−S2) (1)

where the relation operators “>”, “=” and “<” between P1 and P2 stand for “is better
than”, “has the same quality as”, and “is worse than”, respectively; W1 and W2 are the
weights of P1 and P2, respectively; S1 and S2 are the strengths of P1 and P2, respectively;
and α is a controllable parameter with the unit of pixel. According to this definition, if a
path P1 is “much stronger” but “slightly heavier” than a path P2, then P1 is said to have a
better quality than P2. Note that this definition does not assume any relationship between
W1 and W2, or relationship between S1 and S2.

It easily follows that the set P equipped with an operator “≥” satisfies the following
three statements:

1. Transitivity: if P1 ≥ P2 and P2 ≥ P3 then P1 ≥ P3;

2. Antisymmetry: if P1 ≥ P2 and P2 ≥ P1 then P1 = P2;

3. Totality: P1 ≥ P2 or P2 ≥ P1.

According to order theory [1], P associated with operator “≥” is a totally ordered set.
The first assumption for the PR algorithm to work is satisfied.

The second assumption, the existence of pair-wise compatibility of the paths, is straight-
forward. Two paths are said to be compatible if and only if they do not share any common
support. It should be noted, however, two paths that do not share any common node are
not necessarily compatible, because different nodes can have common supports.



(a) (b) (c) (d)

Figure 2: (a): ball candidates in an example sequence. Each black circle is a candidate.
(b): generated tracklets. (c): results of applying APSP and the PR algorithm: 3 paths in
Bth. Adjacent nodes in each path are plotted alternatively in blue and red. (d): recovered
class labels as given by Bth.

Figure 3: Ball trajectories (after interpolation and key event detection) superimposed on
mosaic images. From left to right: the first, second and third play in time order.

Now with SPSP replaced by APSP at the tracklet level, and with the PR algorithm at
the path level, we have extended L2DA to L3DA. We apply L3DA to an example sequence
(see Fig. 2). Semantically, the ball-originated candidates in this sequence belong to three
plays. In time order (from bottom to top in the figures), the first play (magenta circles
in Fig. 2 (d)) is a bad serve, where the ball lands outside the service box; the second
“play” (cyan circles in Fig. 2 (d)) is a player bouncing the ball on the ground preparing
for the next serve; and the third play (red circles in Fig. 2 (d)) is a relatively long one with
several exchanges. The objective of data association is to identify the number of plays in
this sequence, and to recover the class label of each candidate: clutter, first play, second
play, or third play. In other words, the objective is to recover the colour information in
Fig. 2 (d), assuming it is lost (see Fig. 2 (a)).

First, we “grow” tracklets from seed triplets (see Fig. 2 (b)), as in L2DA. By looking
for all-pairs shortest paths, a set P with p = 87961 paths is obtained. The PR algorithm
is then applied, which gives a BSCP B containing 11 paths. In descending order, the
numbers of supports (strengths) of the paths in B are: 411, 247, 62, 23, 20, 17, 17, 16,
15, 10, 9. It is a reasonable assumption that a path corresponding to a ball trajectory
has more supports than a path corresponding to the motion of a non-ball object, e.g.
a wristband worn by a player (which can be detected as ball candidates and can form
smooth trajectory as the player strikes the ball). We set a threshold Sth and keep only the

Figure 4: A possible arrangement of the paths in Bth. Magenta, cyan, and red paths
correspond to the first, second and third play in the sequence, respectively.



paths that have more supports than Sth. This results in a thresholded BSCP Bth with 3
paths (see Fig. 2 (c)), where each path corresponds to a play in the sequence.

In tennis ball tracking, the points at which the ball changes its motion abruptly corre-
spond to key events such as hit and bounce, and provide important information for high
level annotation. We detect these key events by looking for motion discontinuities in the
trajectories. In Fig. 3, the 3 ball trajectories after interpolation and event detection are
superimposed on mosaic images.

A suggestion of how the 3 paths might be arranged in the graph G is shown in Fig. 4.
Note that there are 672 tracklets in this sequence. Far fewer nodes are plotted in Fig. 4
for ease of visualisation. Note also that two paths that are temporally overlapping are not
necessarily incompatible. In fact, the first and second plays in the example sequence do
overlap in time: the first play spans frame 16 to frame 260, and the second spans frame
254 to frame 321.

4 An Efficient APSP Algorithm
In L3DA, at the tracklet level, we need to solve an APSP problem for a graph G with N
nodes. In some sequences, N can be in the order of 103. An efficient APSP algorithm
is desirable. Several APSP algorithms have been reported in the literature. The Floyd-
Warshall algorithm solves APSP in O(N3) time [3]. Johnson’s algorithm has a complexity
of O(N2 logN +NE), where E is the number of edges in the graph [4]. Neither the Floyd-
Warshall algorithm nor Johnson’s algorithm makes any assumption about the topology of
the graph. Because of the way our graph is constructed, it has a special topological prop-
erty: its set of nodes N can be partitioned into subsets N1+V ,N2+V , ...,NK−V−1,NK−V ,
where Ni is the set of nodes generated in interval Ii, such that edges exist from nodes in
subset Nu to nodes in subset Nv only if u < v (see [8] for details). Using this property,
we derive an O(N2) APSP algorithm as follows.

The proposed APSP algorithm uses the concept of dynamic programming. Suppose
we are in the middle of the tracklet generation process. The sliding window now cen-
tres on frame i− 1, and tracklets in interval Ii−1 have been generated. Let G (i−1) =
{N (i−1),E (i−1)} be the graph constructed so far, where N (i−1) = {N1+V ,N2+V , ...,Ni−1};
E (i−1) is the set of edges that go into all nodes in N (i−1). Clearly, G (i−1) is a sub-graph
of the complete graph G . Assume the APSP problem in graph G (i−1) has been solved.
That is, in each node nm

v ∈ G (i−1), a table is maintained, where each entry corresponds
to a node in the sub-graph G (v−1). The entry corresponding to node nl

u ∈ G (v−1) keeps
two pieces of information about the shortest path from nl

u to nm
v in G (i−1). The first one

is the last node before nm
v in the shortest path, and the second one is the total weight of

the shortest path. With these two pieces of information for each node nl
u ∈ G (v−1) in each

node nm
v ∈ G (i−1), the shortest path between any pair of nodes in G (i−1) can be identified

by back tracing.
Next, we show how to solve the APSP problem in G (i) using the solution of the APSP

problem in G (i−1). Now the sliding window moves one frame forward, and the interval Ii
centres on frame i. Assume several tracklets are generated in Ii, forming the set of nodes
Ni. Now we need to construct for each node n j

i ∈Ni a table of APSP knowledge, where
each entry contains information about the shortest path in G (i) from a node in G (i−1) to
n j

i .



Figure 5: Constructing the table of APSP knowledge for a node n j
i ∈Ni.

In Fig. 5, the sub-graph inside the big rectangle represents G (i−1), and a new node
n j

i ∈ Ni is plotted as a shaded node. Assume s nodes in G (i−1) are connected to n j
i with

edges. These s nodes are denoted by nl1
u1 ,n

l2
u2 , ...,n

ls
us , and are plotted as dashed nodes

in Fig. 5. Edges that connect these nodes to n j
i are denoted by el1, j

u1,i,e
l2, j
u2,i, ...,e

ls, j
us,i, and are

plotted as dashed edges. Obviously, the number of entries in the table of APSP knowledge
in n j

i is equal to the number of nodes in G (i−1). Without loss of generality, let us consider
one entry in the table, which keeps information about the shortest path in G (i) from a
node nl

u ∈ G (i−1) to n j
i . In Fig. 5, nl

u is plotted as a striped node. Now observe that the
shortest path in G (i) from nl

u to n j
i must go through one of the nodes in nl1

u1 ,n
l2
u2 , ...,n

ls
us

and the corresponding edge in el1, j
u1,i,e

l2, j
u2,i, ...,e

ls, j
us,i. Since APSP has been solved in G (i−1),

the information about the shortest path in G (i−1) from nl
u to nlr

ur is kept in the table in nlr
ur ,

where r = 1,2, ...,s. Let W (i−1)(nl
u,n

lr
ur) be the total weight of the shortest path in G (i−1)

from nl
u to nlr

ur , as kept in the table in nlr
ur . Specially, if the table in nlr

ur does not contain an
entry for nl

u, it means ur ≤ u, and we define for this case W (i−1)(nl
u,n

lr
ur) = ∞. The total

weight of the shortest path in G (i) from nl
u to n j

i is then:

W (i)(nl
u,n

j
i ) = min[W (i−1)(nl

u,n
lr
ur)+wlr , j

ur ,i],∀r ∈ [1,s] (2)

where wlr , j
ur ,i is the weight of edge elr , j

ur ,i. The last node before n j
i in the shortest path in G (i)

from nl
u to n j

i is nl∗
u∗ , where

{u∗, l∗}= arg min
{ur ,lr}

[W (i−1)(nl
u,n

lr
ur)+wlr , j

ur ,i],∀r ∈ [1,s] (3)

The two pieces of information for one entry in the table in node n j
i are thus obtained:

W (i)(nl
u,n

j
i ) and nl∗

u∗ are put into the entry for nl
u. This process is applied to each node in

G (i−1), whereupon the complete table in n j
i is constructed. Using the special topological

property of the graph G discussed at the beginning of this section, the shortest path in
G (i−1) between any pair of nodes in G (i−1) is also the shortest path in G (i) between the
same pair of nodes. When the new node n j

i and the associated edges el1, j
u1,i,e

l2, j
u2,i, ...,e

ls, j
us,i

are added to G (i−1), the tables in the nodes in G (i−1) remain the same. This means that,
simply by applying the above process as new nodes (and associated edges) are received,
when the complete graph G = G (K−V ) is constructed, the APSP problem in it is solved.



SVM boundary -4 -3 -2 -1 0 1

rd 0.917 0.916 0.908 0.874 0.822 0.531

N̄ 12.2 9.0 5.1 0.9 0.1 0

Table 1: Detection rate and clutter level with various SVM boundaries.

The shortest path between any pair of nodes in G can be easily identified by back tracing.
The proposed APSP algorithm is summarised as follows:

• Assume: the APSP problem in G (i−1) has been solved.

• For each node n j
i ∈Ni:

– For each node nl
u ∈ G (i−1):

∗ add an entry labelled nl
u to the table of APSP knowledge in n j

i ;

∗ put W (i)(nl
u,n

j
i ) and nl∗

u∗ given by (2) and (3) into this entry.

Let hi be the number of nodes in Ni. The number of nodes in sub-graph G (i−1) is
then ∑

i−1
k=1+V hk. To solve the APSP problem in G (i), we need to construct a table of APSP

knowledge for each node in Ni. The number of operations of this process is in the order
of hi ∑

i−1
k=1+V hk. The number of operations of the proposed APSP algorithm is then in

the order of ∑
K−V
i=2+V (hi ∑

i−1
k=1+V hk). Simple manipulation shows that the complexity of the

proposed APSP algorithm is O(N2), where N = ∑
K−V
i=1+V hi is the number of nodes in G .

5 Experiments
We used 60 sequences from the 2006 Australia Open tournament Men’s final game for
our experiments. The number of plays in each sequence ranges from 2 to 4. In total the
60 sequences are approximately 16 minutes long, and contain 50,662 frames.

We used frame differencing to extract foreground moving objects. A Support Vector
Machine (SVM) was trained and used to classify the foreground blobs into ball candidates
and non-candidates. Features used in the SVM are the shape, colour and position of each
blob. By moving the decision boundary of the SVM, a trade-off can be made between the
ball detection rate rd and the average number of false candidates N̄ in each frame. Table 1
shows 6 SVM boundaries and the corresponding rd and N̄. Using these 6 configurations,
we can evaluate a tracker’s performance under various detection rate and clutter level.

RDA and another two tennis ball tracking algorithms from our previous work [6, 7],
one based on particle filtering, and the other based on the Viterbi algorithm, were also
implemented for comparison. For these three trackers, one instance of the tracker was
used to track each play in each sequence, and track initiation/termination of each play was
manually dealt with. In RDA, the number of trials, Nt , is chosen so that the probability
of finding a set that consists entirely of true positives is greater than a threshold γ . In our
experiments, γ was set to 0.99.



SVM boundary -4 -3 -2 -1 0 1

particle 8.64% 9.61% 6.92% 6.63% 8.29% 19.16%

prop. of Viterbi 4.14% 3.88% 3.41% 3.23% 3.64% 4.12%

LOT RDA 17.06% 15.73% 12.43% 9.18% 6.99% 7.27%

Frames L3DA 4.40% 3.68% 3.57% 2.81% 2.41% 2.73%

Table 2: Proportion of loss-of-track (LOT) frames.

SVM boundary -4 -3 -2 -1 0 1

particle 21.0 23.2 25.1 26.6 28.8 30.7

processing speed Viterbi 31.3 36.7 40.4 42.2 45.9 47.3

(frames per sec) RDA 0.9 1.7 23.5 233.0 374.8 399.1
L3DA 46.3 59.4 72.8 93.6 116.2 142.4

Table 3: Processing speed.

To evaluate the performance of the trackers, ground truth of the tennis ball positions in
all frames was manually marked. Tracking results were then compared against the ground
truth. Tracking error is defined as the Euclidean distance between the ground truth and the
tracked (detected or interpolated) ball position. A loss-of-track (LOT) frame is defined as
a frame where the tracking error is greater than 6 pixels. Table. 2 shows the proportion
of LOT frames of each tracker with each SVM boundary. In brief, L3DA and the Viterbi-
based tracker outperform the other two trackers. When looking more carefully at Table. 2,
we can see the four algorithms have different failure modes.

When rd and N̄ are both low, the particle-base algorithm performs poorly. This is
because the ball changes its motion drastically after being hit by a player. Consequently,
the next detected ball-originated candidate can be very far from its predicted position.
This is especially the case when rd is low. As a result, the particle-based tracker can be
“trapped” by false candidates that have originated from the player, and cannot recover
until the ball is close to the player again. On the other hand, L3DA, being a non-iterative
algorithm, is much more robust against sudden change of motion direction.

RDA performs poorly when rd and N̄ are high. This is because in RDA, or more
generally in RANSAC, we make the implicit assumption that a model given by an un-
contaminated sample set is always “better” than that given by a contaminated sample set.
However, in a tennis sequence, especially when multiple balls are present, the ball being
tracked is not the only smoothly moving object. Candidates that have originated from
other balls, or even from part of a player, e.g. a wrist band, can form smooth trajectories.
As a result, a model given by candidates that have originated from the ball being tracked
can “lose” in the competition with a model given by candidates that have originated from
other objects. This problem is tackled in L3DA by enforcing motion consistency with the
shortest path formulation.

The Viterbi-based algorithm gives similar performance to that of L3DA. However,
L3DA has the advantage of being fully-automatic, while the Viterbi-based algorithm re-
quires an additional track initiation/termination mechanism.



In Table 3, the speed of the four algorithms is compared. L3DA shares the top position
with the LDA. The fact that L3DA always starts model fitting from a seed triplet —
three candidates that have high probability of containing only true positives — allows
it to eliminate false candidates very quickly. The proposed APSP algorithm also helps
improve the efficiency of L3DA. It should be noted that as the SVM boundary increases,
RDA has the fastest growing processing speed. This is because the time complexity of
RDA is determined directly by Nt , which drops rapidly as the proportion of true positives
increases.

6 Conclusions
In this paper, we have extended our previous work L2DA, a semi-automatic single-object
tracking algorithm, to L3DA, a fully automatic multiple-object tracking algorithm. This
was achieve by using APSP instead of SPSP at the tracklet level, and by adding one more
layer, path level analysis, on top of L2DA. In this paper, we have also proposed an efficient
APSP algorithm by exploiting a special topological property of the graph. The proposed
L3DA algorithm was used to track tennis balls in broadcast tennis video. Comparative
experiments show that it performs well both in terms of efficiency and tracking accuracy.

Acknowledgements
This work has been supported by the EU IST-507752 MUSCLE Network of Excellence.

References
[1] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University

Press, 2002.

[2] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the Association
for Computing Machinery, 24(6):381–395, 1981.

[3] R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345, 1962.

[4] D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of the ACM,
24(1):1–13, 1977.

[5] V. Lepetit, A. Shahrokni, and P. Fua. Robust data association for online applications. In IEEE
International Conference on Computer Vision and Pattern Recognition, volume 1, pages 281–
288, 2003.

[6] F. Yan, W. Christmas, and J. Kittler. A tennis ball tracking algorithm for automatic annotation
of tennis match. In British Machine Vision Conference, volume 2, pages 619–628, 2005.

[7] F. Yan, W. Christmas, and J. Kittler. A maximum a posteriori probability viterbi data associa-
tion algorithm for ball tracking in sports video. In IEEE International Conference on Pattern
Recognition, 2006.

[8] F. Yan, A. Kostin, W. Christmas, and J. Kittler. A novel data association algorithm for object
tracking in clutter with application to tennis video analysis. In IEEE International Conference
on Computer Vision and Pattern Recognition, 2006.


