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Abstract

Sliding window scanning is the dominant paradigm in object recognition re-
search today. But while much success has been reported in detecting several
rectangular-shaped object classes (i.e. faces, cars, pedestrians), results have
been much less impressive for more general types of objects. Several re-
searchers have advocated the use of image segmentation as a way to get a
better spatial support for objects. In this paper, our aim is to address this is-
sue by studying the following two questions: 1) how important is good spatial
support for recognition? 2) can segmentation provide better spatial support
for objects? To answer the first, we compare recognition performance us-
ing ground-truth segmentation vs. bounding boxes. To answer the second,
we use the multiple segmentation approach to evaluate how close can real
segments approach the ground-truth for real objects, and at what cost. Our
results demonstrate the importance of finding the right spatial support for ob-
jects, and the feasibility of doing so without excessive computational burden.

1 Introduction
In the early days of computer vision, image segmentation fit neatly into the well-defined
object recognition pipeline. First, in the image processing stage, low-level features (edgelets,
corners, junctions) are detected. Next, in the segmentation stage, these features are used to
partition the image into regions. Finally, in the recognition stage, the regions are labeled
with object identities (and possibly even 3D object models!). Alas, it was soon evident
that hopes of computer vision being solved in such a simple and elegant way were overly
optimistic. Image segmentation in particular turned out to be a major disappointment in
this regard – none of the many segmentation algorithms were able to partition a image
into anything corresponding to objects. In fact, it was argued (rightly) that low/mid-level
segmentation can’t possibly be expected to know where one object ends and another one
begins since, without object recognition, it doesn’t know what objects are!

Meanwhile, the last decade saw an explosion of work in object recognition, most of
it without any use of segmentation. Breakthrough results have been achieved in face de-
tection [12, 18] using an exhaustive sliding window approach to predict the presence of
a face at every location and scale in the image. A number of researchers have looked
at using various visual features directly for recognition, either with a texture-like “bag-
of-words” model, or using some spatial relationships (see [9] for an overview). These
approaches have shown surprisingly good performance on a number of tasks, including
over 65% recognition on the Caltech dataset of 101 object classes. Does this mean that,
segmentation, even if it was more accurate, has nothing to contribute to object recogni-
tion?
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Figure 1: Methods representing objects by bounding boxes often find that up to half
of the pixels don’t belong to the object of interest (examples from PASCAL Challenge
dataset [8]).

1.1 A case for better spatial support
When one considers carefully the recent successes in object recognition, a more nuanced
picture emerges. It appears that the current methods are extremely good at a few selected
recognition tasks, but quite miserable at most others. For instance, classic rectangular
sliding window approaches are known for outstanding results on faces [12, 18], pedes-
trians [3], and front/side views of cars – all rectangular-shaped objects, but not much
else. It seems likely that in cases when the bounding box doesn’t cover an object well
(e.g. Figure 1), window-based approaches have trouble distinguishing foreground from
background.

On the other hand, feature-based methods demonstrate remarkable performance rec-
ognizing up to a hundred complicated object categories (grand pianos, anchors, umbrellas,
etc) in the Caltech-101 dataset. However, with a single object per image (large and nicely
centered), and relatively correlated backgrounds (airplanes in the sky, people in offices,
etc) the problem is really more of image classification than object detection. Therefore, it
has so far been a challenge to extend detectors trained on Caltech dataset to perform well
on novel, cluttered data.

The 2006 PASCAL Visual Object Classes Challenge [8] offers a more realistic dataset
with a few large-scale objects per image, although with only 10 object classes. The chal-
lenge consists of two tasks: image classification (does this image contain one or more
objects of a given class?) and object detection (find and localize all instances of an object
class). Tellingly, the contest results on the classification task were overwhelmingly good,
especially using the bag-of-words techniques, whereas the performance on the detection
task was quite poor. This disparity suggests that the current methods are having a hard
time grouping image evidence into coherent objects. Therefore, it is unlikely they will
be successful in a setting where a large number of object classes (like in Caltech-101) is
presented in realistic images with multiple objects per image (like in PASCAL).

1.2 The Return of Segmentation?
It seems apparent that what is missing from the above recognition efforts is a way to define
better spatial support for objects in the image – exactly what the mythical “segmentation
stage” is supposed to supply. If we did have perfect spatial support for each object, this
would presumably make the recognition task easier in a number of ways. First, by in-
cluding only the features on the object into whatever statistical learning method is being
used should greatly reduce the amount of noise in the data, since the relevant features are



not being contaminated by the irrelevant and conflicting ones. In fact, it is possible that
the features themselves could be made much simpler, since less burden is being placed on
them. Additionally, the shape of the object boundary can also be utilized for recognition.
Finally, for general image parsing, the information about object-to-object boundaries is
extremely useful not just for resolving object ambiguity via context, but for better model-
ing of the structure of the entire scene.

But how does one get good spatial support? Researchers have long realized that the
original segment-then-recognize paradigm is flawed and that one must consider the two in
tandem. As early as 1970, several papers developed image interpretation frameworks that
combined bottom-up segmentation with top-down semantic knowledge [15, 7]. Recent
efforts in that direction include work by Tu et al. [16], Yu and Shi [20], Bornstein et
al. [1], and Shotton et al. [14, 19] among others.

Another direction, taken by Hoiem et al. [6] and Russell et al. [11], is to sample
multiple segmentations from an image, treating them as hypotheses for object support
rather than a single partitioning of the image. The motivation is that, while none of the
segmentations are likely to partition the image correctly, some segments in some of the
segmentations appear to provide good spatial support for objects. In this setting, the goal
of recognition is no longer finding and localizing objects, but merely scoring the various
segments by how likely they are to contain a particular object. The multiple segmentation
approach is appealing because of its simplicity and modularity – segmentation and recog-
nition are working in tandem, and yet don’t need to know anything about each other, so
almost any algorithm could be used for each. However, the approach has yet to be thor-
oughly evaluated, so it is not clear how much benefit it would provide in the context of
finding objects. One of the contributions of this paper is providing just such an evaluation.

1.3 Our Aims
In this paper we will address some of the issues raised above by investigating the poten-
tial benefits of using segmentation to find better spatial support for objects. The aim of
the paper is to answer the following two questions concerning the role of segmentation
in recognition: 1) Does spatial support matter? That is, do we even need to segment out
objects or are bounding boxes good enough for recognition? 2) Can segmentation pro-
vide better spatial support for objects? That is, even if spatial support is important, can
segmentation deliver it?

1.4 Our Dataset
In this paper, we utilize the Microsoft Research Cambridge (MSRC) dataset [14] of 231

object classes. To our knowledge, this is the only object recognition dataset with dense
labeling (almost every pixel in each image is labeled) and a large number of object cate-
gories. Therefore, this is a good dataset for evaluating segmentation algorithms as well as
studying multi-class recognition techniques. To make it more suitable for evaluating seg-
mentation performance, we also manually refined many object boundaries and eliminated
“void” regions between objects. On the down side, the small size of the dataset (only 591
images) means that some categories contain only a handful of examples making training
object detectors extremely difficult.

1Like in previous studies, the horse and mountain categories were removed for recognition purposes due to
the small number of instances in each category
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Figure 2: Is good spatial support really worth it? Here, we compare the recall for 21
object classes in the MSRC dataset. For each class, the left bar represents the performance
of using ground-truth segments and the right bar is for bounding boxes. In most cases,
using pixel-wise segmentations masks gives us a reasonable improvement in classification
accuracy.

2 Does spatial support matter?
The first question that must be addressed is whether finding a good spatial support for
objects is even a worthwhile goal. After all, there have been suggestions that a bounding
box may be able to provide some degree of context and may actually be beneficial [21].
To evaluate this question, we designed a simple experiment on ground-truth segmented
objects using a standard object recognition technique. For each object in the dataset, we
estimate its class label given a) only the pixels inside the object’s ground-truth support
region, and b) all pixels in the object’s tight bounding box. Because the MSRC dataset
is so small, we have chosen the Boosted Decision Tree classifier approach of Hoiem et
al. [6] as it appears to perform well under limited amounts of training data. We use exactly
the same features as [6] (which measure texture, shape, location, and geometry) extracted
from either the ground-truth segment or the tight bounding box of each object.

The results of the experiment, on a per-class basis, can be seen in Figure 2. The first
thing to notice is that for 18 out of 21 object categories, the use of correct spatial sup-
port improves recognition results. Objects that are poorly approximated by rectangles,
such as sheep, bike, and airplane, see the largest improvement (over 50%). Interestingly,
recognition on cars, which have traditionally been modelled as rectangular, also improves
substantially, probably due to the 45 degree views. Categories that don’t show improve-
ment with better spatial support are usually doing very well already, e.g. cows, body.
One exception is dogs which is an extremely difficult object class, for which the current
methods don’t seem to be powerful enough, regardless of the spatial support. Overall,
the recognition performance using ground-truth segments is 15% better than using the
bounding boxes, increasing from .665 for bounding boxes to .765 for segments. Clearly,
the issue of correct spatial support is very important for recognition and should not be ig-
nored. The main question now is, can we actually obtain good spatial support in practice?



3 Can segmentation provide better spatial support?
We have demonstrated that using perfect spatial support can improve recognition, but
how can we hope to obtain a good level of spatial support in a purely bottom-up fashion?
While there exist many general purpose segmentation engines, studies have shown that
none are particularly good at segmenting out individual objects [17, 5]. Instead, we will
follow [6, 11] in using multiple different segmentations of the same image, in a way
sampling the space of segmentations. In order to put various segmentation schemes on an
equal footing, we simply treat the output of any region-generating process as returning a
“soup of segments” Ω(I) for a particular image I.

Ω(I) = (N,{Si}N
i=1) (1)

When evaluating a segment S’s degree of spatial support with respect to a ground truth re-
gion G, we compute a normalized overlap score OS(S,G) ∈ [0,1] (we refer to this overlap
score as the spatial support score). When evaluating a soup of segments with respect to G,
we report the Best Spatial Support (BSS) score. The BSS is the maximum overlap score
in the soup of segments and measures how well the best segment covers a ground-truth
region.

OS(S,G) =
|S∩G|
|S∪G|

(2)

For any ground truth region G and soup of segments Ω(I), we characterize the soup of
segments by 2 numbers – the BSS score as well as the number of segments in the soup
N. In theory, we want to obtain a small soup (low N) with very high spatial support
scores. The performance of a segmentation algorithm across an entire dataset is obtained
by averaging the BSS score across each ground truth region in the dataset. Interestingly,
under this formulation any sliding window approach can also be seen as generating a soup
of segments – namely overlapping rectangular regions at various scales (and possibly
orientations).

3.1 The Segmentation Algorithms
In order to have a broad evaluation of bottom-up segmentation, we choose three of the
most popular segmentation algorithms, Normalized Cuts (NCuts) [13], the Felzenszwalb
and Huttenlocher (FH) algorithm [4] and Mean-Shift [2], to generate our “soup of seg-
ments”. Following [11], we generate multiple segmentations by varying the parameters of
each algorithm. For Normalized Cuts2, we generate a total of 33 different segmentations
per image by varying the number of segments k = 3,6,9,12,15,18,21,24,27,30,50 and
the image scale to be 100%, 50%, 37% of the original image size. For the FH algorithm,
we get 24 segmentations by letting σ = .5,1,1.5,2, k = 200,500,1000, and min range =
50,100. For the Mean-Shift segmentation, we get 33 segmentations, by fixing min area =
500 and varying spatial band = 5,7,9 and range band = 1,3,5,7,9,11,13,15,17,19,21.
The number of segmentations for each algorithm was chosen such that size of the multiple
segmentation soup was roughly the same.

However, even with multiple segmentations, it’s not always possible to get an object as
a single segment. Using the intuition that complicated objects often get over-segmented,
we will also consider a larger collection of segments by merging up to 3 segments. To get
contiguous segments, we only allow segments that are adjacent and come from the same

2The version of NCuts we use utilizes the intervening contour cue on top of the Berkeley Pb operator.



segmentation to be merged. Of course, the improvement in the spatial support is done at
the cost of considerably increasing the size of the segment soup.

As a baseline, we also consider the soup of segments generated by Viola-Jones [18]
style sliding window approach, measuring the best spatial support provided by a square
window. Following [18], we choose the smallest window to be 24× 24 pixels, and scan
each image at 10 scales at 1.25× magnification. The best segments from each algorithm
for one example object are shown in Figure 3.

3.2 Experiments
First, we measure the benefits of using multiple segmentations over a single segmenta-
tion for the 23 object classes in the MSRC dataset. For each segmentation algorithm,
we rank each of the multiple segmentations by their mean BSS score and find the best
single segmentation. We then compare the segment soups generated by the best single
segmentation, multiple segmentations, multiple segmentations with 1 merge, and multi-
ple segmentations with 2 merges. Each algorithm is evaluated on a per-category basis and
compared to Viola-Jones sliding windows (see Figure 4 for results using Mean-Shift). We
find that for all algorithms considered, multiple segmentations drastically outperform the
best single segmentation. Adding a single merge to the soup of segments also signifi-
cantly improves the BSS scores, and we notice diminishing returns when adding more
merges. We also create a superpixel-based upper bound (the SP Limit) on how well we
expect a bottom-up segmentation algorithm to cover objects of a particular class. For the
superpixel limit, we create superpixels [10] by over-segmenting each image into approx-
imately 200 regions using Normalized Cuts and finding the optimal spatial support for
each ground-truth object instance with respect to the superpixel map (example shown in
Figure 3). The SP Limit is just the average performance of superpixels. To no surprise,
the multiple segmentation approach is able to provide very good spatial support for ob-
ject categories whose instances have a relatively homogeneous appearance such as grass,
cow, and road while there is still plenty of room left for improving spatial support for
complicated objects such as airplanes and boats.

This type of analysis suggests that merging adjacent segments always helps since we
only consider the best spatial support score. However, in order give a fair evaluation we
must also characterize each segment soup by its size. Thus, we also compare the mean
BSS of each algorithm versus segment soup size, as seen in Figure 5 (here we use log
segments, since the size of the soup quickly gets out of hand). For each of the three
algorithms, we compute the mean BSS and the mean soup size for the single best seg-
mentation, multiple segmentations, multiple segmentations with 1 merge, and multiple
segmentations with 2 merges. While both FH and Mean-Shift have similar average per-
formance, they both significantly outperform NCuts. To complement the superpixel upper
bound, we also determine an upper-bound for the overlap score if using tight bounding
boxes (the BB Limit). This is computed by finding the rectangular window with the best
overlap score for each object instance in the MSRC dataset and averaging those overlap
scores. (This is merely a limit, since in practice it is intractable to slide rectangular regions
of all aspect ratios and all scales across an image.)

We also consider what happens when we concatenate the best single segmentation
from each algorithm, the multiple segmentations from each algorithm, and so on. Both FH
and Mean-Shift were only able to approach the BB Limit by considering the largest soup
of segments (created from multiple segmentations with 2 merges); however, by concate-
nating the three different algorithms we were able to surpass the BB Limit with a much
smaller number of segments. This suggests that the different segmentation algorithms are



Input Image Superpixel .848 Viola-Jones .580

Mean-Shift .507 NCuts .341 FH .655
(a)

.729 .804 .817

.829 .852 .855

.859 .927 .929
(b)

Figure 3: (a) Best overlap using a single segmentation. Under each image is the segmen-
tation algorithm from which the segment came from as well as the corresponding overlap
score. Segment boundaries are represented in red and boundaries of merged segments
are represented in blue. The first row of (a) shows the original input image, a superpixel
approximation to the ground truth region, as well as the square with best spatial support
(Viola-Jones). (b) Nine example results when using a soup of approximately 30k seg-
ments. For each object we display the segment with the best spatial support. Here we
consider the segment soup created by concatenating all three segmentation algorithms
and merging up to 2 segments.



complementary, with each algorithm providing better spatial support for different object
categories.

We also note that when using Viola-Jones style window sliding, we generate on the
average an order of magnitude more regions than the largest segment soup (created from
the combination of the 3 algorithms and up to 2 merges). In addition, the performance
of such a square-window based approach is not only far from the BB Limit, but signifi-
cantly inferior to the multiple segmentation approach. Quantitatively, using Viola-Jones
approach we obtain a mean BSS score of .426 while combining the output of the three
segmentation algorithms with 2 merges gives a mean BSS of .855 – which is a 100% im-
provement in spatial support over Viola-Jones window sliding while considering an order
of magnitude less segments.

4 Discussion
In this paper, our central goal was to carefully examine the issues involved in obtain-
ing good spatial support for objects. With segmentation (and multiple segmentation ap-
proaches in particular) becoming popular in object recognition, we felt it was high time
to do a quantitative evaluation of the benefits and the trade-offs compared to traditional
sliding window methods. The results of this evaluation can be summarized in terms of the
following “take-home” lessons:

Correct spatial support is important for recognition: We confirm that knowing the
right spatial support leads to substantially better recognition performance for a large num-
ber of object categories, especially those that are not well approximated by a rectangle.
This should give pause to researchers who feel that recognition can be solved by training
Viola-Jones detectors for all the world’s objects.

Multiple segmentations are better than one: We empirically confirm the intuition
of [6, 11] that multiple segmentations (even naively produced) substantially improve spa-
tial support estimation compared to a single segmentation.

Mean-Shift is better than FH or NCuts, but together they do best: On average,
Mean-Shift segmentation appeared to outperform FH and NCuts in finding good spatial
support for objects. However, for some object categories, the other algorithms did a
better job, suggesting that different segmentation strategies are beneficial for different
object types. As a result, combining the “segment soups” from all three methods together
produced by far the best performance.

Segment merging can benefit any segmentation: Our results show that increasing
the segmentation soup by merging 2 or 3 adjacent segments together improves the spatial
support, regardless of the segmentation algorithm. This is because objects may contain
parts that are very different photometrically (skin and hair on a face) and would never
make a coherent segment using bottom-up strategies. The merging appears to be an ef-
fective way to address this issue without doing a full exhaustive search.

“Segment soup” is large, but not catastrophically large: The size of the segment
soup that is required to obtain extremely good spatial support can be quite large (around
10,000 segments). However, this is still an order of magnitude less than the number of
sliding windows that a Viola-Jones-style approach must examine. Moreover, it appears
that using a number of different segmentation strategies together, we can get reasonable
performance with as little as 100 segments per image!

In conclusion, this work takes the first steps towards understanding the importance of
providing good spatial support for recognition algorithms, as well as offering the prac-
titioner a set of concrete strategies for using existing segmentation algorithms to get the
best object support they can.
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Figure 4: Performance across object category for the Mean-Shift algorithm. The perfor-
mance of the segment soup created by the single best segmentation, multiple segmenta-
tions, multiple segmentations with 1 merge, and multiple segmentations with 2 merges is
compared to a Viola-Jones window sliding approach as well as a superpixel-based uppper-
bound on segmentation performance.
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