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Abstract

This paper proposes a physics-based methodology for thes@éaf op-
tical flows displaying complex patterns. Turbulent motisach as that ex-
hibited by fluid substances, can be modelled using fluid dycsprinciples.
Together with supplemental equations, such as the corigervd mass, and
well formulated boundary conditions, the Navier-Stokesatipns can be
used to model complex fluid motion estimated from image secgs In this
paper, we propose to use a robust kernel which adapts todhkdata geom-
etry in the diffusion stage of the Navier-Stokes formulatiarhe proposed
kernel is Gaussian and embeds the Hessian of the local déts @svari-
ance matrix. The local Hessian models the variation of the fifoa certain
neighbourhood. Moreover, we use a robust statistics mésinan order to
eliminate the outliers from the estimation process. Theppsed method-
ology is applied on artificial vector fields and in image semes showing
atmospheric and solar phenomena.

1 Introduction

Classical optical flow estimation methods work on the asgionghat image intensity
structures are approximately constant under motion [1R8pust estimation employing
either median statistics or diffusion has been used to eéitai outliers from the optical
flow [4] and to smooth colour images while preserving edggsEpectively. Recently,
robust statistics and diffusion have been embedded in athingdernel for jointly pro-
cessing the data statistics and the local geometry in nqtgad flows [6]. This method
was shown to preserve data characteristics as well as tmglhdas of the moving objects,
while resulting in smoothed optical flows.

Very often, the natural phenomena modelling involve theiomodf dynamic fluids
which differs radically from that of rigid bodies. Clasdicgtical flow estimation algo-
rithms would fail in such cases. The use of fluid flow modellfog motion estimation
can be traced back to the work of Fitzpatrick [7], who compawptical and fluid flow
methods. The computation of flows depends largely on theifspeature of the ap-
plication. Using Fitzpatrick’s analysis as a basis, Sond beahy [12], employed the
equation of continuity as an additional constraint to Hond &chunck’s algorithm [8]
in order to obtain better motion estimation of the beatingrheNavier-Stokes equations
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have been extensively studied in fluid mechanics for matettie behaviour of fluids un-
der various conditions and constraints [9]. The Naviek&socand optical flow constraint
equations have been employed for modelling Karman flows @}. [Bertalmioet. al.
applied the Navier-Stokes equations to image and videdritipg [2]. Their approach
uses the vorticity-stream formulation of the fluid flow edqaat which can be attributed
to the image intensity-Laplacian relationship. Corpetti al. used the vorticity-stream
formulation to recover dense motion of water vapours [5].

Navier-Stokes equations have been used in computer gefarigisualising flames
and building animation tools based on fluid-like motion [1B, 14]. The stable fluid
solver (SFS) algorithm implements Navier-Stokes equateand consists of a set of con-
secutive processing steps [13], such as: advection, @ifflend mass conservation. The
boundary conditions are important in constraining the fhaiotion [9]. The boundaries
have been processed as a set of constraints on a grid [14hfbyscmg repetition and
employing the Fast Fourier Transform (FFT) [13] or by usiegel sets [11]. In this
study, we extend the SFS solver methodology and apply itrfayathing vector fields
estimated from image sequences representing turbulenhméuids. In our approach,
the diffusion step is anisotropic and robust by considegngedian of the Hessian dif-
fusion kernel [6]. The proposed hybrid SFS method procettee$ocal geometry and
data statistics consistently with the flow motion. The psgzbapproach is applied for
smoothing artificial vector fields and in two image sequendé® paper is structured as
follows: Section 2 outlines the SFS algorithm, while SetBalescribes our hybrid solver
applied for modelling vector fields. Experimental resultsl ¢heir analysis are presented
in Section 4, while Section 5 concludes the paper.

2 The Stable Fluid Method

Navier-Stokes methodology represent the basis for modgedlilarge variety of phenom-
ena such as those characterising weather, ocean curre¢s,flow in a pipe, the air flow
around a wing, the motion of stars inside a galaxy, blood femanomics behaviour, etc
[9]. In engineering, they are used in the analysis of thectsfef pollution, the design of
aircraft and of power stations, etc. Navier-Stokes methaggohas been applied in Com-
puter Graphics in order to visualise and create the efféetndpy the complex movement
of fluids such as that of coloured gases, air, clouds, liqini®ke, fire, etc., [11, 13]. The
explicit model is generally used for precise computatiofiwti dynamics and involves
heavy computational complexity [9]. The Von Neumann'’s ditgkanalysis, as shown in
[9], highlights that the implicit model of discretisationhen calculating Navier-Stokes
equations is unconditionally stable, although it requae®mplex numerical implemen-
tation scheme. The SFS algorithm proposed by Stam repsgeininplementation of the
Navier-Stokes methodology in an implicit scheme [13, 14].

In order to achieve visual effects, the Navier-Stokes agnatare used for both den-
sity and velocity in the SFS algorithm [13, 14]. Unlike in tbBginal SFS approach, in
this study we consider only the modelling of motion basedrenNavier-Stokes equa-
tions. The area of investigation (in our case an image or ensated region from an
image) is split into cells located on a grid and we associgiartcle to each grid loca-
tion. Let us assume that the SFS system moves the particlesciaccording to a vector
field, where each vector corresponds to a grid location. Téad¥-Stokes equation for
a given system is derived using the conservation of mass,entuim, and energy for an



arbitrary control volume [9] and is given by :
ou
i
where the change of velocity over time is represented with respect to the advection,
gradient of the pressui® diffusion and external forcing functidnwhile v is a viscosity
constant that characterises the fluid gnid a parameter. The pressure is assumed to be
constant in the given field and its gradient is zére, the change in pressure from one
spatial position to another in the vector field is negligibl@onsequently, the equation
employed by the SFS method is :
ou
5
The diffusion termvJ%u characterises fluids which are assumed incompressible ewe N
tonian. Moreover, for incompressible fluids it is importé&menforce the conservation of
mass [9]: Ju—o 3)
which states that the divergence of velocity componentsis for infinitesimal time

steps. The density of a particle is constant between iterstithereby the total mass of
the field is conserved within the given region.
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for k< 1tor> convergence / number of iteratio
do

add forceu; = ug +f At
advectuy(x) = adv(uy (x, —At))
transform:0; = FFT (uy)
diffuse: 03(z) = 02(2) /(1 + vAtK?)
conservelly = conservéls)
transform:us = FFT~1(04)
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Figure 1: The stable fluid solver algorithm.

The SFS algorithm proceeds to calculate the velocity coraptsu as described in
Fig. 1, [13]. For each iteration, the first step consists afilag the external forcing func-
tion f which determines the initial conditions in the processiggle. The second step
represents the advection term in equation (2), which cpamds to the following :

Jou Jdu du Jdu
(u-O)ju= (uXd): +uya—;,ux dxy+uyd;> (4)
whereu = (uy,Uy). The analysis of the advection process in real physical pinena is
provided in [9]. The process described by equation (4) istmas the self-advection
of velocity. The advection step from the SFS algorithm islenpented by moving the
motion vector of each grid cell back in time withAt by backtracking the velocity field.
The third step transforms the velocity field to the frequethagnain using the Fast Fourier
Transform (FFT). The requirement to set specific boundanditimns is eliminated by
extending the spatial repeatability of the area under cenation and by applying FFT.
The diffusion term (fourth step) represents the decay off lsigatial frequencies in the
velocity field and is computed in the Fourier domain with a &aan filter processing
the velocity componenti by using the time stegit and the fluid kinematic viscosity
v. The finite difference implicit scheme is used here to digeeethe diffusion term in



order to obtain an unconditionally stable system [13]. T Btep enforces the local
incompressibility of the optical flow which requires thaéthmount of flow entering in a
specific area should be equal with the flow exiting that ardse fihal step projects the
flow back from the frequency domain to the spatial-time domaing the inverse FFT
transform. This algorithm was modified in [14] by replacihg FFT transformations and
the processing in the frequency domain with defining a sebahtdary constraints on a
grid-based representation of the flow.

3 The Robust Hybrid Fluid Solver
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Figure 2: Robust hybrid solver.

The implementation of the stable fluid solver [13] providather poor performance in
modelling turbulent optical flow estimated from image sewés. This is mainly caused
due to the uncertainty in the initial estimation of the oatittow which leads to noise,
particularly in image sequences displaying complex motidém order to improve the
performance on optical flow, we propose to embed a robusbtofsc kernel [6] in the
diffusion step of the SFS. Fig. 2 shows a flow diagram of th@psed robust hybrid fluid
solver. The initial flow can be estimated using the block iiaig algorithm as in [4]
or other motion estimation algorithms [1]. Optical flows yirked by block-matching or
by using temporal gradient estimation are invariably n¢yparticularly in the case of
image sequences representing moving fluids or other conpplexomena.

The first processing block corresponds to a reinforcemeqt ahd in the proposed
method is implemented by adding a proportion of the veldtdyn the previous iteration



to the current velocity :
up(t+At) = (1—€)up(t) + eAtus(t) (5)

whereus(t) is the motion vector from the previous iteratibre € (0,1) is a weighting
factor modelling the degree of the reinforcement apt),us(t + At) represent the mo-
tion vector reinforced by force at timesandt + At, respectively. At the first iteration
there is no reinforcemenitg. € = 0. The SFS algorithm described in Section 2 proposes
to advect the initial flow at Step 2 from Fig. 1. However, thigiogithm produces unreli-
able estimation when applied to noisy vector fields. Theoapflow should have a degree
of smoothing before advection can be applied. In our approae propose to diffuse the
noisy flow before proceeding to the advection stage. Theteafunction of the original
smoothing algorithm is a Gaussian function appropriatelfinegd within the frequency
domain [13]. In our approach, we propose to implement a ldadsased diffusion that
jointly processes the local geometry and the statistick®fdcal vector field as in [6] :

3 uni(Dep=( —2)TH (i —20)

N Xi€n (z

Up(t+At) = 6

2(t+A0) S exp—(%i —2zo) TH2(xi —2o)] ©)
xi€n(z)

wherelz(t +At) is the intermediate diffused valud,represents the local Hessian,(t)

is the vector at locationwithin a neighbourhoodj(z:), centred at the location.. The

Hessian of the optical flow is calculated locally as :

2u 9%
X2 ax0

H= d%(u dzuy (7)
oyox  ay?

The eigenvector corresponding to the largest eigenvaloesthe local direction of
the optical flow. This diffusion kernel is anisotropic andapts to the local structure of
the optical flow. Significant optical flow transitions are etged and consequently not
smoothed over by the Hessian-based kernel. However, amgotiffusion does not deal
properly with outliers as shown in a study provided in [6]ohder to properly process the
local statistics and eliminate outliers, the median atyaniis considered for robustifying
the Hessian based diffusion in the neighbourhqdzt,).

At the advection stage, our model is only concerned with thainearity of the ad-
vection term from equation (4). As mentioned in the previSaestion, the self-advection
term represents the ability of the velocity components toartbeir own values from one
position to another on a grid in a time step intervstl, This procedure involves inter-
polating the velocity at the grid points, using a neighbawdh approximation, from the
previous time step back to the position in the current tineg §14].

The model is dependent on the initialisation and on boundanglitions of the sys-
tem under study. Boundary condition are specifically pregidnto the grid in order to
represent the physical limits of the optical flow. Such bargdconditions can be the
result of image or motion segmentation algorithms orgdriori information about the
image sequence. There are two boundary conditions to cansldhe first condition is
determined by the physical boundary. This is representdidoyon Neumann condition
which specifies the normal component of the flow to the bounslarface as :

au
anl, O ®)



whereQ represents the boundary ands its surface normal. This means that the wall
absorbs any flow particles coming towards it. For the sakedicing the required com-
putation complexity, the walls of the domaif, are represented by zero values on a ge-
ometric grid, which are enforced at every stage of the coatfmurt in order to preserve
the stability and integrity of the numerical calculationn& our proposal incorporates
both explicit and implicit finite differencing schemes,stabsolutely imperative that the
model adheres to the stability criteria, given/ity (Ax)? < 1/2, where/Ax represents the
location change during the time intervatl.

The second condition relates to the conservation of masseo¥elocity field. The
conservation of mass, given by equation (3), should be miaied in order to ensure the
incompressibility of the flow. In order to maintain a divenge free velocity field for
every stage of computation, the conservation of mass isezdafter both diffusion and
advection stages. The conservation of mass stage corgspora data normalisation
process. The conservation of mass is enforced by using thehddz-Hodge decompo-
sition [13] of the velocity field. This decomposition proeisl an exact solution so that
the mass conserved incompressible flow can be obtained bgcerg the gradient of
the flow from the current vector field. This decomposition mi@ins the incompressibil-
ity and smoothness of the estimated velocity field. Mass @wasion is important for
realistically estimating optical flow of fluids. For exenfjgation, the Helmholtz-Hodge
decomposition of the exact closed cavity laminar flow (aitifidata experiment provided
in Section 4) at the 1000th iteration is shown in Fig. 3.
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Figure 3: Helmholtz-Hodge decomposition of a closed lidieni cavity laminar flow.

4 Experimental Results

We present results when the proposed algorithm is evaluatexdsynthetic vector field
and on the optical flow estimated from two real-world imaggussces. The synthetic se-
guence is created using the original Navier-Stokes equsf8] depicting the air flow gen-
erated within a lid driven closed cavity. The synthetic fl@xcreated using the vorticity-
stream formulation of the Navier-Stokes equations instéade classic velocity-pressure
formulation. Fig. 4(a) represents the simulated syntHetld that visualises the air flow
moving with a fixed velocity from left to right inside the topea of a closed cavity. This
flow has been obtained after applying the Navier-Stokestemuéor a thousand itera-
tions. Fig. 4(b) shows flow degradation after adding Gaunssase with zero mean and
varianceg? = 0.25. Modelling results using the modified SFS (SFSM) algonifi4]
adapted for usage on vector fields is shown in Fig. 5(a), wiitgor field smoothing us-
ing Black’s anisotropic diffusion algorithm [3] is providen Fig. 5(b). Fig. 5(c) shows



the effects of using MED-2DH which is a robust Hessian bas#dsibn algorithm de-
scribed in [6], while the robust hybrid fluid solver embedylthe median of 2D Hessian

diffusion kernel (MedH-SFS) algorithm, as described int®&c3, is shown in Fig. 5(d).
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(d) MedH-SFS (5)

(c) MED-2DH (4)
Figure 5: Atrtificial vector field smoothing comparisons. Haatter visualisation, the

vector from the upper-right corner of the SFSM vector fiel@aphas been rescaled.
The results in Fig. 5 are obtained at convergence when the swaare error differ-

ence between vector fields at two successive iterationssstiean 0.01. The number of
iterations necessary to achieve convergence is providdeeiparentheses from the cap-

tion of each result plot of Fig. 5. From these results
duced in the other smoothed vector fields. It can be obsehatdtedH-SFS provides the

best results and the flow vortex recovered is better locateshwompared to the vortices

modelled by SFSM is still noisy at convergence, while thesadias been significantly re-
recovered using Black and MED-2DH.



Gaussian Noisea?) | SFSM | SFS | MedH-SFS| Black | MED-2DH
0.01 0.7525] 0.6211| 0.7634 | 0.7226| 0.7383
0.10 0.6020| 0.5616| 0.7327 | 0.6554| 0.6997
0.25 0.4538] 0.4523| 0.6849 | 0.5584| 0.6424
0.30 0.4373] 0.4624| 0.6704 | 0.5567| 0.6058
0.40 0.4005| 0.4184| 0.5799 | 0.4958| 0.5556

Table 1: Mean cosine error (MCE) of smoothed vector fields.

For numerical comparisons, we consider the mean cosine @I©GE) between the
recovered smoothed flow and the ground truth flow. The MCEl=utated as:

Shaui-Gi _ cog6)
MO ulaL L ©

wherelL is the total number of vectors; is the ground truth before considering the noise
and smoothing, an€; is the result achieved after smoothing the noisy vector fald
locationi. The MCE is the normalised dot product between two vectoiishwprovides
the cosine of the angle between them, denotefl.ashe closer MCE is to 1.0, the more
similar are the two vector fields. The MCE results are pradide Table 1 after one
iteration of smoothing. SFS algorithm was described ini8e@ and was adapted from
[13], while SFSM was described in [14]. Both these algorithhave been adapted to
work on vector fields. It can be observed that SFS providesd gesults for a vector field
corrupted with low noise variance. However, its perfornedeteriorates significantly
when the noise increases, because the corrupted vectodéphatts significantly from
the Navier-Stokes underlying model. The robust diffusighrid fluid algorithm MedH-
SFS provides better results than either SFS or SFSM metimotisms of MCE when
considering additive Gaussian noise as it can be obsereed Table 1. MedH-SFS is
also consistently better than Black [3] and MED-2DH [6] aniiepic smoothers.

We have applied the proposed methodology on optical flowimattd from image
sequences. Fig. 6(a) represents a frame from “Tornado”eémnsagquence, while Fig. 6(b)
shows a frame from the “Solar Flare” sequence obtained framzi€lfohe Obervatory’s
solar and environmental research website. The first sequepcesents a complex atmo-
spheric phenomenon while the second image is used to obesedvanalyse solar surface
activity. The initial optical flows have been estimated gsiock matching algorithm
(BMA) and are shown in Fig. 6(c) and Fig. 6(d), respectiveljhe complexity of the
motion in the scenes as well as the compression artefaateufé negatively the perfor-
mance of the BMA algorithm. Fig. 6(e) and Fig. 6(f) show theosihing result when
using MedH-SFS algorithm on the optical flow estimated frtv tTornado” sequence
and from the “Solar Flare” optical flow, respectively, bofitea one iteration. The im-
provements provided by the Med-SFS over the initial opfica¥s are significant. We can
clearly identify the moving twister and its boundaries attsing the proposed methodol-
ogy as it can be observed in the optical flow from Fig. 6(e).blilent movements of the
solar surface can be properly identified in Fig. 6(f).

5 Conclusions

We have presented a physics based model that smoothes aetsroptical flow repre-
sentations estimated from images representing complexuahdlent fluid motion. The
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(e) MedH-SFS smoothed “Tornado” flow  (f) MedH-SFS smoothgdlar Flare” flow
Figure 6: Smoothing optical flows in image sequences digpdatyirbulent motion.

Stable Fluid Solver (SFS) model is based on the Navier-Steleations for incompress-
ible fluid. The SFS algorithm, originally developed in cortgrugraphics for visualis-
ing fluid like movement and for building animation tools, Heeen modified in order to
be used on optical flows. The proposed model is highly efficéend stable under cer-
tain conditions. The flow incompressibility condition ishéaved by imposing the mass
conservation through the Helmholtz-Hodge decompositiée.embed a robust Hessian
based kernel in the diffusion step of the Navier-Stokes tdation in order to improve the
performance of the proposed method for smoothing vectatsfidrhis kernel ensures that
smoothing occurs along the structure of the motion field evhilaintaining the general
optical flow structure and the main optical flow features. praposed kernel ensures ro-
bust statistics capability in order to reduce the impactuifiers and thus to enhance the
smoothness of the resulting optical flow. The new model isvshio provide good results



in both artificial data and in optical flow from two image sences, showing turbulent
atmospheric and solar activity phenomena.
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