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Abstract

We propose an algorithm for automatically obtaining a segmentation of
a rigid object in a sequence of images that are calibrated for camera pose
and intrinsic parameters. Until recently, the best segmentation results have
been obtained by interactive methods that require manual labelling of image
regions. Our method requires no user input but instead relies on the camera
fixating on the object of interest during the sequence. We begin by learn-
ing a model of the object’s colour, from the image pixels around the fixation
points. We then extract image edges and combine these with the object colour
information in a volumetric binary MRF model. The globally optimal seg-
mentation of 3D space is obtained by a graph-cut optimisation. From this
segmentation an improved colour model is extracted and the whole process
is iterated until convergence.

Our first finding is that the fixation constraint, which requires that the ob-
ject of interest is more or less central in the image, is enough to determine
what to segment and initialise an automatic segmentation process. Second,
we find that by performing a single segmentation in 3D, we implicitly exploit
a 3D rigidity constraint, expressed as silhouette coherency, which signifi-
cantly improves silhouette quality over independent 2D segmentations. We
demonstrate the validity of our approach by providing segmentation results
on real sequences.

1 Introduction
Recently there has been growing interest in the development of dense stereo reconstruc-
tion techniques [10]. These techniques focus on producing 3D models from a sequence
of calibrated images of an object where the intrinsic parameters and pose of the cam-
eras are known. In addition to the multiple views, many of these techniques also require
knowledge of the object’s silhouette in each view to provide: (a) an approximate initial
reconstruction, (b) an outer bound for the reconstructed object and (c) approximate oc-
clusion reasoning [12]. This demand for accurate object silhouettes will influence the
acquisition of the image sequence to provide an easy segmentation task, for example se-
quences are taken on turntables against fixed coloured or known backgrounds. Naturally
this places limitations on the subject matter for reconstruction since real world objects
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will often be immovable and there will be no control over the image background which
may well vary considerably with differing views of the object. To extend the applicability
of multi-view stereo to real world objects it is necessary to be able to segment a rigid
object in a sequence of possibly cluttered images.

The most recent advances in image segmentation adopt an interactive approach [2, 3,
9] where the user is required to guide the segmentation by manually segmenting image
regions. The information supplied by the user is used to learn the object’s colour distribu-
tion and the globally optimal segmentation is achieved by the maximum flow algorithm
[7]. This approach performs well on simple images, but the extent of user interaction
required increases significantly if the object contains multiple distinct colours and if it is
found in a cluttered or camouflaged environment.

If we now consider the case of a large number of images, required for high accuracy
reconstructions, we can see that even a modest amount of user interaction on an individual
image basis will represent a significant task using these interactive tools. In order to
reduce the demands placed on the user we aim to exploit the constraints that exist within
the image sequence. Note that the sequence contains a series of multiple views of the
same rigid 3D object, therefore the segmentations must satisfy a silhouette coherency
constraint [6]. This constraint follows from the knowledge that the images are formed
from projections of the same rigid 3D object with the correct segmentations being the
corresponding silhouettes. This suggests that by attempting to perform segmentation on
isolated 2D images we are rejecting a great deal of information contained within the
sequence. We further observe that, since the intended purpose of the image sequence is
to reconstruct the object, we have a fixation constraint whereby the object of interest is
always being focused upon by the camera and thus likely to be central to the viewpoint.

In order to exploit the coherency constraint we perform the segmentation across all
images simultaneously. This is achieved by performing a binary segmentation of 3D
space where each 3D location (voxel) is labelled as ‘object’ or ‘background’. The 3D
segmentation is influenced by: (a) a colour model initially learned from the fixation points
and then refined in subsequent iterations and (b) a 3D shape prior based on minimal
surface area.

The advantages of our approach over independent 2D interactive segmentations are
twofold. Firstly, we replace the user supplied image labelling with the fixation constraint,
which is usually satisfied by multi-view stereo sequences. Additionally we employ con-
straints that link multiple segmentations of the same rigid object to improve segmentation
quality.

The rest of the paper is laid out as follows: In Section 2 we review relevant prior
work and discuss the differences of our approach. Section 3 begins with an overview of
the segmentation algorithm and continues to provide details of the automatic initialisation
procedure. A discussion of how the colour models are learnt follows in Section 4 and
Section 5 establishes the volumetric graph-cut framework used to perform the optimisa-
tion. In Section 6 we provide two sets of results of real world image sequences. The first
shows the complete reconstruction of a hat in a fully automatic process with the user only
providing the input images. The second provides a much more challenging segmentation
task and we compare the performance of our volumetric approach against automatic 2D
segmentations. The paper concludes in Section 7 where the main contributions of the
paper are reviewed.



2 Previous Work
The work of [3] introduces a framework for adopting an energy minimisation approach to
segmentation where the resulting optimisation process is both tractable and unique thanks
to the max-flow/min-cut algorithm. Although the paper details how the method may be
extended to N-Dimensional graphs, the predominant focus is on the segmentation of 2D
images. They also demonstrate a simple histogram based learning process to allow a user
to interactively segment a grayscale image. This approach was formalised in [9] where
an interactive system for the segmentation of 2D colour images was proposed. As with
our method, that paper adopts an iterative approach to the segmentation task by learning
colour models of the object and the background. Although considered state-of-the-art for
2D images, the interactive demands placed on the user make the segmentation of a large
sequence of images a sizeable task which we avoid by adopting an automatic approach.

An extension of this idea is presented in [13], where a deforming object is segmented
in a video sequence by a graph-cut on a 3D ‘space-time’ volume. Although related, the
approach of [13] is not directly applicable to our problem since our image sequence is not
obtained from video and as a result is not dense enough to form a continuous space-time
volume.

In [11], a graph-cut based approach is used to estimate the voxel occupancy of a cali-
brated volume in space. Their approach is directly aimed at using an energy minimisation
framework to regularise the process of combining a series of imperfect silhouettes. The
main difference is that they obtain these silhouettes as the result of a background subtrac-
tion process from a fixed, calibrated camera rig whereas we adopt an iterative learning
approach requiring no prior knowledge of the object or environment.

The task of segmenting objects in multi-views has also been studied in [14]. Whilst
also approaching the task in the 3D domain, here the authors use a level set method to
evaluate the segmentation based on Lambertian scenes with smooth of constant albedo.
Level set methods are known to be susceptible to local minima so [14] relies on smooth
albedo variation and a multi-resolution scheme to achieve convergence. In contrast, our
method tolerates albedo discontinuities and, due to the graph-cut optimisation scheme, is
guaranteed to converge to the globally optimal segmentation.

3 Problem Statement
We accept as an input a sequence of M images, I1...IM , of the object with each image
made up of a set of pixels Pm. We assume the images are calibrated which allows any
location in the voxel volume, X ∈ R3, to be mapped to its corresponding location in
image Im, xm ∈ R2. We also assume our fixation condition where the object is taken to
be fully contained by and centred in each view. We form an array ofN voxels, V , from the
intersection of the volumes projected by each of the images, thus the fixation constraint
mandates that this volume contain the visual hull of the object. Each voxel has dimensions
(δx, δy, δz) and may be indexed as vn ∈ V . We intend to label each voxel as inside
the object’s visual hull (O ⊂ V) or outside (B ⊂ V), and thus part of the background
in the image segmentation, such that vn ∈ O ∪ B. We also define um,n ∈ Pm where
um,n = Im(Proj(vn)) is the RGB colour of the pixel which vn projects to in image
Im. When formulating the voxel array as a graph we define a set of edges E containing
neighbouring voxels in a six-connected sense.



Acquire calibrated image sequence fixating on the object
Generate voxel array from bounding volume
Use fixation points to initialise colour models
Use graph-cut to produce initial segmentation
while Visual hull not converged do

Extract the silhouettes of the current visual hull segmentation
Update the object colour model using all images
Update background colour model for each image
Generate classification probabilities
Update graph with new values
Perform graph-cut segmentation to produce new visual hull

end while
Figure 1: The iterative segmentation algorithm.

An overview of our segmentation algorithm is given in Figure 1. The first stage of
the algorithm is to establish a location within the voxel array known to be contained
within the visual hull of the object. This is required to provide a starting point for the
estimation of the colour model of the object. We make use of the fixation condition
previously mentioned to automatically generate this seed location from the centroid of
intersection of the optical axes of the individual cameras and sample with a Gaussian
weighting, of conservative radius, to provide the data for the initial object colour model.
The initialisation is used to provide the starting point for the second stage of the algorithm,
namely the iterative refinement of the visual hull estimation using a volumetric graph-cut
scheme. The following two sections discuss the main components of the iterative stage:
building the colour models and the volumetric graph-cut.

4 Building Colour Models
During the algorithm we develop colour models to provide probabilistic likelihoods for
image pixels to be part of the object or background. In common with general practice
in this area [9] we use a K component Gaussian Mixture Model (GMM), [1], in 3D
colour space (red, green, blue) to model the likelihood. These models take the form
of (1) where u is a vector in colour space. The probability distribution of the colour
of the kth component of the mixture is given by a normal distribution with mean µk and
covariance Σk. Each of the individual components is weighted by the marginal probability
of the component p(k), termed the mixing coefficient and denoted πk. The number of
mixture components, K, provides a trade-off between computation time and model over-
fitting against the discriminative power of the colour model. For our experiments we used
K = 5.

p(u |πk, µk,Σk) =
K∑

k=1

p(k) p(u |µk,Σk) =
K∑

k=1

πkN (u |µk,Σk) (1)

At each iteration, GMMs are learnt for both the object and the background. The
learning process consists of sampling the pixels as a sequence of colour vectors and using
the Expectation-Maximisation (EM) algorithm to ‘fit’ the model parameters of the GMM
to the sampled data [1]. We intend to exploit the fact that the object is seen in multiple
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Figure 2: Iterative learning of the object colour model. The fixation condition is used to provide
a seed (a) for the first object colour model (b). In all images the seed areas contain only the straw
colour. The result of the first graph-cut (c) contains areas of the red ribbon which is incorporated
into the colour model (d). The second iteration refines this to produce the correct segmentation
(e) with corresponding colour model (f). (b,d,e) Show the likelihood of being object L̂O under the
colour model at each iteration (7).

views, therefore we build a full colour model for the object by sampling pixels from all the
views using the silhouettes as a mask. This approach allows us to increase our knowledge
about all the colours present in the object even if the initialisation fails to capture all the
colours of the object. In this situation an automatic 2D segmentation would most likely
fail. However, under our method the visual hull estimation forces a spatial coherency,
thus when the graph-cut is performed the segmentation will generate a visual hull whose
silhouettes should include a portion of the colour in at least one of the views. Since the
colour model is built over all views, we only require one view to register the second colour
as object in order to allow the subsequent iterations to add the colour to the model and
extend the volume into the other region.

This is demonstrated in the hat sequence of Figure 2. The initialisation of the colour
model, Figure 2 (a), contained only the straw colour in each view, therefore the first it-
eration object colour model, Figure 2 (b), fails to classify the red ribbon as object. The
result of the first graph-cut segmentation, given in Figure 2 (c), attempts to combine the
separated straw coloured regions and in the process includes some of the ribbon in the
segmentation. The second iteration learns an object model which propagates this knowl-
edge of the ribbon over all the image sequences so that the object colour model includes
the ribbon as in Figure 2 (d). This is refined in the subsequent iteration to produce the
correct segmentation of Figure 2 (e), with the object colour model Figure 2 (f), after the
second iteration graph-cut.

In contrast to the object model, we expect the background model to vary over each
image, therefore a separate GMM is learnt for the background of each image. Since we
are unsure of the final visual hull at the start of the iteration, we conservatively estimate
the background by sampling image pixels which aren’t currently segmented as the object.



In the early stages, particularly during the first iteration, the sampled data will contain
many pixels from the object itself. However, the localised object model will necessarily
be a better fit to the data in and around the seed location, therefore the more generalised
background model will not prevent the initial region from growing.

Since the algorithm is EM based it is possible that convergence will be to a local
rather than global optimum. However, since we reject background pixels using spatial
consistency, the algorithm is forced to converge on a spatially coherent object.

5 Volumetric Graph-Cut
The task of segmentation is performed within the voxel array and the resulting silhouettes
from the computed visual hull propagated back to the individual images. This ensures the
set of image silhouettes are consistent with one another at every iteration. The segmenta-
tion operation is one of energy minimisation as in (2). The energy to be minimised, given
in (3), is comprised of two terms: a volumetric term and a boundary term. The parameter
Θ denotes the collection of colour model parameters , as in (4), which are updated at each
iteration using the results of the previous segmentation.

O = arg min
O⊂V

E(O,B, {Im},Θ) (2)

E(O,B, {Im},Θ) = λEvol(O,B, {Im},Θ) + (1− λ) Esurf(O,B, {Im}) (3)

where Θ =
[
{πOk }, {µOk }, {ΣOk }, {πBk,m}, {µBk,m}, {ΣBk,m}

]
(4)

5.1 Volume Term
The volume term encodes the preference for a voxel to be classified as inside or outside the
object. We therefore construct this term from the colour models of the individual views.
For the mth image in the sequence we can evaluate a likelihood term for the projected
pixel colour um,n of voxel vn to be part of the object (5) or the background (6) given the
current GMM model parameters in the same form as (1).

LO(vn,Θ,m) = p(um,n |πOk , µOk ,ΣOk ) (5)

LB(vn,Θ,m) = p(um,n |πBk,m, µ
B
k,m,Σ

B
k,m) (6)

In the absence of any prior knowledge about the pixels class, we may form a classi-
fication probability of being object by normalising the likelihoods. We then sum over all
images for a single voxel, normalising by the number of images, as shown by (7).

L̂O(vn,Θ) =
1
M

M∑
m=1

LO(vn,Θ,m)
LO(vn,Θ,m) + LB(vn,Θ,m)

(7)

The final volume cost is given by (8). Rather than use a per-image binary voting cost
[11] we combine the probabilities from the individual images using an offset parameter
φ ∈ [0, 1]. This parameter encodes the threshold level of the algorithm — were we simply
to combine binary silhouettes it would represent the number of images which have to



agree in order to start considering a particular voxel as part of the visual hull as seen in
the case of ideal silhouettes where we have φ → 1 since L̂O(vn,Θ) → 1 in the event
of perfect object classification in all images. Thus φ controls the rate of convergence
to the true solution against robustness to noise in the event of imperfect colour model
classification in each image. Usually a conservative value of around 0.8 - 0.9 results in
the best trade-off.

Evol(O,B, {Im},Θ) =
∑

vn∈V


(

1−
[
L̂O(vn,Θ)− φ

])
vn ∈ O(

1 +
[
L̂O(vn,Θ)− φ

])
vn ∈ B

(8)

5.2 Boundary Term
The boundary term in (3) encodes the energy associated with the surface area of the
object. In a similar manner to the 2D examples of [3, 9], we use the colour discontinuities
within the images to project cutting planes through the voxel array which should form the
boundaries of the visual hull. We identify the colour difference as the vector norm of the
projected pixels of neighbouring voxels in each image as (9).

Zm(vi, vj) = ||um,i − um,j ||2 (9)

Since we are estimating the boundary of the visual hull, the maximum colour differ-
ence across the image sequence is taken and an exponential cost function, with β esti-
mated from the images [3, 9], used to provide the standard Gibb’s model of (10).

Esurf(O,B, {Im}) =
∑

(vi,vj)∈E,
vi ∈O
vj∈B

max
m

e−βZm(vi, vj) (10)

6 Experiments
In our experiments we calibrate a sequence of images. For the acquisition of test se-
quences we derived our own automatic calibration method. We assume the object lies
on a textured plane and thus derive correspondences, using interest points and SIFT de-
scriptors [8], and estimate plane-to-plane homographies. A modified version of the linear
calibration from planar homographies in [15] then provides a initial input for non-linear
optimisation, via bundle adjustment [4], of the camera intrinsic parameters and individual
poses.

For the statue sequence of Figure 4, planar calibration was not possible and therefore
the camera intrinsic parameters were calibrated separately followed by the application of
structure from motion techniques [4] to track correspondences on the object itself and
thus provide an initialisation for bundle adjustment.

The system used to provide the results was based on an Intel Xeon Processor with
4 GB of RAM running at 2.6 GHz. The unoptimised code required 20 minutes per itera-
tion for the hat sequence with a voxel array size of 2303. The complexity scales linearly
with the number of pixels and the majority of the time is spent fitting and evaluating the
colour mixture models. We now present the performance of the method on two ‘real
world’ image sequences.



(a) (b) (c) (d) (e)

Figure 3: Fully automatic registration, segmentation and reconstruction of the hat sequence
(4 out of 30 images). The fixation condition is applied to the image sequence (a) and used to
initialise the colour models. The colour models converge to a capture all the object colours (b) and
the graph-cut at convergence produces the correct silhouettes (c) and visual hull (d) which may be
used to produce a reconstruction of the object (e).

Hat Sequence
Figure 3 shows the segmentation results for a sequence of 30, 4 megapixel images of

a hat. The silhouettes and visual hulls shown were obtained after 3 iterations. In addition
to the segmentation process being performed without user input, our planar calibration
procedure is also fully automatic and thus no user interaction, other than capturing the
images themselves, was required to complete this segmentation. Figure 3 (e) shows a 3D
model reconstruction of the hat using an implementation of [5].

The object colour model probabilities, Figure 3 (b), are observed to have correctly
captured all the object colours resulting in the accurate visual hull of Figure 3 (d) with
corresponding silhouettes Figure 3 (c).

Statue Sequence
The method was also tested on a much more challenging image sequence. The statue

sequence consists of 69 images of a statue in the British Museum. The images were cap-
tured by hand at a resolution of 5 megapixels. As can be seen from the example images of
Figure 4 (a), the background continually changes including both the surrounding building
and numerous different people and hence a very wide range of colours. The lighting con-
ditions also change dramatically as can be seen by comparing the 3rd and 4th images of
Figure 4 (a).

We have compared our results with an implementation of [9] applied independently to
each image. Instead of user interaction, we supply the 2D method with the same initiali-
sation as the one supplied in the 3D segmentation algorithm, namely the fixation points.
Figure 4 (b) provides the silhouettes and Figure 4 (c) shows the visual hull resulting from
the combination of the 2D segmentation results.



The segmentation results after 9 iterations of our method are given in Figure 4 (d).
The majority of the silhouettes are registered accurately offering significant improvements
over the independent 2D segmentations. We observe that the left leg of the statue is not
completely recovered. Since the leg structure is hollow, roughly half of the views see the
inside of the sculpture which is different in colour and has failed to be modelled by the
priors. Whilst the intersection of 2D binary silhouettes results in removing the whole leg,
Figure 4 (c), our 3D segmentation algorithm tries to resolve the discrepancy between the
silhouette coherency which results in capturing half the leg as object.

It may also be observed that the regularisation of the reconstruction has underesti-
mated the concavity between the legs. Again this is mostly due to the colour model failing
to provide a sharp prior classification in the presence of a cluttered background. Since the
gap is only seen in a couple of images the resulting surface falls back on the coherency
constraints of the remaining views. Thus the failures of the colour models (for example
the same colour in object and background in the statue sequence) are compensated for,
to an extent, by the enforcement of spatial coherency. Further improvements could be
made my improving the object and background models, for example by including texture
information.

7 Conclusions
The results of our experiments indicate that our method confers considerable advantages
for automatic object segmentation over the best 2D algorithms. The volumetric approach
makes use of the silhouette coherency constraint to perform the segmentation in 3D, al-
lowing the object to be segmented in all images simultaneously. This allows us to combine
the learnt colour model, containing information from all views of the object, with a 3D
shape prior to produce a more accurate result. We have also shown that it is possible to
exploit a fixation constraint in order to initialise an iterative estimation algorithm to con-
verge to the visual hull of an object observed in multiple views and thus avoid the need
for any interaction from the user, thus making the whole process automatic.
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