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Abstract 

Zipf’s Law describes a power law between the frequency and rank of an 
event which is observed, most famously, in word distributions in human 
languages [1]; where it has been argued [2] that it represents an optimally 
efficient communication code. From an analogy between image coding 
schemes and natural language, we hypothesize that conforming to Zipf’s 
Law is a necessary property of a good image description code, i.e. one that 
provides optimal local descriptors for vision tasks such as object 
categorization and recognition. 

Following the analogy between images and documents, we have 
developed an ‘alphabet’ of Basic Image Features (BIFs) [3]. This alphabet 
allows us to label each pixel, at each scale, with one of a small number of 
letters. ‘Words’ in this approach are then fixed square patches of BIF 
‘letters’. 

We test whether the frequency statistics of BIF words obeys Zipf’s 
law, and find that as we vary certain parameters the Zipfness varies 
systematically. Remarkably, we find that for certain parameter settings we 
get extremely Zipf behaviour. Moreover the encoding at these settings 
looks optimal to eyeball measure. 

1 Introduction 

1.1 Local descriptors 

There has recently been a great deal of interest in using local descriptors (e.g. [4], [5]; 
see [6] for an overview and evaluation) to perform vision tasks such as object 
categorization [7] and recognition [4]. 

We are interested in the properties of such local cues which make them suited for 
these types of tasks. We argue that the graded rarity of descriptors in natural images is 
an important factor in their effectiveness: If a cue appears in all images, regardless of 
content, it will be a poor discriminator of objects; as it will if it only ever appears in a 
particular view of some object instance. Here we explore the frequency statistics of 
cues from different image coding schemes across natural images. 
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1.2 Zipf’s Law 

If counts of word occurrences in a corpus of natural language are sorted into 
descending order, a power law is observed between the rank r  and frequency  p  of a 

word so that α−∝ rp  with α  close to unity. Named after George Zipf, who first 
noted this relationship for English text [1], Zipf’s Law has been empirically observed 
for a wide range of both human and non-human languages, for example Russian [8] 
and the whistles of bottlenose dolphins [9]. 

Motivated by results [2] showing that, under certain assumptions,  an information 
source must obey Zipf’s Law in order to ensure optimal efficiency of communication; 
and by an analogy between image coding schemes and natural language; we 
hypothesize that conforming to Zipf’s Law is a necessary property of a good image 
description code. 

1.3 Coding schemes 

Following the analogy between images and documents, we have developed an 
‘alphabet’ of Basic Image Features (BIFs) [3]. This alphabet allows us to label each 
pixel, at each scale, with one of a small number of letters. At present we have two-, 
three- and six-letter alphabets based on different sets of Gaussian derivative filters (see 
figure 1). ‘Words’ in this approach are fixed square patches of BIF ‘letters’. 

 
Figure 1: A section of an image from the van Hateren collection [10], encoded 
respectively with 2, 3 and 6 label BIF schemes. 

 
The BIF coding schemes correspond to a partitioning of filter response space [3]: In 

the 2-letter scheme, we take the sign of a Laplacean of Gaussian filter (using [11]). For 
the three letter alphabet, we compare the absolute value of the Laplacean with the 

gradient magnitude, taking the sign of the Laplacean if ( ) ( )222
2

4 yxyyxx IIII +>+
σ

where xI  etc. are image derivatives computed at scale σ  using Gaussian derivative 
filters, and a third label otherwise. In both schemes, points are then subsampled at a 
distance of ∆  pixels. 

1.4 Testing the ‘Zipf Hypothesis’ 

In this paper we explore the degree to which the frequency statistics of ‘words’ in 
natural and synthetic images, encoded with our 2-label (‘2-BIFs’) and 3-label (‘3-
BIFs’) systems, adhere to Zipf’s Law. 
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We present results which, for certain parameter settings, exhibit strikingly Zipf-like 
behaviour. Further, these settings seem to correspond well to those which we would 
choose by eyeball measure. The work presented here will form a basis for testing our 
‘Zipf Hypothesis’ through employing a range of the codes explored here in vision tasks 
such as object categorization. 

2 Methods & Results 

2.1 Counting 

We counted occurrences of overlapping square patterns (‘words’), of sizes 1x1 up to 
10x10 pixels, in images which had been encoded with one of our BIF schemes. These 
counts were then pooled together (so a typical pixel was counted in one 1x1 patch; four 
2x2 patches; nine 3x3 patches etc.) and ranked in order of decreasing frequency. 

For each size of pattern, approximately 14.6 million patches were drawn evenly 
from a set of 100 encoded images. For a given area of image, it is possible to extract 
one more )1( −d x )1( −d  patch than d x d  patches in each direction and so we 
normalised the image area to ensure that the same number of patches were counted of 
each size. 

In order to economise on memory expenditure by reducing the number of patterns 
recorded, our counting algorithm takes a cutoff value for the least number of 
occurrences of some pattern across an ensemble of images which we consider to be of 
interest. This has the effect of cropping the number of ranked patterns in our results, 
but causes no bias in the distribution of those ranks which are recorded. Indeed, in the 
absence of such an explicit cutoff its value would default to 1: no pattern will be 
counted which does not occur at least once in some image. We then proceed iteratively 
as follows: For each patch size d x d , we scan through each encoded image, selecting 
a patch at each position. We extract its four )1( −d x )1( −d  subpatches and check to 
see that these have all been recorded sufficiently often (for otherwise it is impossible 
that the parent patch will occur frequently enough); if so, we increment the count for 
that patch. Most patterns will occur less often than their smaller subpatches and so, 
after scanning through all d x d  patches in all images, we scan through our table of 
counts and remove references to any pattern which does not occur at least cutoff times; 
before moving on to larger patches. 

We consider only patches up to 10x10 pixels for computational reasons. There is a 
possibility that this could introduce a small bias into our results. However, we argue 
that since, out of the approximately 300000 patterns in each experiment which occur 
more frequently than our cutoff, only around 1% of these are of size 10x10; that the 
number of 11x11 or larger patterns which we are excluding from our results will be 
vanishingly small. 

Four sets of images were considered, one natural and three synthetic: 
• Natural images from the van Hateren database [10], containing varied views of 

countryside, forests, lakes and buildings. 
• Phase randomised noise images, based on the power spectra of these same 

natural images. 
• Images generated using a dead leaves model [12]. A large number of opaque 

discs with randomly sampled positions, radii and luminances are ‘stacked’ so 
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that nearer discs occlude those further away. These images capture the 
occlusive nature as well as approximate scale invariance of natural images. 

• ‘Coin-flip’ random images. Each pixel of these was selected independently 
from either 2 labels (where the images were to be compared with 2-BIF coded 
images) or 3 labels (for comparison with 3-BIF coded images). The outcome 
probabilities for each label were determined by the relative frequencies of that 
label in the sets of encoded natural images. Thus these images are comparable 
not with the grey-scale images upon which we employ our coding schemes; but 
with the 2- or 3-label results of these encodings. 

2.2 Zipfness measure 

On a log-log plot of frequency vs. rank, Zipf’s Law is characterised by a straight line 
with slope -1. From the one-dimensional space of all such lines we select the best-
fitting, and use as our Zipfness measure the weighted sum of squared errors between 
this and the data, normalised by the log of the number of ranks considered, i.e. 
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where r  is rank, rf  frequency and R  the total number of distinct patterns whose 
occurrences have been counted. 

The weighting ensures that equally sized parts of the log-log plot contribute equally 
to the measure. Normalisation is necessary to compensate for the fact that, for differing 
parameters, different numbers of patterns appear sufficiently often to be recorded by 
our counting algorithm. 

2.3 Results 

We calculated the frequency distributions of patches for each of our four image types 
coded using either a 2- or 3-label BIF scheme, over a range of parameters. 

Because of the well-known scale invariance of natural images (and its replication in 
our synthesized images) one would expect that for a given ratio between filter scale σ  
and spatial sampling ∆ , varying σ  or ∆  should make no significant difference to the 
distribution of frequencies: this is indeed what we find. We therefore define a new 

parameter ∆= σk  to be our single degree of freedom in each coding scheme, and 

study how varying k  affects the frequency statistics of BIF words for each BIF 
alphabet and image type. 

Figures 2 and 3 show how frequency distributions vary over k : for small k  (i.e. 
very sparse subsampling), pixels in the encoded images will be essentially independent 
(see fig. 5, bottom-right) and so the distribution of patches of a given size will be 
determined almost solely by the relative frequencies of each label. For our 2-label 
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Figure 2. Top: Log-log plots of frequency of occurrence against rank for natural images 
encoded with 2-BIFs. From left to right, the ratio k  between filter scale and spatial 
sampling takes the values 0.2, 1.5 and 12. Bottom: The size of patches at each rank in 
the same results. Similar frequency distributions are observed for phase randomised 
noise and dead leaves model images, although patch size distributions vary slightly: in 
particular, for intermediate values of k the results for dead leaves images tend to show 
peaks in patch size for low ranking patterns, caused by large areas of zero contrast in 
some of the original images. This is explored further in figure 8. 

 

 
Figure 3:As figure 2, but for natural images encoded with 3-BIFs. From left to right, k  
takes the values 0.2, 1.0 and 12. The main difference from figure 2 is in the results for 
small k  (i.e. undersampled coding) where the rank-frequency plot is less step-like. 
This is a consequence of the relative frequencies of the labels in our 3 label system 
being less symmetric than those for 2-BIFs, resulting (as shown in figure 5) in large 
areas of the same (red) label in the encoded images. 
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system, each label occurs with approximately the same frequency and so patches of 
each size are close to being uniformly distributed, resulting in the stepped plot seen in 
figure 2. In figure 3 (3-BIFs), this effect is less pronounced due to the uneven label 
frequencies in 3-BIF encoded images; but is still present. 

For large k , on the other hand, encoded images will be characterised by large 
connected areas of the same label (see fig. 5, bottom-left). Most patches observed, of 
all sizes, will therefore be single-label patterns, and any moderately complex pattern 
will be very rare (see fig. 6). This accounts for the high initial frequency and 
consequent steep dropoff seen in figures 2 and 3. 
Whilst encodings for small k  are undersampled; and for large k  oversampled; those 
for a reasonably broad mid-range of k -values appear ‘just right’: as in the top-right of 
figure 5. Remarkably, this seemingly optimal mid-range corresponds quite well to 
those distributions which closely follow Zipf’s Law, as in the middle parts of figures 2 
and 3. 

 
 
 
 

 
Figure 4: Variation of ‘Zipf-dissimilarity’ score with changing k  for all image types 
and coding schemes. The ‘coin-flip’ images were not encoded in the same way as the 
other image types, and so do not vary over a parameter k . They are shown here as 
having 0=k  since they represent a logical limiting value for the other encoding 
schemes as 0→k : As k  decreases, encoded pixels are sampled increasingly 
sparsely and so become more independent of their neighbours. ‘Coin-flip’ noise models 
an encoded image in which the pixels are all independent. 
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Figure 5: A section of a natural image from the van Hateren database, and 3-BIF 
encodings of the same image part with different values of k  (anticlockwise from 

bottom-left: k =6.0, 0.2, 1.0. Recall that ∆= σk , the ratio between filter scale and 

spatial sampling: In these examples, ∆  was kept fixed and σ  varied to produce the 
stated values of k  while allowing the section of image to be encoded into the same 
number of pixels). The top-right encoding ( 0.1=k ) clearly displays more of the 
original image’s structure. Comparison with the results in figure 4 shows that codings 
with the lowest Zipf-dissimilarity scores also appear optimal to eyeball measure. 

 

 
Figure 6: Examples of 3-BIF ‘words’ occurring in natural images for different values of  
k  (left to right: k =0.2, 1.0, 12). The top row of each set shows the 6 most popular 
patches; the second row the 11th to 16th most frequent;  the third row the 101th to 106th 
most frequent; and so on to the 6 patches ranked around 100000 in frequency of 
occurrence. 
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Figure 7: Stability of pattern rank. 
Top left: The rank of patterns 
occurring in both natural and 
phase randomised noise images 
encoded with 2-BIFs with 

0.1=k  (correlation coefficient 
ρ =0.68). Top right:  The rank of 
patterns occurring in natural 
images encoded with 2-BIFs, first 
with 0.1=k  and then 0.4=k  
(correlation coefficient ρ =0.06). 
Right:  The rank of patterns 
occurring in two different sets of 
natural images, both encoded with 
2-BIFs with 0.2=k  (correlation 
coefficient ρ =0.84). Far greater 
rank-stability is seen between 
different types of images encoded 
in the same way than between the same images encoded with different ratios ( k ) 
between filter scale and spatial sampling. 
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Figure 8: As fig. 6, but showing on the left patterns occurring in natural images 
encoded with 3-BIFs and 0.1=k ; and on the right patterns occurring in dead leaves 
model images encoded with 3-BIFs and 0.1=k . The results for phase randomised 
noise images are very similar to those for natural images. The large connected areas of 
white or black labels are caused by 3-BIF-encoding relatively large areas of zero-
contrast (which are very seldom seen in natural or phase randomised images) in the 
dead leaves images. This differing behaviour is mirrored in figure 4, where the results 
for 3-BIF encoded dead leaves model images appear more Zipf-like than results for 
natural images or phase randomised noise 

 
 
 
This ‘mid-range’ is made more explicit in figure 4, which shows the full range of 

Zipfness scores for all the image types and encoding schemes studied. For both 2- and 
3-label systems, there is very good correlation between the scores for natural and phase 
randomised noise images, and as expected (see caption of fig. 4) both of these seem to 
be tending towards the results for ‘coin-flip’ noise as 0→k . Images encoded with 2-
BIFs appear to achieve optimal Zipfness around 5.1=k ; and those encoded with 3-
BIFs around 0.1=k . 

Figure 4 shows that the frequencies of occurrence of patterns in natural and phase 
randomised noise images (and, for 2-BIF coding, dead leaves model images) encoded 
in the same way are distributed in a similar fashion. Figure 7 expands on this by 
showing (left-hand side) that the same patterns occur at reasonably similar ranks in 
these distributions. By contrast (fig. 7, right-hand side), when the same images are 
encoded with different parameters there is almost no correlation between the ranks of 
individual patterns in the two codes. 

3 Conclusions and Further Work 
We have tested whether the frequency statistics of BIF words obeys Zipf’s law. We 
find that as we vary the ratio between filter scale and spatial sampling the Zipfness 
varies systematically. We have found that for certain parameter settings we get 
extremely Zipf behaviour. Moreover the encoding at these settings looks optimal to 
eyeball measure. 

We are currently testing whether Zipfness is a predictor of performance of the code 
when it is used for the task of texture classification. 
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