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Abstract

The paper proposes a new edge-based multi-object tracking framework, MO-
TEXATION, which deals with tracking multiple objects with occlusions us-
ing the Expectation-Maximization (EM) algorithm and a novel edge-based
appearance model. In the edge-based appearance model, an object is mod-
elled by a mixture of a non-parametric contour model and a non-parametric
edge model using kernel density estimation. Visual tracking is formulated
as a Bayesian incomplete data problem, where measurements in an image
are associated with a generative model which is a mixture of mixture models
including object models and a clutter model and unobservable associations
of measurements to densities in the generative model are regarded as miss-
ing data. A likelihood for tracking multiple objects jointly with an exclu-
sion principle is presented, in which it is assumed that one measurement can
only be generated from one density and one density can generate multiple
measurements. Based on the formulation, a new probabilistic framework of
multi-object tracking with the EM algorithm (MOTEXATION) is presented.
Experimental results in challenging sequences demonstrate the robust perfor-
mance of the proposed method.

1 Introduction

Visual tracking is an important research area of computer vision. Previous work on edge-
based contour tracking includes contour tracking with Kalman filtering [3] or particle
filtering [9], contour tracking with the EM algorithm [14], which are all for single object
tracking. Some similar previous work on joint tracking of multiple objects was presented
in [12, 10, 17]. In [10, 17] multi-object tracking with particle filtering was proposed.
However the number of samples will grow exponentially with the number of objects, and
usually the depth order of multiple objects is needed or needs to be jointly estimated. In
[12] Joint Probabilistic Data Association (JPDA) with the exclusion principle is applied
to multiple contour tracking in comparison with Probabilistic Data Association (PDA) for
single contour tracking in CONDENSATION [9]. Due to the complexity of enumerat-
ing all feasible events, the extension to track more than two objects is computationally
expensive and also the depth order needs to be estimated and used in the likelihood. On
the other hand, many iterative algorithms were proposed for color-based tracking(though
only for single object tracking), including mean-shift algorithm with color histogram [6],
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kernel-based tracking with spatial-color non-parametric model [8], EM-like tracking with
spatial-color Gaussian mixture model [18].

This paper proposes a new edge-based multi-object tracking framework, MOTEXA-
TION, which deals with tracking multiple objects with occlusions using the EM algorithm
and a novel edge-based appearance model. The proposed approach differs from previous
similar work on contour tracking [3, 9, 12] mainly in three aspects: object model, like-
lihood and inference used. In the edge-based appearance model, an object is modelled
by a mixture of a non-parametric contour model and a non-parametric edge model using
kernel density estimation similar to that for color-based non-parametric model [8]. Visual
tracking is formulated as a Bayesian incomplete data problem where measurements in an
image are associated with a generative model which is a mixture of mixture models in-
cluding object models and a clutter model and unobservable associations of measurements
to densities in the generative model are regarded as missing data. A likelihood for tracking
multiple objects jointly with an exclusion principle is presented where it is assumed that
1. one measurement can only be generated from one density 2. one density can generate
multiple measurements. The first assumption incorporates the same exclusion principle
essential to track objects during occlusion as that of [12], based on JPDA, whereas the sec-
ond assumption is relaxed like that of Probabilistic Multi-Hypothesis Tracker (PMHT)
[15] to allow one density to generate multiple measurements rather than one measure-
ment only. This significantly reduced the complexity of enumerating all feasible events in
comparison with JPDA. Tracking multiple objects jointly will increase the dimensional-
ity of state space and often the likelihood will become sharply peaked [16], which makes
tracking with particle filtering difficult. The iterative EM algorithm is employed for multi-
object tracking due to its monotonicity property which can seek the mode of the likelihood
or the posterior despite high dimensional state space and sharply peaked likelihood. In
addition it is also possible to combine edge features with color features using the iterative
algorithm, for more robust tracking.

The organization of the paper is as follows. Tracking is formulated in Sec. 2; Multi-
object tracking with the EM algorithm is presented in Sec. 3; Results are given in Sec. 4
and the paper is concluded in Sec. 5.

2 Tracking formulation

State vector is denoted asx(t) = [x(t) y(t) a(t) b(t)]T where [x(t) y(t)]T is the spatial
position of the object centre,a(t) and b(t) are the width and height of the object re-
spectively. A second order auto-regressive model is employed as the dynamical model,
x(t) = A1x(t−1)+A2x(t−2)+B0w(t) wherew(t) is Gaussian noiseN (w(t);0, I).

2.1 Gating and clustering

Edge measurements are first detected by Canny edge detector [5]. The gating procedure of
PDA is then applied. A validation region is computed based on the predicted state vector
using dynamical model for each object so only measurements from within the validation
region of the predicted state vector are used [1].

The clustering procedure from JPDA is also employed [1] for multi-object tracking.
Multiple objects are first grouped into clusters and then are tracked jointly in each cluster.
It often occurs that more than one object are grouped into the same cluster if there are
occlusions between objects. After clustering, measurements in validation regions of all



objects in a cluster are used for jointly tracking multiple objects in that cluster. Measure-
ments in a cluster are denoted asZ = {zi}N

i=1, whereN is the number of measurements

in a cluster,zi =
[

ui

vi

]
, ui = [xi ,yi ]

T andvi = θi ∈ [0,2π) are the spatial position and

orientation ofith edge measurement respectively.

2.2 Object model

The edge-based object appearance modelpl (z) is a mixture of a non-parametric contour
modelpcon(z), which consists of contour sample points, and a non-parametric edge model
pedge(z), which consists of edge pixels inside the object contour,pl (z) = πconpcon(z)+
πedgepedge(z) whereπcon andπedgeis the mixture weight of contour model and edge model
respectively,πcon+πedge= 1.

For the non-parametric contour model,

pcon(z) =
1

Mcon

Mcon

∑
j=1

Kcon(z;mcon, j ,Σ) =
1

Mcon

Mcon

∑
j=1

N (u;ucon, j ,Σu)Kv,con(v;vcon, j ,Σv)

where mcon, j =
[

ucon, j

vcon, j

]
, ucon, j and vcon, j = θcon, j ∈ [0,π) are the spatial position

and orientation of the normal ofjth contour sample respectively,Σ =
[

Σu 0
0 Σv

]
, Σu

and Σv = σ2
θ are the fixed covariance of spatial position and orientation respectively,

Kv,con(v;vcon, j ,Σv) ∝ e
− d2

con(θ ,θcon, j )

2σ2
θ anddcon(θ ,θcon, j) ∈

[−π
2 , π

2

]
. Object contour is ex-

pressed parametrically bymcon= f (s,x) wheres is the contour parameter. An ellipse can
be used for head tracking and more complex contours can be represented by B-spline [4].

For the non-parametric edge model,

pedge(z)=
1

Medge

Medge

∑
j=1

Kedge(z;medge, j ,Σ)=
1

Medge

Medge

∑
j=1

N (u;uedge, j ,Σu)Kv,edge(v;vedge, j ,Σv)

wheremedge, j =
[

uedge, j

vedge, j

]
, uedge, j andvedge, j = θedge, j ∈ [0,2π) are the spatial position

and orientation ofjth edge pixel inside the object contour respectively,Kv,edge(v;vedge, j ,Σv)

∝ e
−

d2
edge(θ ,θedge, j )

2σ2
θ anddedge(θ ,θedge, j) ∈ [−π,π].

Note that contour modelpcon(z) can be regarded as a “stable” component and edge
model pedge(z) as a “wandering” component in the object model [11]. Rewritepl (z) as

pl (z)=
M
∑
j=1

ω jN (u;u j ,Σu)Kv, j(v;v j ,Σv) where
{

ω j
}M

j=1 =
{{

πcon
Mcon

}Mcon

j=1
,
{

πedge
Medge

}Medge

j=1

}
,

{
m j

}M
j=1 =

{{
mcon, j

}Mcon

j=1 ,
{

medge, j
}Medge

j=1

}
, M = Mcon+Medgeand later on for brevity,

it will not be specified whether a density is from contour model or edge model.

2.3 Clutter model

A clutter modelpc(z) is used to assimilate the measurements not from objects. It also
corresponds to a “lost” component [11]. Uniform density is used sopc(z) = pc = 1

Vu×Vv
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Figure 1:Comparison of (a) joint tracking likelihoodp(Z|x1,x2) with exclusion principle and (b)
separate tracking likelihoodp(Z|x1)p(Z|x2).

whereVu andVv are the volume of validation region and of feature space without valida-
tion respectively [1].

2.4 Likelihoods

To explain measurements of a cluster with more than one object, the generative model is
a mixture of mixture models including transformed mixture models of all objects in that
cluster and a clutter model. The generative model can be written asp(z|x) = πcpc(z)+
L
∑

l=1
πl pl (z|xl ), wherex = {xl}L

l=1 includes state vectors ofL objects in a cluster,πl and

πc are the mixture weight of thel th object model and clutter model respectively andπc +
L
∑

l=1
πl = 1, pl (z|xl ) =

Ml

∑
j=1

ωl , jN (u;Tu(ul , j ,xl ),Σu)Kv,l , j(v;vl , j ,Σv) is the transformedl th

object model assuming unchanged orientation feature vector,Ml andωl , j are the number
of densities andjth mixture weight in thel th object model respectively.

Assuming measurementsZ are drawn independently from the generative modelp(z|x),
the likelihood given the incomplete dataZ is

p(Z|x) =
N

∏
i=1

p(zi |x) =
N

∏
i=1

[
πcpc +

L

∑
l=1

πl pl (zi |xl )

]
(1)

Despite its simplicity, the same exclusion principle as that in [12] is included in the
likelihood 1 in comparison with likelihood of tracking multiple objects separately

L (x) =
L

∏
l=1

p(Z|xl ) =
L

∏
l=1

N

∏
i=1

[πcpc +(1.0−πc)p(zi |xl )] (2)

Fig. 1 illustrates a 1D example with 4 measurements and 2 objects with 1 density each
as that in [12].

In practice the assumption of independent measurements is not valid if measurements
are close to each other as there are strong correlations between measurements [16]. A
more practical likelihood is to incorporate measurement weights described in section 2.5,

p(Z|x) =
N

∏
i=1

[
πcpc +

L

∑
l=1

πl pl (zi |xl )

]αi

(3)

whereαi is weight forith measurement.



From the viewpoint of the Bayesian incomplete data problem, the missing data of
association of measurements with densities are introduced and denoted asK = {k i}N

i=1
andk i = {k1

i ,k
2
i } wherek1

i ∈ {1, · · · ,L,c}, k1
i = c indicates the association with clutter,

andk1
i = l , l ∈ {1, · · · ,L} association with objectl ; k2

i ∈ {1, · · ·Mk1
i
} gives the association

with one of the mixture densities ink1
i th model. Assuming that 1. a measurement can

have only one source 2. more than one measurement can originate from a density, where
the first assumption is the same as that of JPDA known as exclusion principle in [12] and

the second assumption is relaxed similar to that of PMHT, there areNe = (
L
∑

l=1
Ml + 1)N

feasible events{χn}Ne
n=1. The likelihood given the complete data is

p(Z,K = K(χn)|x) ∝ ∏
i:k1

i (χn)=c
πcpc ∏

i,l , j:
k1
i (χn)=l

k2
i (χn)= j

πl ωl , jN (ui ;Tu(ul , j ,xl ),Σu)Kv,l , j(vi ;vl , j ,Σv)

(4)
For comparison, JPDA can also be viewed in light of Bayesian incomplete data prob-

lem with a slightly different assumption that 1. a measurement can have only one source 2.

no more than one measurement can originate from a density, so there are
min(N,M)

∑
n=0

M!N!
(M−n)!(N−n)!n!

feasible events. DenoteN0(χn) as number of densities which have no allocated measure-
ments andN1(χn) as number of densities which have only one allocated measurement in
a feasible eventχn, the likelihood given complete data in JPDA is

p(Z,K = K(χn)|x) ∝ pc
N−N1(χn)µF(N−N1(χn))(1−PDPG)N0(χn)(PD)N1(χn) (N−N1(χn))!

N!
× ∏

i,l , j:
k1
i (χn)=l

k2
i (χn)= j

N (ui ;Tu(ul , j ,xl ),Σu)Kv,l , j(vi ;vl , j ,Σv)

wherePD is the detection probability,PG is the probability that the true measurement will
fall in the validation region,µF(n) is the probability mass function of the number of false
measurements [1].

After marginalization of equation (4),p(Z|x) is factorized toN terms in equation (1)

in comparison with
min(N,M)

∑
n=0

M!N!
(M−n)!(N−n)!n! ÀN terms in marginalized likelihood of JPDA.

2.5 Measurement weighting

Histogram back-projection is used to incorporate background information. A background
edge orientation histogram{hi}NB

i=1 with NB bins of orientation is built by using the edge
pixels in a rectangular window surrounding each object. The background histogram is
adapted online by weighted sum of previous background histogram and background his-
togram built given current object state estimation.

A ratio histogram{r i}NB
i=1 is computed byr i = min

(
ĥ
hi

,1
)

whereĥ = min
i:hi>0

(hi). Mea-

surement weightαi is computed from the ratio histogram asαi =
rb(zi )

N
∑

i=1
rb(zi )

× 1
2σ2 where

b(zi) denotes the bin to whichzi belongs andσ is a constant.
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Figure 2: Iterative update of EM algorithm where edge measurements are marked in yellow: (a)
initial estimation, (b) final estimation, (c) lower bound increasing monotonically.

Measurements with orientations occurring most commonly in the background will
have the lowest weight and measurements with orientations which are not in the back-
ground will have the highest weight. If the ratio histogram is uniform, it degenerates to
the case that each measurement has the same weightαi = 1

N × 1
2σ2 .

3 Multi-object tracking with the EM algorithm

State vectorx(t) is estimated by either Maximum Likelihood (ML) estimationx̂(t) =
argmax

x(t)
p(Z(t)|x(t)) or Maximum a Posteriori (MAP) estimation̂x(t)= argmax

x(t)
p(x(t)|Z (t)),

whereZ (t) = {Z( j)}t
j=0, using the EM algorithm [7] and its generalization [13].

From Jensen’s inequality it can be shown that

logp(Z|x) =
N
∑

i=1
αi log

[
πcpc(zi)

qi,c
qi,c +

L
∑

l=1

Ml

∑
j=1

qi,l , j
πl ωl , jN (ui ;Tu(ul , j ,xl ),Σu)Kv,l , j (vi ;vl , j ,Σv)

qi,l , j

]

≥
N
∑

i=1
αi

[
qi,c log πcpc(zi)

qi,c
+

L
∑

l=1

Ml

∑
j=1

qi,l , j log
πl ωl , jN (ui ;Tu(ul , j ,xl ),Σu)Kv,l , j (vi ;vl , j ,Σv)

qi,l , j

]

whereqi,c = p(k1
i = c), qi,l , j = p(k1

i = l ,k2
i = j) are the probabilities of missing dataK and

qi,c +
L
∑

l=1

Ml

∑
j=1

qi,l , j = 1. So the lower bound of likelihoodJML(Q,x(t)) for ML estimation

and lower bound of posteriorJMAP(Q,x(t)) for MAP estimation are

JML(Q,x(t)) =
N
∑

i=1
αi

[
qi,c log πcpc(zi)

qi,c
+

L
∑

l=1

Ml

∑
j=1

qi,l , j log
πl ωl , jN (ui ;Tu(ul , j ,xl (t)),Σu)Kv,l , j (vi ;vl , j ,Σv)

qi,l , j

]

(5)

JMAP(Q,x(t)) = JML(Q,x(t))+ logp(x(t)|Z (t−1)) (6)

whereQ =
{

qi,c,
{{

qi,l , j
}Ml

j=1

}L

l=1

}N

i=1
.

The prior is given by

p(x(t)|Z (t−1)) =
L

∏
l=1

p(xl (t)|Z (t−1)) =
L

∏
l=1

N (xl (t); x̃l (t), P̃l (t)) (7)



Algorithm 1 Multi-Object Tracking with the EM Algorithm (MOTEXATION)

1. Predict by equation (7)

2. EM algorithm

k = 1, x(0)(t) = x̃(t)
(i) E-step by equation (8)
(ii) M-step by equation (9) or equation (10)

if
∥∥∥x(k)

l (t)−x(k−1)
l (t)

∥∥∥ < ε, l = 1, · · · ,L then

x̂(t) = x(k)(t) and stop
else

k = k+1 go to (i)
end if

wherex̃l (t) = A1x̂l (t−1)+A2x̂l (t−2) andP̃l (t) ≈ B0BT
0 are the predicted state vector

and covariance ofl th object respectively,
In E-step, given fixedx(k−1)(t), maximizeJML(Q,x(t)) orJMAP(Q,x(t)). LetTu(ul , j ,xl (t))

= W l , jxl (t) whereW l , j is Jacobian of the transformation. At iterationk, Q(k) is

q(k)
i,c ∝ πcpc(zi)

q(k)
i,l , j ∝ πl ωl , jN (ui ;W l , jx

(k−1)
l (t),Σu)Kv,l , j(vi ;vl , j ,Σv)

q(k)
i,c +

L
∑

l=1

Ml

∑
j=1

q(k)
i,l , j = 1, i = 1· · ·N

(8)

In M-step, givenQ(k), maximizeJML(Q,x(t)) or JMAP(Q,x(t)). At iterationk, x(t) is
given by

x(k)
l ,ML(t) =

[
Ml

∑
j=1

WT
l , j Σ̃

(k)−1

l , j W l , j

]−1[
Ml

∑
j=1

WT
l , j Σ̃

(k)−1

l , j ũ(k)
l , j

]
(9)

or

x(k)
l ,MAP(t) =

[
Ml

∑
j=1

WT
l , j Σ̃

(k)−1

l , j W l , j + P̃−1
l (t)

]−1[
Ml

∑
j=1

WT
l , j Σ̃

(k)−1

l , j ũ(k)
l , j + P̃−1

l (t)x̃l (t)

]
(10)

whereũ(k)
l , j =

N
∑

i=1
αiq

(k)
i,l , j ui

N
∑

i=1
αiq

(k)
i,l , j

is the synthetic measurement andΣ̃(k)
l , j = Σu

N
∑

i=1
αiq

(k)
i,l , j

is the synthetic

covariance.
The main stages of multi-object tracking with the EM algorithm are given in algorithm

(1) and the iterative update of MAP estimation is shown in Fig. 2 where the lower bound
of posterior is also verified to be increased monotonically.

4 Results

The experiments are carried out in challenging test sequences with heavy occlusions. With
unfully optimized C++ code, it runs comfortably at average0.071s per object per frame



t=5210 t=5286 t=5380 t=5420 t=5430

Figure 3:Tracking results of“office” sequence.c©Mitsubishi Electric ITE 2005.

t=425 t=433 t=450 t=460 t=475

Figure 4:Tracking results of“head” sequence.

t=1060 t=1180 t=1280 t=1296 t=1380

Figure 5:Tracking results of“Caviar OneShopOneWait2cor”sequence.

on 3GHz Pentium IV. Note that to illustrate joint tracking of multiple objects in a cluster,
white lines show the links between objects which are tracked jointly in the same cluster.

Three results of multiple head tracking are shown and the size of head also varies
from small ones to large ones. Fig 3 shows multi-object tracking results on the“office”
sequence, in which there are dramatic appearance changes, scale changes and four heavy
occlusions. The light green ellipse occluded dark green ellipse from frame 5280 to 5320,
from frame 5340 to 5370 and from frame 5380 to 5410. The red ellipse occluded both
light green and dark green ellipses from frame 5410 to 5424.

The results of“head” 1 are then given in Fig. 4 where there are two heavy occlusions
from frame 420 to 442 and from frame 452 to 468.

Fig. 5 shows the results of“Caviar 2 OneShopOneWait2cor”sequence where the
size of target heads are quite small and there are two heavy occlusions from frame 1166
to 1176 and from frame 1276 to 1292.

To track more complex contours, a B-spline contour model is learned as that of [2, 4].
Results of“Caviar EnterExitCrossingPaths1cor2”sequence are given in Fig 6 where
there are large appearance changes, scale changes and one heavy occlusion from frame
86 to 100.

Fig. 7 presents the results of“Caviar OneStopMoveEnter1cor2”sequence, a very
crowded and cluttered scene involving large appearance changes, scale changes and also
one heavy occlusion from frame 256 to 272.

1The sequence is from http://vision.stanford.edu/ birch/headtracker/.
2The EC Funded CAVIAR project/IST 2001 37540, see http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.



t=0 t=80 t=90 t=150 t=350

Figure 6:Tracking results of“Caviar EnterExitCrossingPaths1cor2”sequence.

t=0 t=262 t=276 t=300 t=480

Figure 7:Tracking results of“Caviar OneStopMoveEnter1cor2”sequence.

(a) (b) (c) (d)

Figure 8:Examples of tracking failure. (a)(b) tracking multiple objects separately using the EM
algorithm, (c) contour tracking with CONDENSATION, (d) mean-shift tracking with color his-
togram.

It should be noted that if multiple objects are tracked separately using the EM algo-
rithm with likelihood 2, which does not have exclusion principle, objects may be lost
during occlusion as shown in Fig. 8(a)(b). The proposed method has also been compared
with contour tracking using CONDENSATION [9], color tracking using mean-shift [6]
and both failed when there are heavy occlusions. Examples of tracking failure are shown
in Fig. 8(c)(d).

5 Conclusions

The paper proposes a new edge-based multi-object tracking framework, MOTEXATION,
which deals with tracking multiple objects with occlusions using the EM algorithm and
a novel edge-based appearance model. In the edge-based appearance model, an object
is modelled by a mixture of a non-parametric contour model and a non-parametric edge
model using kernel density estimation. Visual tracking is formulated as a Bayesian in-
complete data problem where measurements in an image are associated with a generative
model which is a mixture of mixture models including object models and a clutter model
and unobservable associations of measurements to densities in the generative model are
regarded as missing data. A likelihood for tracking multiple objects jointly with an ex-
clusion principle is presented. Based on the formulation, a new probabilistic framework



of multi-object tracking with the EM algorithm (MOTEXATION) is presented. Results
in challenging sequences demonstrate the robust performance of the proposed method.
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