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Abstract

In this paper, we propose an image-based technique for gamiomnovel-
view generation using three uncalibrated wide-angle irmagéts input. State
of the art in novel view generation presumes the calibradiot removal of
radial distortion or any other deformation resulting frome tgeometry of a
non-central camera. We propose a method which replacesdhigation
with the assumption that the epipole corresponding to thelngewpoint is
at the center of radial distortion and that it is known.

1 Introduction

In novel view synthesis, given an image pair, the intensitgach ray in the novel view
is determined by finding corresponding point matches beatvikese images, using the
epipolar geometries between the two views and with respeébiet novel view. This pro-
cess requires that the given images obey the standard pevspmodel, with a single
viewpoint and no radial distortion. Such assumptions mhkecteation of novel panora-
mas a process of acquiring tens of images, each with relatiaerow field-of-view, with
special apparatus, and applying calibration and estimatieircular motion [9].

In this paper, we propose an approach where a novel view cagribesized from
multiple views which might be highly radially distorted,&even non-central, without
compensating explicitly for the resulting image deforroasi. We shed new light on the
problem (Fig. 1) of “how a scene looks from a scene point?8Eliminating the need
for a reference plane and facilitating synthesis of omrtio@al novel views.

We assume that, far> 3 views, the location of the epipole of the novel view in each
image is known, and, in the case of radially distorted vieWat it is coincident with the
centre of radial distortion in the image. This assumptioeitiser enforced (for example
by choosing a visible scene point as the centre of projectitime view to be synthesized,
and actually fixating on this point in the case of radiallytalited views), or else it may
naturally be satisfied for certain wide-angle imaging syst¢for example multiple views
of a spherical mirror). Given such a configuration, the 2D sfavirtual rays at the novel
viewpoint are mapped to a 1D star of lines in each image, wivieinodel as a projection
from P2 (the domain of the novel view) tB! (the angles of the line pencil in image
plane). We make use of the well known fact that three prajestiof a line in space (a
virtual line in our case) yield a trifocal constraint, fronhieh we extract the projection
matrices required for the view synthesis.

The main contributions of this paper are:
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e We can use images with arbitrary radial distortion and evam-central cameras,
such as imaging the scene via a spherical mirror.

¢ We show that novel views can be synthesized without recogéhie radial calibra-
tion or the mapping from pixels to rays in non-central caraerdll steps for the
extraction of projection matrices are either linear or ioseld form.

Related work: Related work maybe be divided into two categories: (1) apghnes
concerning calibration and motion estimation with nontcarand/or radially distorted
cameras; (2) approaches for novel view synthesis from petise views. The closest
approach to our work is the multiple view geometry of 1D rademeras by Thirthala
and Pollefeys [18, 17] where the 1D trifocal tensor is usedddial distortion calibration.
Our euclidean calibration from the 1D trifocal tensor isdzhen the fundamental papers
by Quan and Kanade [10, 12] and Faugestaa [2], while Astrom and Kahl [1] further
study ambiguity of motion estimation from 1D projectionsurQvork differs from [17]
in the fact that we directly synthesize a novel view withooing through the process of
removing radial distortion. For the three view case, whe®epurely rotating camera is
assumed in [17], we make the assumption of fixation at the piéut of the novel view.
By avoiding the distortion calibration step, we do not requhe given views to be from
central cameras, nor that their radial distortion shoulddtationally symmetric, and we
can produce a novel view without scene reconstructon. Basehis fact, our technique
is only tangentially related to recent proposed methodsdbbration of non-central cam-
eras under certain scene constraints [13] and estimatitirewfrelative motion.

Methods to calibrate the radial distortion simultaneoustih multiple view geometry,
where the rays are assumed to be central and without know/lefdifpe scene structure,
include the division model of Fitzgibbon [4], which assunkeswn centre of radial dis-
tortion (as does [17], and as shall we), while the focus ofalagkpansion method [6]
includes the radial distortion centre in the estimatioro$&dmaret al [5] assume a central
camera with pure rotational motion but no rotational synmnigt the distortion.

The approach of Irargt al [8] has been our motivation for modelling the novel view
as a target-to-source mapping rather than an epipolaférai3§. Irani’'s approach, like
ours here, differs from classic view synthesis and morpfidywhere the novel view is
close to the recorded views. Several approaches exist iiteh&ture regarding creation
of panoramic views from new viewpoints by selection of therajpriate rays from a
dense lightfield. The dense lightfield can be constructed @maentric mosaic [9], as
well as with arbitrary motion trajectories [19], after estiting the camera trajectory and
registering all rays in the same coordinate system.

2 Problem definition

We adopt the following conventions. The an@lés defined by ta® = [, where(u,v)
are pixel coordinates. For convenience, we use the follgwsirorthand notation for three
homogeneous entities, all of which depend onlydon

1(8) ~ (—sin cos8 0)',x(6) ~ (cos8 sinB) ', n(6)~ (—sind cosh) . (1)

By definition,1(8) € P? is a line through the image origin, whil8),n(8) < P! are in
the direction of, and normal to, that same radial line. Enttjex(8) ~ (u,v) .



Novel view synthesis from perspective views: We first consider the simplest case
when input images are perspective (pinhole) camera viewhefcene and we pick
any world point as the optical center of the novel singlespective view. Assuming
correspondences; andx; in the two input images and epipolar geometrigg Fand
Fnv,2 with respect to the novel view, a point in the novel view canspathesized as
Xnv = FnvaX1 X Fav2X2 [3]. Traditional multiple view geometry techniques [7] may
be applied to recover the epipolar geometry. Formulatimgréverse projection of this
epipolar transfer, each novel view ray can be projected @fitmriginal views and a
color/intensity assigned to the ray by finding the (singleinpcorrespondence that must
occur between those image lines. Irahial [8] use this framework to recover a novel
view from an arbitrary scene point using the parallax witspect to a plane with known
homography.

Novel view synthesis from radially distorted or axial
non-central views: The framework above required pre-
calibration and removal of radial distortion from the input
views; moreover, removal of non-central distortions would
only be possible via knowledge (e.g.reconstruction) of the
scene [16]. We relax these assumptions and assume that for
every input view the epipole to the novel view is the cen-
tre of radial distortion. Hence, any radial distortion vk
along the projection of a virtual rayd. This can apply

to non-central projections when rays of the non-central inEigure 1. Fromthreera-
put view intersect a common axis and that axis intersects f@lly distorted, and pos-
novel viewpoint. Although pointwise there is no perspeztivibly non-central, views of
projection, a virtual rayd through such a novel viewpointthe scene it is possible to
projects to a straight linethrough the novel view epipolerender a novel view of the
in the image. We can thus model the projection of the Zeneif we assume that the
star of virtual raysd as a 1D line pencil in each input view.novel view epipole at each

Although a concurrent novel view epipole and radi&f the three input views is
distortion centre might seem to require active fixation, sorfle center of radial distor-
wide angle imaging systems satisfy this automatically. Fé@n.
multiple pinhole camera views of a fixed spherical mirror,
captured rays are always non-central [15], yet, regardiésslative camera pose, the
sphere centre maps to the radial distortion centre in alsiel'hus, choosing the sphere
centre as the novel viewpoint fulfils the requirement fopepés to coincide with the cen-
tres of radial distortion for all views. All that remains slbcate the centre of the sphere
in each view, achieveable if the perimeter of the mirror &hle in the images. Note that
radial distortion will not be rotationally symmetric whelmet optical axis of the pinhole
camera is offset from the centre of the sphere, yet our tgcienis unaffected since we
make no assumptions about the form of the radial distortion.

Assuming a 1D homography between the pencil of planes thr@agh view axis
and the pencil of lines in the image, which is indeed the casenbst practical “axial”
cameras, the mapping of novel view rafg) to image radial line pencilf?) is described
by a 2<x3 homogeneous matrix. (For a perfect pinhole camera thigshatievery pixel:
since it is central, any ray can be picked as the “axis” and adography is induced on
any line pencil in the image by the 2D homography of planar pestype projection from
pinhole rays to image plane.) We next illustrate by deriarfgrm for this mapping.




If the rigid body transformation from the novel view coordfa frame to the camera
coordinate frame is given b¥c = RXny + T, where Re SO(3) and T € R3, then the
novel view ray with directiom € S (given in the novel view reference frame) is projected
into an input view as the linkee P? given by

fu S LTO
| ~KT x KRd where Kis parameterizedag: 0 f, Vo |. (2)
0 0 1

The affine transformation K encodes the intrinsic paranseiéthe mapping from novel
view ray () to radial line {). The epipole of the novel view is given byTK assuming
we know its location, we translate our image coordinatesa&anthis epipole our image
origin. By doing this, we have set K~ (0,0,1)" in equation (2), and adjusted the
variable for the principal point accordingly, giving

0 —sin@ 0O -1 0 fos
~|0]xKRd = cos® |~[1 0 O KRd:>x(6)~(6‘ ; VO)Rd. (3)
1 0 0 0 O , v o/
M

Since M has rank 2, it has a unique RQ-decomposition as thiuptaf a 2<2 homoge-
neous upper triangular matrix and a 2 matrix with orthonormal rows, so the mapping
effectively has two intrinsic parameter dofs. Notice tlirag catadioptric case with mirror
and pinhole optical axis aligned (i.e., wh&n= (0,0, T;) ", since the novel view origin
also coincides), theny = v = 0, and the aspect ratio and skew of the pinhole camera
will correspond directly to the two intrinsic parameterstioé novel-view-ray-to-radial-
line mapping; for that aligned case, any assumptions thrabeanade about the pinhole
camera’s aspect ratio and skew parameters can thereforssb#dydapplied to the novel-
view-ray-to-radial-line mapping intrinsic parameters.

3 From tri-view correspondences to novel view rays

3.1 Trilinear constraint for radial line correspondences

Given three views, V, Y V”, we first translate each image, placing the known novel
view epipole (assumed to coincide with the radial distorientre when applicable) at
the image origin. Let M, M M” be the Z 3 homogeneous matrices that then map novel
view rays to radial lines in respective views. Consider aneqaoint that is visible in all
three views. Letl € S be the unique novel view ray on which this scene point liesifev

if occluded from the novel viewpoint, it still “virtually” gincides with one novel view
ray). Letx(6), x(6), x(8") be the unique radial lines on which the image of this scene
point lies in the respective views. Then,

X(0) ~Md, x(8")~Md, x(8")~M"d. 4)
Taking the dot product with(8),n(6’) andn(6”) respectively gives

n(6)™™ 0
ne)'™ |d=1{0]. (5)
(9//)TM// 0

B



For this equation to hold the determinant of B must equal, zZgiwing
detB)=n(8) "M (M'"n(8') xM""n(8")) =0, (6)

which can be written as

—s0s0/s9"\ | Vi

cOs0’s6” Vo

—s0ch'co” V3 M(m} x mf)

cHch'co” va | . M(m}, x mj) r o (my’ p (m]T
59596;‘}9;, Vi =0, withv~ m%milxm:% , whereM’ = ml andM” = myT
—cOsh'c Vg m5, x mf

s6cb’s” V7

—cOco'se” Vg

——

where sirf and co$ are denoted asf andc6 respectively. This € P’ is the 1D trifocal
tensor [11, 18]. If MM’;M” andd satisfy (5) then for any collineation H PL(3) it will
be the case that MM’H,M”H and H1d also satisfy that constraint as:

x(8) ~Md=MHHd, x(8')~Md=MHH 1, x(8")~M'd=M'HH 1d. (8)

This 8 dof homography, H, perfectly accounts for the disareyy between the 7 dofs of
v and the 15 dofs of the three projection matrices it encodes.

3.2 Estimation of the 1D trifocal tensor

For each scene point that lies on a distinct novel view ragrettwill be a different cor-
responding triplet oB, 8’,8”, and each distinct triplet gives a linear homogeneous con-
straint onv of the form in equation (7). Given N distinct correspondirigléts of radial
lines across three views, the resulting constraints caridmied into a matrix equation

of the form Dv = 0, where D is a N8 matrix depending only on the measured image
angles. If N= 7 then the 1D trifocal tensov, can be solved for exactly as the nullspace
of D. If N > 7 thenv can be estimated via linear-least squares, for exampleg S¥D.

In practice, since this linear estimation requires only if&spondence triplets, it is easily
and best implemented within a robust framework, such as RXIN$ order to simulta-
neously filter the outlier correspondence triplets.

3.3 DeterminingM, M’ and M” up to a collineation

The method we use to recover the projection matrices up td-riwultiplication by an
unknown homography was introduced by Quan and Kanade [bd]isabriefly outlined
here for completeness. Without loss of generality, we patarize the three projection
matrices as:

(2w (2 B) wom) o

T
a
C

Since each matrix is homogeneous, scales of NJ,N are arbitrary; the 10 parameters
in a,c,m7, mj thus have 7 dofs which are recovereable from the 7 dof 1Dciftensor.



Letting 4 denote the homogeneous scale factor, the parameteripdtioatrifocal tensor
in terms of the projection matrices, as given in equationd@h be written as:

0 —c ﬁCz 0 0 0 —V1
g O —-ac;, 0 O 0 —wv
0 0 0 0 - —ﬁCz —V3 m’!
0 0 0 ¢ 0 ac —v A
0 0 0 0 -¢ B -w||\M)=0 (10)
0 0 0 ¢ 0 -ac —vg| \H
0 - fBCZ 0 0 0 —V7
c; O acg 0 O 0 -—vg
G

Since (mf;m4; u) # 0, all the 7x7 minors of G must equal zero, yielding two alge-
braically independent equations, homogeneous in aatindc, as follows:

C1V3—CoV5 C1V4 —CoVg C% + C% 0 0
a= . (12)
C1V7 —CoVy C1Vg — CoVo 0 C1+C2 0

C r

These can be solved in closed form foandc, up to scale in each case. As neither
¢1 = ¢ = 0 (which makes Mthe null matrix) norc; = —c, (which makes Mrank 1) is
possible, it must be that det€0, which gives

detC= (VaVg — V4V7)C3 + (V1V4 4 VV7 — VoV3 — VsVg)C1Co + (VoVis — ViV )Cs = 0. (12)

In general, this quadratic has two distinct solutions; sithe scale of directly represents
the overall scale of K we arbitrarily fix it to|c| = 1 for both. Then, substituting each
solution in equation (11), the respective solutionsdare found as the nullspace of C
The unknown scale &, corresponds to the arbitrary scale of M, so fix we candix= 1.

In this way, two solutions are found for the matriX Mnd for each of these two solutions
a unique M may be determined from the kernel of G in equation (10).

3.3.1 Discerning the correct solution from the two-fold ambiguity

If we reconstruct the novel view rays for the correspondsniben both solutions will not
be within a collineation of the euclidean novel view. Withany further information, it is

not possible to distinguish between the two solutions, awa practice many options
exist (e.g. a fourth view; information about the scene; asuagption that the radial
distortion is constant along conical contours) which woalkdw for the incompatible

solution to be easily identified.

3.4 Estimating the collineationH

When nothing is known regarding the original views’ intilmparameters or the scene
structure, the only option is to pick a collineation that makhe novel view “appear
reasonable”, for example mapping four of the projectivealogys (reconstructed from
correspondences and the projective estimates of MMV) to four desired coordinates.
If information can be gleaned about the scene, or else agmumapnade regarding the
intrinsic parameters, then sufficient constraints may biveléto determine the particular
H € PL(3) which gives a euclidean novel view. Details will be case geave outline
underlying principles for each of these two approachesemtixt two subsections.



3.4.1 Using assumptionsregarding the original views' intrinsic parameters

LetM), fori =1...nviews, be the estimated<3 projection matrice$, and let H be the
common collineation that upgrades them to the euclideandreConsider the following
three possible parameterizations for the euclidedh

MOH ~ KORD  wherekK = (% i) , RM e R?*3 with orthonormal rows (13)

MOH ~ KORD 1) whereK) = (% Sl) , RV e 50(2), t1) e R2. (14)

MOH ~ RORD  whereR() — (fui s “Oi) and R € S0(3). (15)
0 fi WV
Unique parameterizations of both forms (13) and (14) wilsefor all n euclidean pro-
jection matrices. The blatant over-parameterization in (15) is presenteitl iasmore
intuitive for the practical case where the final image is framinhole camera, perhaps
following a mirror reflection, as derived in section 2. Untlezse parameterizations, the
ith camera parameters are related to the common H as follows.

Under parameterization (13) the relation is:

. ) _ . . . 32 S
MOHHTMOT o KORODROT KT — KK OT — (a1 %—g i) (16)

1252

This gives two equations per view, relating the elements ldf Ho parameters of that
view:

m(lmHHTm(li> _@. g d m(lmHHTm(zi) o 17
0T e® 8T an DT (17)
m,’ HH'm, m,’ HH'm,
Under the parameterization (15) the relation is:
MOHHTMOT ~ g0 ROROTROT — (fi TS UG s UO2iV0i> (18)
— fus +uoivoi  fi+ V5

I3x3

(This is the top %2 submatrix of the full KK - the dual of the image of the absolute
conic [7] - for the pinhole camera.) This gives two equatipes view, relating the ele-
ments of HH to the parameters of that view, as follows:

mUTHH MY 2+ 2+ and m{’THH™ M) fuis + v

_ _ _ . . — (19)
mi THHTMY 15+ mi THHTMY — fE+V5

Since, H always appears as a symmetric matrix €H', recovery of H amounts to
recovering the 5 parameters of C. Once a positive-definits 2¢overed, H can be

1Thus far, we assumed = 3 views, butn > 3 views could, for example, first be processed as triplets
comprising one common view, and then registered using arfaation approach [11].

2These two parameterizations follow from the RQ decompnstinf a 2<3 and 22 matrix, respectively,
where in both cases the decomposition is unique becausarthésrknown to be 2. The assumption that the first
2x 2 submatrix has rank 2 across all views is without loss of g#ityg since the euclidean projection matrices
are only up to a similarity, and that similarity can alwayschesen to ensure this fact.



found via Cholesky decompositon. In particular, if we kndwattthe parameter ratios
are the same across several views, then with just 4 such vi@asan recover both H
and the two common ratios from the RHS of (19). For the cask saweral randomly
posed pinhole camera views of a fixed spherical miias, vo;) will vary for each view,
precisely because we translate each image differently tcereach epipole the origin.
However, since the offset is known for each view, we can vaitéhe (ug, Vo) in terms
of a common unknown principal point and again, provided weehgufficient views, and
provided the pinhole camera intrinsics are constant, weesdiimate the collineation,
albeit non-linearly. If the principal point can be assumedaurrent with the centre of
radial distortion (i.e., camera and mirror axes aligned{l, pinhole camera skew assumed
zero, then 3 such views are sufficient and the solution forlDésr.

3.4.2 Using assumptions regarding the scene

Given projective estimates M, MM”, we can projectively reconstruct novel view rays for
the correspondence points. Finding the collineation thetsihese projective novel rays
to a euclidean frame is equivalent to the problem of calibrefrom a single view, which
can be approached variously [7]. If the scene allows ideatifin of two vanishing points
(thus horizon of a plane) in the projectively reconstructedel view, we can upgrade to
an unknown affinity. Additionally, if the circular points ©de identified, the calibration
may be updated up to a similarity.

3.5 Overall algorithm: recovering novel view epipolar geonetry

Given three views of a scene such that the novel view epip@ach image is known (and coincides
with the centre of radial distortion, where applicable):

1. For each view, translate pixel coodinates so the novel gj@pole is the image origin.

2. ComputeN > 7 distinct line correspondence triplet§9),x(0’), x(6”) from point correspon-
dences across the three images.

3. Estimate the best-fit via SVD, for the> 7 homogeneous equations of the form in (7), after first
filtering outlier correspondences using a robust estimatoh as RANSAC.

4. Substitutes in equation (12) and solve the quadratic to obtain two homegas solutions fot.
Set|c| = 1 for both solutions.

5. Substitute each of the two solutions foin equation (11) and solve to obtain two corresponding
homogeneous solutions far Set|a| = 1 for both solutions.

6. For each of the tw@a, c)-solutions, substitute, a, ¢ to build the 8<7 matrix G in (10). Extract
(mf{,m3) from the nullspace of G.

7. Build the two solutions for the projection matrices M;/,MA” from the two solutions for
(a,c,m{,m%), according to the parameterization in (9).

Steps for discerning the correct solution from the two-fabiguity, and for recovering the collineation
to a euclidean novel view, are case specific, as detailecttioss 3.3.1 and 3.4.

4 Rendering the novel view

Let M), fori = 1...n views, be the 23 projection matrices estimated from methods
in section 3. If we had enough information to determine thiéiramation, these projec-
tion matrices refer to the euclidean frame and a euclidearlngew will ensue; if not,
techniques in this section will lead to a projective novelwi



A sparse novel view from correspondencesLet (61, 6,...,6n) be a correspondence
tuplet acrossn > 2 of then views. Then,

n(Gl)TM(l)
d=0. (20)
N(6m) MM

If m= 2 the corresponding novel view ray;, is the cross-product. Fan > 2 the nullspace
(via SVD) givesd. Using inlier correspondences (including two-view cop@sdences)
from the initial 2D matching for trifocal tensor estimatiogsults in a forward version of
novel view synthesis, entailing a short run time but rerga sparse novel view.

A dense novel view via guided matching Establishing a dense novel view means it-
erating over all rays to be synthesized, projecting eaah afitinput views. The ray
color/intensity can be set from the most photoconsistedt jgilong the corresponding ra-
dial lines. Ordering should be considered when matchingjatiple points on the same
novel ray could be visible in the original views (with a fixgzherical mirror case this not
likely: parallax between views due to a non-central cay4f¢ would be very small).

5 Preliminary simulations and experiments

Simulations for computing novel view epipolar geometryngseal 3D scene points pro-
jected into four synthetic views, are currently being utalegn. A preliminary remark
is that correspondences should spa®0 degrees in at least one image for stability.
Thus, although the framework itself does not preclude conditions where the novel
view epipole/centre of radial distortion is on the perimete even outside the frame, of
all images (e.g., oblique pinhole views of a spherical mirrared| such configurations
are not ideal. In practical imaging, the radial distortie@ntre does usually lie within
the image, and since wide-angle imaging captures manyrésttri-view point corre-
spondences are likely to span the full rangeah at least one view, making estimation
stable. Implementation with a sequence of shots of a s@leamicror, such as in Fig. 2,
is future work, but note that correspondences have Widgpan in all images, and that
even just three views of a spherical mirror provide more thaough information for a
full panoramic novel view, as each visible scene point iduagal by at least two images.

Figure 2. Therecording setup on the left and the three input views.

6 Conclusion

This paper has proposed a framework for rendering a singlspective novel panoramic
view from radially distorted non-central images, when thaele of the novel view can
be assumed to coincide with the centres of radial distoiticall views. This condition



is automatically met by multiple views of a fixed spherical mirror using a pitehcamera
(whatever the relative pose), and that is a primary prdati®afor this framework.

For other wide-angle imaging techniques (using a hand-testdera with a fish-eye
lens, say!), precise fixation by the centres of radial diginron a single scene point in
space will be prone to some error, and analysis of sengitdfithe epipolar geometry
estimation to errors in the fixation and/or errors in the assth centres of radial distor-
tion is currently being undertaken, in order to quantifyriework limitations. It should
be noted that state-of-the-art techniques for generativglrpanoramic views typically
assume circular motion, or pure rotation, and so our remerg that the views should
fixate on a novel viewpoint is actuallgss restrictive.

Rendering a dense novel view will depend on the success dédunatching along
the corresponding radial lines. Stereo rectification orrevappropriately, rectification
via a homography to one of the original views as in [8], is npioasibility because the
intra-view epipolar geometry is not recovered (since no eh@mlassumed for the radial
distortion). Stereo rectification to the novel view will nme useful for typical configura-
tions, where the novel view epipole lies within the imagesplBration of techniques for
this 1D guided matching is therefore of interest for futuierkv
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