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Abstract

This paper proposes a physics-based methodology for the analysis of op-
tical flows displaying complex patterns. Turbulent motion,such as that ex-
hibited by fluid substances, can be modelled using fluid dynamics principles.
Together with supplemental equations, such as the conservation of mass, and
well formulated boundary conditions, the Navier-Stokes equations can be
used to model complex fluid motion estimated from image sequences. In this
paper, we propose to use a robust kernel which adapts to the local data geom-
etry in the diffusion stage of the Navier-Stokes formulation. The proposed
kernel is Gaussian and embeds the Hessian of the local data asits covari-
ance matrix. The local Hessian models the variation of the flow in a certain
neighbourhood. Moreover, we use a robust statistics mechanism in order to
eliminate the outliers from the estimation process. The proposed method-
ology is applied on artificial vector fields and in image sequences showing
atmospheric and solar phenomena.

1 Introduction
Classical optical flow estimation methods work on the assumption that image intensity
structures are approximately constant under motion [1, 8].Robust estimation employing
either median statistics or diffusion has been used to eliminate outliers from the optical
flow [4] and to smooth colour images while preserving edges [3], respectively. Recently,
robust statistics and diffusion have been embedded in a smoothing kernel for jointly pro-
cessing the data statistics and the local geometry in noisy optical flows [6]. This method
was shown to preserve data characteristics as well as the boundaries of the moving objects,
while resulting in smoothed optical flows.

Very often, the natural phenomena modelling involve the motion of dynamic fluids
which differs radically from that of rigid bodies. Classical optical flow estimation algo-
rithms would fail in such cases. The use of fluid flow modellingfor motion estimation
can be traced back to the work of Fitzpatrick [7], who compared optical and fluid flow
methods. The computation of flows depends largely on the specific nature of the ap-
plication. Using Fitzpatrick’s analysis as a basis, Song and Leahy [12], employed the
equation of continuity as an additional constraint to Horn and Schunck’s algorithm [8]
in order to obtain better motion estimation of the beating heart. Navier-Stokes equations
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have been extensively studied in fluid mechanics for modelling the behaviour of fluids un-
der various conditions and constraints [9]. The Navier-Stokes and optical flow constraint
equations have been employed for modelling Karman flows in [10]. Bertalmioet. al.
applied the Navier-Stokes equations to image and video inpainting [2]. Their approach
uses the vorticity-stream formulation of the fluid flow equation, which can be attributed
to the image intensity-Laplacian relationship. Corpettiet. al. used the vorticity-stream
formulation to recover dense motion of water vapours [5].

Navier-Stokes equations have been used in computer graphics for visualising flames
and building animation tools based on fluid-like motion [11,13, 14]. The stable fluid
solver (SFS) algorithm implements Navier-Stokes equations and consists of a set of con-
secutive processing steps [13], such as: advection, diffusion and mass conservation. The
boundary conditions are important in constraining the fluidmotion [9]. The boundaries
have been processed as a set of constraints on a grid [14], by enforcing repetition and
employing the Fast Fourier Transform (FFT) [13] or by using level sets [11]. In this
study, we extend the SFS solver methodology and apply it for smoothing vector fields
estimated from image sequences representing turbulent moving fluids. In our approach,
the diffusion step is anisotropic and robust by consideringa median of the Hessian dif-
fusion kernel [6]. The proposed hybrid SFS method processesthe local geometry and
data statistics consistently with the flow motion. The proposed approach is applied for
smoothing artificial vector fields and in two image sequences. The paper is structured as
follows: Section 2 outlines the SFS algorithm, while Section 3 describes our hybrid solver
applied for modelling vector fields. Experimental results and their analysis are presented
in Section 4, while Section 5 concludes the paper.

2 The Stable Fluid Method
Navier-Stokes methodology represent the basis for modelling a large variety of phenom-
ena such as those characterising weather, ocean currents, water flow in a pipe, the air flow
around a wing, the motion of stars inside a galaxy, blood flow,economics behaviour, etc
[9]. In engineering, they are used in the analysis of the effects of pollution, the design of
aircraft and of power stations, etc. Navier-Stokes methodology has been applied in Com-
puter Graphics in order to visualise and create the effects given by the complex movement
of fluids such as that of coloured gases, air, clouds, liquids, smoke, fire, etc., [11, 13]. The
explicit model is generally used for precise computation offluid dynamics and involves
heavy computational complexity [9]. The Von Neumann’s stability analysis, as shown in
[9], highlights that the implicit model of discretisation when calculating Navier-Stokes
equations is unconditionally stable, although it requiresa complex numerical implemen-
tation scheme. The SFS algorithm proposed by Stam represents an implementation of the
Navier-Stokes methodology in an implicit scheme [13, 14].

In order to achieve visual effects, the Navier-Stokes equations are used for both den-
sity and velocity in the SFS algorithm [13, 14]. Unlike in theoriginal SFS approach, in
this study we consider only the modelling of motion based on the Navier-Stokes equa-
tions. The area of investigation (in our case an image or a segmented region from an
image) is split into cells located on a grid and we associate aparticle to each grid loca-
tion. Let us assume that the SFS system moves the particles around according to a vector
field, where each vector corresponds to a grid location. The Navier-Stokes equation for
a given system is derived using the conservation of mass, momentum, and energy for an



arbitrary control volume [9] and is given by :

∂u
∂ t

=−(u ·∇)u−
∇P
ρ

+ν∇2u+ f (1)

where the change of velocityu over time is represented with respect to the advection,
gradient of the pressureP, diffusion and external forcing functionf, while ν is a viscosity
constant that characterises the fluid andρ is a parameter. The pressure is assumed to be
constant in the given field and its gradient is zero,i.e. the change in pressure from one
spatial position to another in the vector field is negligible. Consequently, the equation
employed by the SFS method is :

∂u
∂ t

=−(u ·∇)u+ν∇2u+ f (2)

The diffusion termν∇2u characterises fluids which are assumed incompressible and New-
tonian. Moreover, for incompressible fluids it is importantto enforce the conservation of
mass [9]: ∇ ·u = 0 (3)
which states that the divergence of velocity components is zero for infinitesimal time
steps. The density of a particle is constant between iterations, thereby the total mass of
the field is conserved within the given region.

for k← 1 to � convergence / number of iterations
do

1 add force:u1 = u0 + f ∆t
2 advect:u2(x) = adv(u1(x,−∆t))
3 transform:û2 = FFT(u2)
4 diffuse: û3(z) = û2(z)/(1+ν∆tk2)
5 conserve:̂u4 = conserve(û3)
6 transform:u4 = FFT−1(û4)

Figure 1: The stable fluid solver algorithm.

The SFS algorithm proceeds to calculate the velocity componentsu as described in
Fig. 1, [13]. For each iteration, the first step consists of adding the external forcing func-
tion f which determines the initial conditions in the processing cycle. The second step
represents the advection term in equation (2), which corresponds to the following :

(u ·∇)u =

(
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∂ux

∂x
+uy

∂ux

∂y
,ux

∂uy

∂x
+uy

∂uy

∂y

)

(4)

whereu = (ux,uy). The analysis of the advection process in real physical phenomena is
provided in [9]. The process described by equation (4) is known as the self-advection
of velocity. The advection step from the SFS algorithm is implemented by moving the
motion vector of each grid cell back in time with−∆t by backtracking the velocity field.
The third step transforms the velocity field to the frequencydomain using the Fast Fourier
Transform (FFT). The requirement to set specific boundary conditions is eliminated by
extending the spatial repeatability of the area under consideration and by applying FFT.
The diffusion term (fourth step) represents the decay of high spatial frequencies in the
velocity field and is computed in the Fourier domain with a Gaussian filter processing
the velocity componentu by using the time step∆t and the fluid kinematic viscosity
ν . The finite difference implicit scheme is used here to discretise the diffusion term in



order to obtain an unconditionally stable system [13]. The fifth step enforces the local
incompressibility of the optical flow which requires that the amount of flow entering in a
specific area should be equal with the flow exiting that area. The final step projects the
flow back from the frequency domain to the spatial-time domain using the inverse FFT
transform. This algorithm was modified in [14] by replacing the FFT transformations and
the processing in the frequency domain with defining a set of boundary constraints on a
grid-based representation of the flow.

3 The Robust Hybrid Fluid Solver

Figure 2: Robust hybrid solver.

The implementation of the stable fluid solver [13] provided rather poor performance in
modelling turbulent optical flow estimated from image sequences. This is mainly caused
due to the uncertainty in the initial estimation of the optical flow which leads to noise,
particularly in image sequences displaying complex motion. In order to improve the
performance on optical flow, we propose to embed a robust anisotropic kernel [6] in the
diffusion step of the SFS. Fig. 2 shows a flow diagram of the proposed robust hybrid fluid
solver. The initial flow can be estimated using the block matching algorithm as in [4]
or other motion estimation algorithms [1]. Optical flows provided by block-matching or
by using temporal gradient estimation are invariably noisy[4], particularly in the case of
image sequences representing moving fluids or other complexphenomena.

The first processing block corresponds to a reinforcement step and in the proposed
method is implemented by adding a proportion of the velocityfrom the previous iteration



to the current velocity :

u1(t +∆t) = (1− ε)u0(t)+ ε∆tu5(t) (5)

whereu5(t) is the motion vector from the previous iterationt, ε ∈ (0,1) is a weighting
factor modelling the degree of the reinforcement andu0(t),u1(t +∆t) represent the mo-
tion vector reinforced by force at timest and t + ∆t, respectively. At the first iteration
there is no reinforcement,i.e. ε = 0. The SFS algorithm described in Section 2 proposes
to advect the initial flow at Step 2 from Fig. 1. However, that algorithm produces unreli-
able estimation when applied to noisy vector fields. The optical flow should have a degree
of smoothing before advection can be applied. In our approach, we propose to diffuse the
noisy flow before proceeding to the advection stage. The transfer function of the original
smoothing algorithm is a Gaussian function appropriately defined within the frequency
domain [13]. In our approach, we propose to implement a Hessian based diffusion that
jointly processes the local geometry and the statistics of the local vector field as in [6] :

û2(t +∆t) =

∑
xi∈η(zc)

u1,i(t)exp[−(xi−zc)
TH−1(xi−zc)]

∑
xi∈η(zc)

exp[−(xi−zc)TH−1(xi−zc)]
(6)

whereû2(t +∆t) is the intermediate diffused value,H represents the local Hessian,u1,i(t)
is the vector at locationi within a neighbourhoodη(zc), centred at the locationzc. The
Hessian of the optical flow is calculated locally as :

H =

[

∂ 2u
∂x2

∂ 2u
∂x∂y

∂ 2u
∂y∂x

∂ 2u
∂y2

]

(7)

The eigenvector corresponding to the largest eigenvalue shows the local direction of
the optical flow. This diffusion kernel is anisotropic and adapts to the local structure of
the optical flow. Significant optical flow transitions are detected and consequently not
smoothed over by the Hessian-based kernel. However, anisotropic diffusion does not deal
properly with outliers as shown in a study provided in [6]. Inorder to properly process the
local statistics and eliminate outliers, the median algorithm is considered for robustifying
the Hessian based diffusion in the neighbourhoodη(zc).

At the advection stage, our model is only concerned with the nonlinearity of the ad-
vection term from equation (4). As mentioned in the previousSection, the self-advection
term represents the ability of the velocity components to move their own values from one
position to another on a grid in a time step interval,∆t. This procedure involves inter-
polating the velocity at the grid points, using a neighbourhood approximation, from the
previous time step back to the position in the current time step [14].

The model is dependent on the initialisation and on boundaryconditions of the sys-
tem under study. Boundary condition are specifically provided onto the grid in order to
represent the physical limits of the optical flow. Such boundary conditions can be the
result of image or motion segmentation algorithms or ofa priori information about the
image sequence. There are two boundary conditions to consider. The first condition is
determined by the physical boundary. This is represented bythe Von Neumann condition
which specifies the normal component of the flow to the boundary surface as :

∂u
∂n

∣

∣

∣

∣

Ω
= 0 (8)



whereΩ represents the boundary andn is its surface normal. This means that the wall
absorbs any flow particles coming towards it. For the sake of reducing the required com-
putation complexity, the walls of the domain,Ω are represented by zero values on a ge-
ometric grid, which are enforced at every stage of the computation in order to preserve
the stability and integrity of the numerical calculation. Since our proposal incorporates
both explicit and implicit finite differencing schemes, it is absolutely imperative that the
model adheres to the stability criteria, given by∆t/(∆x)2≤ 1/2, where∆x represents the
location change during the time interval∆t.

The second condition relates to the conservation of mass of the velocity field. The
conservation of mass, given by equation (3), should be maintained in order to ensure the
incompressibility of the flow. In order to maintain a divergence free velocity field for
every stage of computation, the conservation of mass is enforced after both diffusion and
advection stages. The conservation of mass stage corresponds to a data normalisation
process. The conservation of mass is enforced by using the Helmholtz-Hodge decompo-
sition [13] of the velocity field. This decomposition provides an exact solution so that
the mass conserved incompressible flow can be obtained by extracting the gradient of
the flow from the current vector field. This decomposition maintains the incompressibil-
ity and smoothness of the estimated velocity field. Mass conservation is important for
realistically estimating optical flow of fluids. For exemplification, the Helmholtz-Hodge
decomposition of the exact closed cavity laminar flow (artificial data experiment provided
in Section 4) at the 1000th iteration is shown in Fig. 3.

Current Flow = Incompressible Flow + Gradient Flow

Figure 3: Helmholtz-Hodge decomposition of a closed lid driven cavity laminar flow.

4 Experimental Results
We present results when the proposed algorithm is evaluatedon a synthetic vector field
and on the optical flow estimated from two real-world image sequences. The synthetic se-
quence is created using the original Navier-Stokes equations [9] depicting the air flow gen-
erated within a lid driven closed cavity. The synthetic flow is created using the vorticity-
stream formulation of the Navier-Stokes equations insteadof the classic velocity-pressure
formulation. Fig. 4(a) represents the simulated syntheticfield that visualises the air flow
moving with a fixed velocity from left to right inside the top area of a closed cavity. This
flow has been obtained after applying the Navier-Stokes equation for a thousand itera-
tions. Fig. 4(b) shows flow degradation after adding Gaussian noise with zero mean and
varianceσ2 = 0.25. Modelling results using the modified SFS (SFSM) algorithm [14]
adapted for usage on vector fields is shown in Fig. 5(a), whilevector field smoothing us-
ing Black’s anisotropic diffusion algorithm [3] is provided in Fig. 5(b). Fig. 5(c) shows



the effects of using MED-2DH which is a robust Hessian based diffusion algorithm de-
scribed in [6], while the robust hybrid fluid solver embedding the median of 2D Hessian
diffusion kernel (MedH-SFS) algorithm, as described in Section 3, is shown in Fig. 5(d).

(a) Ground truth synthetic flow (b)σ2 = 0.25

Figure 4: Synthetic closed lid-driven cavity flows

(a) SFSM (6) (b) Black (3)

(c) MED-2DH (4) (d) MedH-SFS (5)

Figure 5: Artificial vector field smoothing comparisons. Forbetter visualisation, the
vector from the upper-right corner of the SFSM vector field in(a) has been rescaled.

The results in Fig. 5 are obtained at convergence when the mean square error differ-
ence between vector fields at two successive iterations is less than 0.01. The number of
iterations necessary to achieve convergence is provided inthe parentheses from the cap-
tion of each result plot of Fig. 5. From these results, we can observe that the vector field
modelled by SFSM is still noisy at convergence, while the noise has been significantly re-
duced in the other smoothed vector fields. It can be observed that MedH-SFS provides the
best results and the flow vortex recovered is better located when compared to the vortices
recovered using Black and MED-2DH.



Gaussian Noise (σ2) SFSM SFS MedH-SFS Black MED-2DH

0.01 0.7525 0.6211 0.7634 0.7226 0.7383
0.10 0.6020 0.5616 0.7327 0.6554 0.6997
0.25 0.4538 0.4523 0.6849 0.5584 0.6424
0.30 0.4373 0.4624 0.6704 0.5567 0.6058
0.40 0.4005 0.4184 0.5799 0.4958 0.5556

Table 1: Mean cosine error (MCE) of smoothed vector fields.

For numerical comparisons, we consider the mean cosine error (MCE) between the
recovered smoothed flow and the ground truth flow. The MCE is calculated as:

MCE =
∑L

i=1ui · ûi

‖ui‖ ‖ûi‖ L
=

cos(θi)

L
(9)

whereL is the total number of vectors,ui is the ground truth before considering the noise
and smoothing, and̂ui is the result achieved after smoothing the noisy vector fieldat
locationi. The MCE is the normalised dot product between two vectors which provides
the cosine of the angle between them, denoted asθi . The closer MCE is to 1.0, the more
similar are the two vector fields. The MCE results are provided in Table 1 after one
iteration of smoothing. SFS algorithm was described in Section 2 and was adapted from
[13], while SFSM was described in [14]. Both these algorithms have been adapted to
work on vector fields. It can be observed that SFS provides good results for a vector field
corrupted with low noise variance. However, its performance deteriorates significantly
when the noise increases, because the corrupted vector fielddeparts significantly from
the Navier-Stokes underlying model. The robust diffusion hybrid fluid algorithm MedH-
SFS provides better results than either SFS or SFSM methods in terms of MCE when
considering additive Gaussian noise as it can be observed from Table 1. MedH-SFS is
also consistently better than Black [3] and MED-2DH [6] anisotropic smoothers.

We have applied the proposed methodology on optical flows estimated from image
sequences. Fig. 6(a) represents a frame from “Tornado” image sequence, while Fig. 6(b)
shows a frame from the “Solar Flare” sequence obtained from Kanzelh ¨ohe Obervatory’s
solar and environmental research website. The first sequence represents a complex atmo-
spheric phenomenon while the second image is used to observeand analyse solar surface
activity. The initial optical flows have been estimated using block matching algorithm
(BMA) and are shown in Fig. 6(c) and Fig. 6(d), respectively.The complexity of the
motion in the scenes as well as the compression artefacts influence negatively the perfor-
mance of the BMA algorithm. Fig. 6(e) and Fig. 6(f) show the smoothing result when
using MedH-SFS algorithm on the optical flow estimated from the “Tornado” sequence
and from the “Solar Flare” optical flow, respectively, both after one iteration. The im-
provements provided by the Med-SFS over the initial opticalflows are significant. We can
clearly identify the moving twister and its boundaries after using the proposed methodol-
ogy as it can be observed in the optical flow from Fig. 6(e). Turbulent movements of the
solar surface can be properly identified in Fig. 6(f).

5 Conclusions
We have presented a physics based model that smoothes and models optical flow repre-
sentations estimated from images representing complex andturbulent fluid motion. The



(a) Original “Tornado” frame 341 (b) Original “Solar Flare”frame 220

(c) Initial BMA “Tornado” optical flow (d) Initial BMA “SolarFlare” optical flow

(e) MedH-SFS smoothed “Tornado” flow (f) MedH-SFS smoothed “Solar Flare” flow

Figure 6: Smoothing optical flows in image sequences displaying turbulent motion.

Stable Fluid Solver (SFS) model is based on the Navier-Stokes equations for incompress-
ible fluid. The SFS algorithm, originally developed in computer graphics for visualis-
ing fluid like movement and for building animation tools, hasbeen modified in order to
be used on optical flows. The proposed model is highly efficient and stable under cer-
tain conditions. The flow incompressibility condition is achieved by imposing the mass
conservation through the Helmholtz-Hodge decomposition.We embed a robust Hessian
based kernel in the diffusion step of the Navier-Stokes formulation in order to improve the
performance of the proposed method for smoothing vector fields. This kernel ensures that
smoothing occurs along the structure of the motion field while maintaining the general
optical flow structure and the main optical flow features. Theproposed kernel ensures ro-
bust statistics capability in order to reduce the impact of outliers and thus to enhance the
smoothness of the resulting optical flow. The new model is shown to provide good results



in both artificial data and in optical flow from two image sequences, showing turbulent
atmospheric and solar activity phenomena.
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