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Abstract

This paper presents a method for object recognition, novel object detection,
and estimation of the most salient object within a set. Objects are sampled
using a scale invariant region detector, and each region is characterized by
the subset of texture and color descriptors selected by a Genetic Algorithm
(GA). Using multiple views of an object, and multiple regions per view, ob-
jects are modeled using mixtures of Gaussians, where each object represents
a possible class for a particular image region. Given a set of objects, the GA
learns a corresponding Gaussian Mixture Models (GMM) for each object in
the set employing a one vs. all training scheme. Thence, given an input image
where interest regions are detected, if a large majority of the regions are clas-
sified as regions of object O then it is assumed that said object appears in the
imaged scene. The GA’s fitness function promotes: 1) a high classification
accuracy, 2) the selection of a minimal subset of descriptors, and 3) a high
separation among models. The separation between two GMMs is computed
using a weighted version of Fisher’s linear discriminant, which is also used
to estimate the most “salient” object among the set of modeled objects. Ob-
ject recognition and novel object detection are done using confidence-based
classification. Hence, when a non-modeled object is sampled, the detected
regions are thereby identified as belonging to an unseen object and a new
GMM is trained accordingly. Experimental results on the COIL-100 data set
confirm the soundness of the approach.

1 Introduction

Currently, many computer vision systems address the problems of object detection and/or
recognition using a sparse representation of image information through locally prominent
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Figure 1: Abstract view of common object recognition vision systems.

image regions [8, 3], see Figure 1. A training phase consists on detecting stable image
regions on an object using interest region detectors, and characterizing said regions using
discriminative local descriptors [5, 3, 11, 10]. In this way, by relying on sparse local
information the method is robust to partial object occlusions. During testing, an image is
taken as input and the same region detection/description process is repeated. However, the
extracted local information is now compared with stored object models and if appropriate
matching criteria are met it is possible to identify known objects within the scene. This
approach relies on the assumption that different local regions on an object will be highly
separated in descriptor space, and thus requires highly discriminative region descriptors.
This assumption will not hold true for objects with regular or repetitive patterns across
their surface, i.e. a football or tomato. Furthermore, if object representations are learned
in this manner, an intuitive comparison between two object models is not evident. For
instance, if three object representations are learned, how can a measure of similarity be
computed? These considerations are pertinent for a system that automatically identifies
the “most salient” object, or image, from a given set. Automatic novelty detection is a
line of research where these questions are essential [4]. Another application area relates
to the automatic identification of visual landmarks; in robot navigation, for example, the
norm is to use artificial or human selected landmarks.

This paper presents an approach where every region λ detected on an object O is
taken as an instance of the same class, and is characterized with a feature vector of statis-
tical descriptors computed in a feature space Φ of texture and color information. A GA
searches within Φ for the smallest subspace F ⊆ Φ of statistical descriptors, of both tex-
ture and color, that yield the highest classification accuracy using a one vs. all scheme of
maximum likelihood classification. The GA also searches for the best possible between-
class separation of learned models. Therefore, the proposed approach does not require
highly discriminative features because it uses a robust classifier, a known trade-off be-
tween descriptor design and classifier training. A GMM representation is used for each
class (object), and a heuristic extension of Fisher’s linear discriminant is used to estimate
an “apparent” measure of class separation among models with more than one component.
Based on this measure of model separation the most salient object is identified by select-
ing the object with the highest between-class separation using a min-max operation. A
further advantage of using a GMM based classifier is the ability to use confidence esti-
mation to identify regions extracted from unknown objects as outliers and label them as



samples of a new class. Hence, it is possible to automatically train a new one vs. all
classifier for the newly identified object. Experimental results in this paper only deal with
objects in scenes with simple backgrounds. Nevertheless, the use of a multimodal models
should allow the approach to extend to real world scenes where more within class vari-
ation is likely to occur. Recently, Markou and Singh [4] propose a similar system that
carries out both novelty detection and classification, however several differences exist:

1. The current work is concerned with object recognition, on the other hand, the work
in [4] only addresses ROI classification.

2. The work in [4] relies on prior segmentation, a drawback because segmentation is
an ill-posed problem; this is avoided by using locally salient image regions.

3. The proposed feature space Φ is more compact than the one used in [4], with less
redundant information. Furthermore, the GA used for feature selection maximizes
accurate classification, minimizes the set of descriptors used, and maximizes the
between-class separation of learned models. The authors in [4] use the sequential
floating forward selection algorithm and do not consider between-class separation.

4. The proposed measure for class separation is based on Fisher’s linear discriminant
which gives a closed form estimation computed directly from the learned GMMs;
the Bhattacharya distance is employed in [4] along with NNet classifiers.

5. Novelty detection in the present work utilizes confidence-based classification of
region descriptors, whereas [4] uses an heuristic criteria based on NNet output.

6. Finally, the COIL-100 data set used in the present work includes objects with in-
formation in feature space that tends to overlap, such as two toy cars with similar
texture or two objects with the same color. On the other hand, [4] uses classes with
marked differences among them, such as sky and chair classes.

2 Background

This section will give a brief review on some of the main concepts used throughout this
work: scale invariant region detection, genetic algorithms, Gaussian mixture models,
Fisher’s linear discriminant, and the texture and color feature space employed.

Scale Invariant Region Detection. Selecting a characteristic scale for local image
features is a process in which local extrema of a function response, embedded into a linear
scale-space, are found over different scales. The interest operator applied in the current
work was synthesized with Genetic Programming, optimized for high repeatability and
global region separability [9, 10], named KIPGP1∗ which is based on DoG filtering,

KIPGP1∗(x; t j) = Gt j ∗ |Gt j ∗ I(x)− I(x)| , (1)

where j = 0,1, ...,k, and k is the number of scales to be analyzed, here it is set to k = 15.
The size of a region is proportional to the scale at which it obtained its extrema value.
For the sake of uniformity, all regions are scaled to a size of 41×41 pixels using bicubic
interpolation before region descriptors are computed. Figure 2 shows sample interest
regions extracted with the aforementioned detector.



Figure 2: Detected regions on three images from the COIL-100 data set.

Features Description
Gradient information Gradient, Gradient magnitude and Gradient Orientation

(∇,‖ ∇ ‖,∇φ ).
Gabor filter response The sum of Gabor filters with 8 different orientations (gab).
Interest operators † The response to 3 stable interest operators: Harris, IPGP1

and IPGP2 (KHarris,KIPGP1,KIPGP2).
Color information All the channels of 4 color spaces: RGB, YIQ, Cie Lab, and

rg chromaticity (R,G,B,Y, I,Q,L,a,b,r,g).

† KIPGP1 is proportional to a DoG filter, and KIPGP2 is based on the determinant of the Hessian [9, 10].

Table 1: The complete feature space Φ.

Texture and Color Features. In order to appropriately describe each image region
the search space Φ of possible features includes 18 different types of color and texture
related information, see Table 1. To characterize the information contained along dif-
ferent channels, six statistical descriptors are computed: mean µ , standard deviation σ ,
skewness γ1, kurtosis γ2, entropy H and log energy E. This yields a total of 108 possible
descriptor values for the multivariate GMMs. Because general statistical information is
used, the descriptors will mostly be rotationally invariant.

Genetic Algorithms (GA) are stochastic heuristic search techniques that model, in
an abstract manner, the principles of natural evolution [2]. The basic principles that a
canonical GA follows are survival of the fittest (selection), recombination and replication
of fit genetic material (crossover), and the introduction of novel genetic information (mu-
tation), all of which are modeled as stochastic processes. These techniques operate over a
set of parameterized solutions using population-based metaheuristics. GAs can manage a
number of constraints and design decisions, and carry out a search in an intrinsic parallel
manner; thence, GAs can be considered as a global optimization and search method. In
the current work, the canonical GA with a binary string chromosome is employed.

Gaussian Mixture Models are a useful tool when it is necessary to model multimodal
data, or as an approximation to different types of more complex distributions. The GMM
pdf is defined as a weighted sum of Gaussian pdfs,

p(x;Θ) =
C

∑
c=1

αcN (x; µc,Σc) , (2)

where N (x; µc,Σc) is the cth multivariate Gaussian component with mean µc, covariance
matrix Σc, and an associated weight αc. Estimation of the mixture model parameters is



done using the EM algorithm when a fixed number of components is assumed. Alterna-
tively, if a variable number of component is desired, with a maximum bound, it is possible
to use the the Greedy-EM [7]. Classification with GMMs can be done through Bayes rule,
or using confidence-based classification [7]. A confidence value κ ∈ [0,1] and confidence
region R ⊆ Φ for a pdf are 0≤ p(x) < ∞, ∀ x ∈ Φ. κ is a confidence value related to a
non-unique confidence region R such that

∫

Φ\R
p(x)dx = κ . (3)

A sample x that lies within R is considered a true member of the class modeled by p,
otherwise it is classified as an outlier.

Fisher’s Linear Discriminant. Fisher defined the separation between two distribu-
tions Ni and N j as the following ratio

Si, j =
(w(µi−µ j))

2

(wT (Σi +Σ j)(w))
, (4)

where w = (Σi + Σ j)
−1(µi − µ j) [1]. Note that S is defined for unimodal pdfs, hence

a weighted version Ŝ that accounts for the weight αi and α j of the associated Gaussian
components in a GMM is proposed, such that

Ŝi, j =
Si, j

1+αi +α j
. (5)

Hence, the separation between components with a small combined weight (they have
less influence over their associated models) will appear to be larger with respect to the
separation between components with larger weights. Therefore, let Ca and Cb represent
the number of components of pa(x;Θa) and pb(x;Θb) respectively, then Sa,b represents
the apparent separation matrix of size Ca×Cb that contains the weighted separation Ŝi, j

of every component of pa with respect to every component of pb. The final apparent
separation measure S between pa and pb is given by

S
a,b = in f (Sa,b) . (6)

3 Proposed Approach

This section describes the details of the proposed approach to object recognition, novel
object detection, and salient object estimation; a flowchart view is depicted in Figure 3.

3.1 Learn Object Models

First, there is an initial off-line step in which interest regions from every object O ∈ M
are extracted and labeled accordingly; moreover, all 108 descriptor values are computed
for each region. Afterwards, the GA performs feature selection, and learns appropriate
GMMs for a subset N of the objects in M. Figure 3a shows the basic flow chart of a
canonical GA, the two main aspects to discuss is how candidate solutions are represented
and how fitness assignment is done. The other processes in the GA are standard: fitness
proportional selection, mask crossover, single bit mutation and elitist survival strategy.



Figure 3: An overview of the proposed approach, a) Genetic Algorithm, b) Learn object
models, c) Novel object detection.

Solution Representation: Each individual in the population is coded as a binary
string B = (b1,b2, ...b108) of 108 bits. Each bit is associated with one of the statistical
descriptors in Φ. Therefore, if bit bi is set to 1 its associated descriptor will be selected,
with the opposite being true if bi = 0. The feature vector xλ for each region λ is thereby
given by the concatenation of the set of selected descriptors F ⊆Φ.

Fitness Evaluation: Here is where object models are learned and fitness is assigned
to each individual in the population. For every object O j ∈ N a corresponding GMM
p j(x;Θ j) is trained with a one vs. all strategy with 70% of the regions, using the descrip-
tor values selected by B. The GMM classifiers are trained with the EM algorithm. After
training, a set P = {pi(x;Θi)} of |N| GMMs, on each ∀ Oi ∈ N. Afterwards, the remain-
ing 30% of image regions are used for testing and a corresponding accuracy score Ai

is computed using Bayes rule. Optimization is posed as a minimization problem, hence
fitness is assigned by

f (B) =





Bones +1
A ′ · in f (S pi,p j)

∀ pi, p j ∈P , i 6= j , when ∀ Ai > 0 ,

K ·Bones +1
A ′+ ε

otherwise .

(7)

In the above equation, Bones is the number of ones in string B, A ′ is the average accuracy
score of all the GMMs in P , a penalization term set to K = 2, and ε = 0.01; hence,
fitness depends upon testing and not training accuracy. The first case in Eq. 7 is applied
when all of the classifiers where able to obtain an accuracy score, fitter individuals will
minimize the number of selected descriptors and maximize the average testing accuracy
A
′. Furthermore, the term in f (S pi,p j ) promotes between-class model separation by

selecting the infimum of all the apparent separation measures computed for every object
in N. On the other hand, the second case in Eq. 7 is applied when the EM algorithm fails
to produce a valid GMM for one of the objects in N.

After a fixed number of iterations the GA stops and returns the fittest individual Bo



found so far. The best individual Bo is re-trained using the Greedy-EM instead of the basic
EM, this is done for two reasons. First, the Greedy EM did not prove to be appropriate
during evolution because it required more computation time and produced more runs
that failed to converge. Secondly, once the GA has produced a valid high performance
solution, the associated object models can be further enhanced by using the Greedy EM
on Bo. Therefore, the GA returns the selected subset of descriptors F that characterize the
objects in N, and a set of trained GMMs Po. Finally, the most salient object Oo in N is
said to be modeled by the GMM po that satisfies the following,

po← arg max
pi

(S pi,p j) ∀ pi, p j ∈Po with i 6= j . (8)

3.2 Object Recognition and Novel Object Detection

In order to test the ability of the described approach to recognize known objects and de-
tect novel objects (those without a corresponding pi ∈Po) the process in Figure 3c is
followed. Given an image of an object Oi ∈ M, interest regions are detected and their
corresponding descriptors, specified in F , are computed. The extracted regions are clas-
sified using confidence estimation with the models in Po. A confidence region within
each GMM in Po is defined, with the confidence threshold set to κ = 0.95. Therefore,
if a large majority, over 60%, of the regions lie within the confidence region of a given
p j ∈Po then it is said that object Oi = O j, thereby accounting for a successful recogni-
tion. Otherwise, if regions are classified as outliers from all known classes, it is possible
to tag them as belonging to an object not modeled in Po. Hence, if the percentage of
regions classified as outliers is Aout > 60%, then the sampled object Oi is labeled as a
new object, and a corresponding GMM is learned and added to P

o.

4 Experimental Results

This section presents three different experiments to test the proposed object recognition
system. The code was written mostly in MATLAB, the GMMBAYES Toolbox1 was used
for GMM training, and the Genetic Algorithms for Optimization Toolbox2 was used as
part of the GA code. The images used for testing are taken from the COIL-100 data set,
Figure 4 shows the first 40 objects in the data set [6]. Every object is seen from 72 different
views, interest regions are extracted from all of the views and tagged accordingly as the
ground truth for each object. The basic parameters of the algorithm are the same in every
run, only modifying the number of different objects used, the size of sets (M,N). Three
experiments are presented: Exp. 1 (10,5) with objects 1 - 10 from the data set; Exp. 2
(20,10) with objects 20 - 40; and Exp. 3 (40,25) with objects 1 - 40. The GMM classifiers
were trained using EM with one Gaussian component, and if a solution was not found,
the algorithm is restarted with 2 components, and so on. The results presented for each
experiment are shown for object recognition and novel object detection. Table 2 shows the
average accuracy score obtained after the initial object models are generated (Figure 3b),
along with the fitness value, the number of features, the set of selected features F , errors
in object recognition, and the salient object within the set. Table 3 presents the accuracy

1GMMBAYES Matlab Toolbox http://www.it.lut/project/gmmbayes
2Genetic Algorithms for Optimization Toolbox by Andrey Popov http://automatics.hit.bg



Figure 4: These are the first 40 objects in the COIL-100 data set used in the reported
experimental runs. The images used with the first two experiments are marked, while all
40 are used in the third. Salient objects selected by the separation criterion are circled.
Object 32 is the only one for which novel object detection failed with h = 60%.

Exp. A ′ f(Bo) Bo
ones Features Error Oo

1) 99.6 0.5 27 ∇(γ2,H), ‖ ∇ ‖(σ ,γ2), ∇φ (γ2)
, KHarris(E), none 4

KIPGP1(σ), R(µ ,H), G(σ ,γ1), B(µ ,σ ,γ1,H),
Y(µ ,γ2,H ,E), I(σ ,H), L(σ ,E),

a(µ ,σ), b(σ ,E), g(µ)

2) 99.2 1.5 43 ∇(µ ,σ ,γ2 ,E), ‖ ∇ ‖(σ ,γ2,H), ∇φ (µ ,σ ,γ2)
none 25

KHarris(γ1,H), KIPGP1(µ ,E), KIPGP2(γ1,E),
gab(γ1), R(µ ,σ ,E),G(µ),B(σ ,γ1,γ2,H), Y(µ ,γ2 ,H ,E),

I(σ ,H), Q(γ2,H), L(µ),a(µ ,σ ,H),
b(µ ,σ ,E), r(µ ,σ), g(E)

3) 98.7 6.4 37 ∇(µ ,σ ,γ2), ‖ ∇ ‖(µ ,σ ,γ1 ,γ2,H ,E), ∇φ (γ1,γ2,H), none 4

KHarris(γ2,E),KIPGP1(H), KIPGP2(γ2,H),
gab(µ), R(µ ,γ1,E), G(µ), B(γ2,H), Y(µ ,σ ,γ2 ,H ,E),

I(E), Q(µ ,γ1), a(γ1), b(σ), r(σ ,H), g(µ ,σ)

Table 2: Performance when initial class models are learned; see text for further details.

A ′M Errors Salient Objects
Exp.1 99.72 none objects 4, 7, 3
Exp.2 99.04 object 32 objects 36, 38, 25
Exp.3 98.68 object 32 objects 36, 28, 4

Table 3: Performance for novel object detection. Note that A
′

M represents the accuracy of
region classification after a corresponding model is learned for every object O ∈M.



score once a corresponding model is learned for every object O ∈ M, the incorrectly
classified objects, and the three most salient objects found in each case. Given the high
level of accuracy in both sets of results, in can be concluded that the problem of object
recognition is almost perfectly solved for the set of images employed. Figure 5 shows the
convergence graphs of each GA run, plotting the fitness of the best individual Bo found
so far. The experiments were executed with 30, 30 and 40 iterations respectively.

Figure 5: Convergence plots that show the log( f (Bo)) of the best individual found thus
far by the GA in each of the experimental runs.

5 Discussion and Conclusions

The results presented in the previous section exhibit promising performance patterns. For
all three experiments the algorithm was able to train extremely accurate classifiers using
a fraction of the available descriptors. It is important to note that in Table 2 even do all
experiments produce similar values for accuracy and number of descriptors, their associ-
ated fitness scores are different. This is due to the model separation measure in f (S pi,p j )
in the fitness function, because with more objects the space of possible objects models
becomes crowded. All the classifiers trained in each experiment finished with a single
Gaussian component, an unexpected outcome that can nevertheless be explained. Every
object is small and tends to exhibit regular patterns across their surface; therefore, it was
possible to characterize them with a single component in feature space. This suggests
that GMMs would be more appropriate dealing with images that have a larger variations
in descriptor space. Additionally, the convergence graphs in Figure 5 show two different
patterns. First, starting from the random population the initial iterations produce very
poor results, individuals in these generations are evaluated using the second case of the
fitness function because the EM fails to find a valid model for at least one of the objects.
Therefore, initial iterations attempt to find solutions B that are able to produce a classifier
for every object in N. Once a good solution is found, and its genetic material begins to
propagate throughout the population, the GA begins to optimize using the first case of the
fitness function. With a valid classifier for every object it is then possible for the GA to
explore the pruning of the feature space. Regarding novel object detection, the approach
produced nearly perfect results with only one false negative, object 32. However, object
32 is almost identical to object 29, they only differ slightly in color space. Perhaps an
interest operator that uses color information explicitly could help avoid ambiguous situ-
ations such as this. Finally, regarding the estimation of the most salient object within a



set, the algorithm also produced coherent selections. The objects selected as most salient,
shown in Figure 4, are appreciably different than the rest, these objects tend to lack texture
and exhibit small color variations. Furthermore, all of the other objects in the data set tend
to have at least one similar counterpart, i.e. more that one toy car, and various small boxes.
In conclusion, the proposed approach produced promising initial results for object recog-
nition, novel object detection and salient object estimation. Future work concentrates on
using images with complex backgrounds, in order to perform scene classification of real
world images where the benefits of a multimodal model are expected to become evident.
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