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Abstract

This paper demonstrates that a reliable and efficient object recognition sys-
tem based only on binary joint occurrences of quantized descriptors can be
built. Specifically, we show that a high recognition performance can be ob-
tained even with very weak (non discriminative) descriptors. The binary joint
occurrence representation despite being high dimensional is very sparse and
therefore efficient. In order to obtain reliable joint occurrences we present a
fast hierarchical quantization algorithm. We illustrate our results using dif-
ferent descriptors (PCA-SIFT, Spin images, SIFT) on a challenging, specific
object recognition task and consider the scaling behavior of the method.

1 Introduction
In the last decade, object recognition tasks based on local features gained more and more
interest by the computer vision community. A lot of different approaches have been pro-
posed and recent evaluations have shown satisfactory performance on specific as well
as generic object recognition challenges (e.g. [2, 5, 8, 16]). To increase the discrimina-
tive power of the approaches, the algorithms tend to be more and more complex thus
requiring increasing computational power, runtime and necessary amount of memory.
For example, key-point detectors are made robust against image distortions, viewpoint-
and illumination changes [14, 15], descriptors are driven toward enhanced discriminative
power, distinctiveness and invariance [12, 14] and complex selection and decision algo-
rithms such as support vector machines or boosting algorithms [6, 23] have been applied
to several recognition systems. It is evident that approaches considering single key-points
and descriptors (bag of key-point approaches such as e.g. [5]) have severe limitations by
not taking spatial neighborhood relations into account. Therefore, recent work has in-
vestigated spatial relations among key-points. Generative models use the spatial relations
directly in modeling the assembly of object parts. One prominent example is the ‘constel-
lation model’ of Fergus et al. [9], a fully connected probabilistic model of a few object
parts trained to identify object classes on unsegmented, cluttered scenes. Simpler ‘rela-
tional models’ have been proposed by e.g. Crandall and Huttenlocher (k-fan model) [4] or
Fergus et al. (star-shape model) [10]. Carneiro and Lowe [3] proposed an approach which
does not rely on strict spatial models, but allows to adapt the spatial relations specifically
to the underlying object properties. Another important approach, which primarily tries
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to overcome the limitations on the number of distinct features in the model, is the one
from Bouchard and Triggs [2], where the authors proposed a probabilistic, hierarchical
approach on features and spatial relations of object parts. Another class of approaches
uses spatial relations as additional information. Those spatial relations are either used to
improve the discriminative power of features directly (e.g. ‘Hyperfeatures’ [1] by Agar-
wal and Triggs) or they are used for verification of tentative matches (e.g. ‘semi-local
constraints’ by Schmid and Mohr [21]). Another example for spatial relations in a second
processing step is the texture recognition system proposed by Lazebnik et al. [13] where
spatial neighborhood statistic is used for final texture classification. There are also other
interesting approaches that use spatial relations such as the one from Sivic et al. [7] (clas-
sification with probabilistic Latent Semantic Analysis (pLSA) in a ‘bag of words’ model)
or the joint spatial relation of boundary fragments from Opelt et al. [19] . In summary
all these papers (and many others) demonstrate, that spatial relations can significantly
improve recognition results.
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Figure 1: Co-occurrence and reference algorithm mean recall rates (a). Mean kurtosis
values of our object recognition task for decreasing PCA-SIFT descriptor size (b).

This evidence triggered the work in this paper where we take an extreme case. The only
information we consider is the joint occurrence or co-occurrence of quantized descriptors.
Moreover, we only represent the presence or absence of these co-occurrences which leads
to a binary representation. The intuition behind is, that the co-occurrence of descriptors
is a very discriminative feature because it is very unlikely, that two descriptors co-occur
just by chance. In particular, we show that due to the distinctiveness of co-occurrences
we can work even with very weak descriptors which are not discriminative by themselves.
The following experiment demonstrates this fact (full details are explained in the experi-
mental section 3). We use a straight forward, state of the art recognition setup: key-point
extraction, descriptor calculation, quantization and matching. As descriptor we selected
PCA-SIFT [12] proposed by Ke and Sukthankar, because we can control the weakness
of that descriptor by consecutively reducing the descriptor dimension. The main result
of the experiment is depicted in Figure 1a and shows the mean recall rate as function of
the diminishing information (PCA-dimension). First one sees as expected, that using a
single descriptor decreasing the PCA dimension decreases the recognition rate. More im-
portant, using co-occurrences of descriptors the recognition rate remains high despite the
increasing weakness of the descriptor. This indicates, that the co-occurrence approach is
not only much more discriminative, but can deal with ‘weaker’ descriptors still preserving



a high recognition rate. In the following section we present the details of the binary co-
occurrence approach and the proposed recognition system. In the experimental section 3
we describe a set of experiments which foster our assumptions, show that co-occurrences
also increase the reliability and significance of an object recognition task and consider the
scaling behavior.

2 Binary Co-occurrence overview
Our system has four main components, namely: 1. identification of key-points and cal-
culation of a descriptor, 2. clustering the descriptors of the training database features to
obtain a visual vocabulary, 3. nearest neighbor assignment of features and building the
binary co-occurrence matrix representation and 4. matching the co-occurrence matrices
against the database representation. An overview of the components and their interaction
is depicted in Figure 2.

Figure 2: Main components of our co-occurrence recognition system and combination of
the Evolving-Tree with the agglomerative clustering algorithm.

2.1 Obtaining the visual vocabulary
To cope with the large number of descriptors obtained by state of the art key-point de-
tectors, we need to cluster them efficiently. Standard clustering methods such as k-means
or agglomerative clustering cannot handle such a large amount of descriptors in an effi-
cient manner. Therefore we use a novel combination of two clustering algorithms with
different properties. The first one is a tree based variant of a self organizing map, namely
the Evolving-Tree proposed by Pakkanen et al. [20]. The Evolving-Tree randomly takes
training samples from a data-set and uses nearest neighbor assignments until a leaf node is
reached. Similar to self organizing maps, the leaf node location is updated with a Kohonen



learning rule and once a certain number of leaf node members is reached, the node splits
up into a predefined number of child nodes. Due to its simplicity the Evolving-Tree is very
fast (we need only about 50 seconds to cluster 200K samples on a Intel Xeon 2.80GHz
CPU), but unfortunately the clustering is very imprecise. In accordance with Pakkanen
et al. [20] we have observed, that the global nearest neighbor property is not fulfilled for
most points indexed by the tree. Although the problem can be reduced by pruning the
tree, the results remained unsatisfactory. Thus we use a second clustering algorithm and
re-cluster the prototypes of the obtained cluster centers in the pruned Evolving-Tree. This
second clustering algorithm is a modification of ‘agglomerative hierarchical clustering’
similar to that one used in [16]. The main advantage of this algorithm is the fact, that we
have to select only the tolerated dissimilarity of two points belonging to the same cluster
in the feature space. So we can combine the advantages of the two algorithms: (1) the
speed of the Evolving-Tree allows us to roughly quantize a feature space even with a very
large number of samples in feasible time and (2) the agglomerative clustering algorithm
guarantees the necessary similarity of samples assigned to a single cluster. So starting
with typically about 200K descriptors we use for creating the visual vocabulary, we end
up in a typically size of about k = 10K clusters in a few minutes. The tree also speeds
up the search during the recognition as we quickly traverse the Evolving-Tree down to
the leaf node and make use of the obtained mapping from agglomerative clustering in the
training step.

2.2 Training and recognition of objects, the co-occurrence matrix
Once we have obtained the cluster-centers, training of the database is straight forward.
Every object is presented to the recognition system and key-points and descriptors are cal-
culated. Every descriptor is assigned to the best matching cluster center, so that for every
interest-point a cluster label is stored. To calculate the co-occurrence matrix, we identify
the n nearest neighbors (typically n = 3) in image space for every key-point. Thus, every
co-occurrence is identified by a pair of cluster centers, which we insert into a two dimen-
sional co-occurrence matrix. The rows and columns of the co-occurrence matrix are the
cluster labels of the two key-point descriptors. The co-occurrence matrix is very sparsely
populated. Typically only 1−2h of the possible co-occurrences are assigned. Thus it is
possible, to store only the binary information, whether a co-occurrence is present or not.
This binary coding and a sparse storage schema allows us to reduce the necessary amount
of memory to a minimum. To build the full representation for a single object (multiple
viewpoints), all the co-occurrences of the training images are entered in one single matrix.
Therefore, we have exactly one co-occurrence matrix per object trained and the final di-
mensionality of the training data representation is given by the squared number of cluster
centers times the number of objects represented in the database. For the recognition of
objects with the co-occurrence matrices we follow the same steps as for training, but for
a single query image and obtain a single co-occurrence matrix for each one. The match-
ing procedure itself is deliberately kept very simple. We calculate the matching score for
every object representation of the training database by simply AND operation of the co-
occurrence matrices and count the number of resulting matches. So in fact, the matching
is only a simple maximum voting of congruent co-occurrences in the binary matrices.



3 Experiments
The main purpose of our experiments is to show, that with co-occurrences we can obtain
respectable and reliable recognition results even with a very weak and fast descriptor. We
do that by calculating ‘recall’-rates for a challenging recognition scenario up to 900 dif-
ferent objects on substantially cluttered background. We first present the database and the
reference system we compare our results with, and then several experiments highlighting
different aspects of our approach.

3.1 The object recognition task
For our first experiment, we use a subset of the first 50 objects from the publicly available
Amsterdam Library of Object Images (ALOI) [11]. Recognition approaches based on
local features require a reasonable number of DoG key-points detected on the objects
surface. Therefore we sorted the objects of the whole ALOI with respect to their sum of
key-points detected, and shifted the upper and lower 50 ones to the end of the database.
Thus objects with no or too few key-points as well as those showing an exceptionally
high number are not taken into account. To capture enough variances in the appearances,
during the training stage we present 12 views (every 30o) per object to the system. This
is similar to the approach of Murase and Nayer [18], but in contrast to them we use a
larger amount of objects, can deal with occlusions and work on substantial background
clutter - important necessities for a realistic recognition scenario. So in the recognition
step, the system has to recognize an object presented in different viewpoint angles and
projected to challenging background images (see Figure 3 for some examples). For all of
our experiments we use the publicly available binaries of Lowe’s ‘Difference of Gaussian’
(DoG) detector [14] to obtain rather accurate key-points with high repeatability.

Figure 3: Some examples of objects and partially occluded objects from ALOI database.

3.2 The reference recognition system
To show the impact of the introduced co-occurrence approach, we compare a simple stan-
dard voting scheme against our approach. We try to keep the algorithmic parts as much as
possible identical for the two systems (Figure 2). The only differences between the ref-
erence and co-occurrence recognition system is the representation of the objects (cluster
centers versus binary co-occurrence matrix) and the matching method. For the reference
system we use an inverse histogram to object voting where every key-point descriptor in
a query image is assigned to its nearest neighbor cluster and every cluster votes for one or
more objects (similar to [22]). The object with the maximum number of votes is selected.
It is essential for the reference recognition system to use only very distinctive feature to
cluster assignments, rejecting features near the separation plane of different cluster cen-
ters. We follow the approach of Lowe in [14] and use the ratio between the first and



second nearest neighbor cluster as a good measure for that property (a distance ratio of
r = 0.8 gives the best results in our experiments).

3.3 Decreasing information content of the descriptor
The goal of this experiment is to show, that even by decreasing the information content
of a descriptor, our approach still keeps feasible recall rates and the matching reliability
is higher than for the reference recognition system. As a descriptor we selected PCA-
SIFT, a variant of a gradient based descriptor introduced by Ke and Sukthankar [12]. The
descriptor is a PCA decomposition of 2 orthogonal gradient images and it gives similar
performance rates like SIFT, even if the dimensions are reduced down to 20 [17]. In
order to simulate continuously diminishing information content, we can successively re-
move the less important values of the PCA-projection indicated by the magnitude of the
original eigenvalues. We trained it for each dimensionality reduction factor separately as
we want to allow the special ‘adaptation’ of the Evolving-Tree to the desired dimension-
ality. The main results of the experiment (see Figure 1a) have already been mentioned
in the introduction. For decreasing PCA dimension (weaker descriptor) the recognition
rates decrease as expected, but the single descriptor approach breaks down much earlier.
This is in accordance to the observations of Ke and Sukthankar proposing a dimension-
ality of n = 20 as a good trade-off between matching speed, storage requirements and
good recognition results [12]. The co-occurrence approach shows excellent stability and
recall performance. It is able to produce nearly perfect recognition results for only 5 or 6
PCA dimensions. Even for 2 PCA dimensions the recall rate is rather high. This exper-
iment indicates, that the co-occurrence approach is not only much more discriminative,
but also can deal with ‘weaker’ descriptors while keeping high recall rates. Furthermore
we investigate the significance of the voting processes for the reference and co-occurrence
algorithm. Even by manual inspection of the voting histograms, the higher significance of
the co-occurrence approach is obvious (Figure 4). In order to get a quantitative estimate of
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Figure 4: Example of voting histogram for the reference algorithm (a) and our co-
occurrence approach (b). The corresponding object is shown in column (c).

the ‘voting significance’ we calculate the kurtosis of the voting histogram function. The
kurtosis is a statistical measure for the ‘peakedness’ of a function. The ‘ideal kurtosis’
(impulse function) for a perfect voting histogram of 50 different objects is kopt = 48.0204.
In Figure 1b one can see the kurtosis of the reference and our co-occurrence algorithm
for a decreasing number of PCA components. The difference of the ‘voting significance’
measure is obvious even for the highest number of PCA dimensions tested (n = 36). So
taking into account the results of Figure 1a we can state, that even for comparable recogni-
tion rates, the significance of the voting histograms is much higher for the co-occurrence
approach resulting in increased reliability of recognition.



3.4 Co-occurrences with SIFT descriptors
In this experiment we show the impact of co-occurrences for standard SIFT-keys as they
are a standard descriptor for recognition systems. The recall rates for different viewing
angles (VA) can be seen in Figure 5a. We split the recognition results into different curves
for the viewing angles originally presented to the system during training (dotted line) and
the slightly rotated views of the object on the background image (full line). The recall
rate for the co-occurrence approach on ‘trained’ objects (objects presented to the system
in the training stage) is nearly 100%. The improvement obtained by co-occurrences is
only about 10% to 15% for various viewpoint angles. Although the improvement in-
troduced through co-occurrences is obvious, the difference is not really large, but SIFT
descriptors are already very distinctive features, so that for such a ‘strong’ descriptor the
high performance rates even for a simple voting algorithm are not surprising.

3.5 Spin-Images as an example for a ‘weak descriptor’
In this experiment we want to demonstrate the power of our approach applied to a ‘real’
weak descriptor. A disadvantage of many gradient based descriptors is the necessity to
normalize the patches to the principal direction of the region to obtain rotational invari-
ance. Besides the fact, that orientation estimation is not always correct, sometimes more
than one orientation is predominant, so that even two or more variants of a patch have
to be considered [14]. So for a weak descriptor we prefer a simple, rotational invariant
descriptor ideally working on gray values so that we can completely avoid gradient calcu-
lation and orientation estimation. A good candidate for such a weak, rotational invariant
descriptor is a 2D modification of the original spin-image descriptor proposed by Lazeb-
nik et al. [13]. It can be calculated very efficiently and has shown low(!) performance
compared to most other descriptors as e.g. shown in [17]. Nevertheless in combination
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Figure 5: Recall rates for our co-occurrence algorithm and the reference system on first 50
objects of ALOI database. (a) SIFT descriptor and (b) ‘spin images’ as a weak descriptor.

with co-occurrences even that poor descriptor can lead to encouraging recognition rates.
Figure 5b shows the results of our experiment. As expected, the recall rate for our method
consistently outperforms the reference algorithm and an average performance boost of
about 60% is obtained. The decrease of performance between 50 to 100 and 250 to 300
degrees is due the fact, that most of the object are captured from the largest side.



3.6 Recognition of partially occluded objects
To support the claim on the improvement of recognition reliability, we repeated the experi-
ments of the last section with the spin image descriptor, but with varying partial occlusions
of query images. The occlusions are simulated by transparent rectangles, covering a sub-
stantial part of the objects appearance (Figure 3). Transparency means, that we can view
the random background on the occluded parts of the objects. In order to avoid biasing the
results for elongated objects in certain directions, we have averaged the recall rates for
vertical and horizontal occlusions. Figure 6 shows the mean recall rates (a) and kurtosis
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Figure 6: Mean recall rates (a) and kurtosis values (b) for a different amount of occlusions.

values of the voting histograms (b) for a different amount of occlusions on the ‘sea’ back-
ground. Besides the already demonstrated fact, that our co-occurrence approach shows
consistently better recall rates, one can see the different curvature of the recall function
in the range from zero up to 40% recall rate. Thus, the relative decay of recognition rates
with respect to the initial values is significantly higher for the standard algorithm those
indicating the higher stability of our proposed approach. The same is evident by means
of the constantly higher kurtosis values for co-occurrences.

3.7 Scaling behavior and vocabulary generalization
In order to investigate the scaling behavior of our approach, we extended the recognition
task to the first 900 objects (6 views every 30o trained) of the ALOI database. Furthermore
we use only the first 100 objects to learn the visual vocabulary which results consistently
in about 10K clusters as in the experiments before. Thus, there is no special adaptation
of the vocabulary to the whole database (generalization of vocabulary). Figure 7a shows
the obtained recall rates for the SIFT descriptors. The difference between the reference
system and our proposed algorithm is obvious. The experiment consistently supports the
improvement of recall rates and higher matching reliability of the feature co-occurrence
algorithm even for much more objects. Nevertheless, despite considering the natural in-
crease of possible mismatches due to the database size, the recall rate is not that high and
needs some further consideration. Figure 7b depicts a histogram illustrating the number
of objects for a specific relative recall rate. 15% of the objects are perfectly recognized,
while about one third of the objects in the database do not work at all. Inspecting those
objects we have found the following problems: (1) there are many objects which do not
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Figure 7: (a) Recall rates for our co-occurrence algorithm and the reference system
(SIFT). (b) Number of objects with a specific relative recall rate of the first 900 objects.

have a sufficient number of key-points that are detected (e.g. no texture, very small ob-
jects). (2) some objects can be discriminated only using color, since we use a gray-level
based representation these objects are indistinguishable for our method. (3) highlights
from the acquisition set-up introduce consistent false matches.

4 Summary and conclusion
In this paper we have demonstrated, that only binary co-occurrences of quantized descrip-
tors are sufficient to build a reliable and efficient object recognition system. Besides the
simplicity of the approach the main novelty is the fact, that we do not use the spatial
relations for verification of tentative matches or enrichment of other extensive object rep-
resentations. In our approach we use the co-occurrences alone for object representation
and recognition. In order to obtain reliable co-occurrences we present a fast hierarchical
quantization algorithm and by limiting the representation of an object to a solely binary
representation we can heavily reduce the storage requirements and limit the matching to
a very simple and crude algorithm. In a central experiment we could verify, that even by
substantially decreasing the information content of a PCA-SIFT descriptor our approach
still keeps feasible recall rates and the matching reliability for the feature co-occurrence is
much higher, than for a standard recognition approach. Furthermore we have shown, that
the approach works well with ‘spin-images’ as an recognition example for a weak but
easy computable descriptor, even for substantial occlusion. A final scaling experiment
demonstrates the performance increase caused by the novel representation with respect to
the bag of key-points approach. The conclusion of the paper is the fact, that instead of
further increasing the distinctiveness of certain descriptors and applying computationally
expensive matching algorithms, one can also take simple ‘weak’ descriptors and achieve
the distinctiveness by the simple concept of binary feature co-occurrence.
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