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Abstract

We propose a new methodology to partition a natural image into regions
based on the shock graph of its contour fragments. We show that these re-
gions, or shock patch fragments, are often object fragments, thus effecting a
partial segmentation of the image. We utilize shock patch fragments to rec-
ognize objects with dominant shape cues eliminating the need to segment out
the entire object from the image first. Our preliminary results with minimal
training are promising with respect to the state of the art recognition systems.

1 Introduction

There has been a paradigm shift in computer vision in the past decade moving away
from relying on fully segmented images for recognition and other visual tasks, to using
a collection of features that capture appearance and shape in a small area. The key point
underlying this paradigm shift is the availability of a new generation of feature detectors
such as Harris-Affine, Harris-Laplace and others [15] and a new generation of feature
descriptors such as SIFT [13] and others [14] that are more stable to viewpoint variation,
lighting change, efc. The main idea is that while these features may not remain present
under all variations, given the sheer number of features, the common presence of a few
discriminative features can discriminate between the presence or absence of a particular,
previously observed object in an image.

In contrast to object instance recognition, generic object recognition, where the intra-
category type variations must in addition be accounted for, has proven to be more chal-
lenging. Approaches to generic object recognition which are based on key feature de-
tectors and descriptors span a continuum between two extremes. On one extreme, the
spatial relationship between parts is represented such as in the constellation model [6, 4]
and the k-fan model [3], and these are referred to as “part-based” models. On the other
extreme which completely discards the spatial relationship, the approach relies on an un-
organized collection of features which are coded in a lower dimensional vocabulary of
visual words, or a codebook of appearance parts common to a collection of images, and
are known as “bag of words” models. The former “part based” approach is faced with a
combinatorial search arising from an exponential number of correspondences. The “bag
of words” approach avoids the combinatorial difficulties [29, 5, 28, 35], but is more brittle
to situations when some of the features have been removed, e.g., due to partial occlusion.
In approaches between these extremes, the geometric relationships between neighboring
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features is modeled using specified geometric transformations [21, 22, 33], or using lose
pairwise relationships [1, 34].

The success of the above approaches indicates the significance of the role of appear-
ance in discriminating the presence or absence of objects in typical scenes where bottom-
up segmentation could not conceivably segment figure from ground. However, these ap-
proaches are also limited in several significant ways. The chief drawback is that stable
key features are not always available to the degree of abundance that the approach relies
on. For example, the intensity variation in the interior of an object viewed in low lighting
condition, e.g., a cow at dusk/dawn, or equivalently against bright backgrounds, e.g., a
bird against a bright sky, is too limited to produce reliable key features. In this case the
silhouette is a more reliable cue for recognition. As another example, objects especially
man-made objects, may feature large homogeneous and therefore featureless areas. Sim-
ilarly, cartoons, sketches, and line drawings which are readily recognizable would have
no appearance-based key features. In these cases, the edge content is the sole information
source for recognition. Finally, objects in low resolution imagery, e.g., aerial video im-
ages of vehicles, where the total extent of the object is of the same order as that required
for feature descriptors (25x25) [19], cannot be recognized using this approach.

A second short coming of the use of appearance-based key features for recognition is
that the role of appearance may become severely diminished as the size of the database
grows. This happens when the type variation increases the range of appearances on object
category captures. For example, in recognizing bottles and cups, the surface markings are
simply too varied to be useful [17]. In this case, the edge content of the silhouette and
of the internal markings consistent across the category become the primary source of
information for recognition.

A number of recent approaches to object recognition rely on the edge content of cat-
egory, as represented in an unorganized edge map, or in a collection of curve fragments.
As an example of use of edge maps in recognition, Belongie et al.’s [2] shape context
approach assigns a signature to each edge representing the radial-polar histogram of other
edges. This signature is sufficiently discriminative to enable correspondence and a sim-
ilarity score after an image transformation. As an example of an approach relying on
contour fragments, Nelson and Selinger [16, 24], motivated by the cubist approach to
evoking the visual percept of form from a few fragmentary cues, modeled contour frag-
ment maps by a collection of local context patches (21x21) which are normalized for size
and orientation with respect to a centrally placed key curve. Fergus et al. [7] use segments
of extended edge chains lying between bitangent points in their constellation model. Ku-
mar et al. [12] used contours as a component in a graph-based pictorial structures. In
the Boundary Fragment Model (BFM), a boundary fragment codebook is constructed by
clustering those which are highly class-distinctive and predictive of the object centroid
over a set of training data [17, 25].

A significant disadvantage of the above approaches is that either the relative spatial
distribution of various contour fragments in an object is ignored altogether, or it is cap-
tured through the mediation of an object model, e.g., requiring an object centroid. The
lack of the relative spatial relationship among contour fragments restricts the discrim-
inability of each fragment. The requirement of an object model to mediate the spatial
relationship between fragments renders the approach sensitive to partial occlusion. For
example, if only the head of a horse or a cow is visible, individual contour fragments
for the head can match a large number of fragments from other objects, an effect which



Figure 1: Top row illustrates how the shock graph of a horse is optimally transformed to the shock
graph of a cow (colored edges are matching and the thinner black edges are editted out). While for
segmented images this can be done with a polynomial time algorithm, the algorithm for matching
the shock graphs in the bottom row is NP-complete (blue: boundaries, red: shock graphs).

becomes more significant as the size of the database increases. The spatial relationship
among pairs of contour fragments on the head, on the other hand, make the joint-pair of
fragments highly selective.

The main goal of this paper is to use the joint representation of a pair of contour
fragments for recognition. The medial axis is a structure for the joint representation of
pairs of contour fragments and our paper is focused on the use of this structure in the form
of a shock graph as described below. The only previous work which takes advantage of
pairs of contour fragments in such a “localized” sense is that of Jurie and Schmid [9]
where edges are detected at multiple scales and annular regions are rated for the extent of
significant non-accidental edge support on a wide range of angles around the region, see
also [10]. The annular regions are localized over position and scale and used as distinctive
and discriminative shape features. However, these shape features do not make use of the
geometry of the curve fragments beyond the presence or absence in the small portions
falling in the thin annular regions.

Our work builds on the success of shock graphs as a representation for generic object
recognition from segmented images [23, 27]. Shock graph is a variant of the medial axis
of the contour map of an image and it is obtained by viewing the medial axis as the lo-
cus of singularities (shocks) formed in the course of wave propagation (grass-fire) from
boundaries [11, 26, 32]. The resulting shock graph is a richer descriptor of the contour
map than the medial axis graph and it is a good intermediate representation since its nodes
and edges signify presence of contour pairs and triplets, gaps and T-junctions. Loops in
the graph signify groups of edges. See Figure 2c¢ and 3c for example shock graphs of
two contour sets. The use of the shock graph captures much of the intra-class object vari-
ability since articulation and metric variations in the part shape often leave the structure
intact, while partial occlusion only affects parts of it. Those changes that lead to structural
changes in the shock graph are captured in the context of considering deformation paths
encoded by shock transitions. The precision-recall rates for large number of categories
is excellent [23]: for a database of 1032 shapes roughly organized in 40 categories, the
leave-one-out recognition rate is at 97% and drops to 82% for the last member of the
category.

Generalizing the above approach from recognition of objects in segmented images to
those in real images requires first that edge maps be represented by a shock graph, and
furthermore that perceptual grouping operations, like removing an edge from the map or



closing a gap, be represented as a sequence of shock transitions, e.g. as described in [30].
The key difficulty is that the shock graph which for segmented images is a tree and which
therefore leads itself to a polynomial-time edit distance algorithm, Figure 1, is no longer
a tree due to the presence of spurious edges and gaps. Thus, matching two shock graphs
faces combinatorial explosion in the search space and becomes NP-complete. This is very
much similar to the combinatorial search space of constellation models, which limits its
use to simpler models. In a similar vein, the complexity of the shock graph edit-distance
algorithm for edge maps in real images motivates the recognition of smaller portions of
objects, or object fragments. Our approach, therefore, probes the presence of an object in
a limited portion of the shock graph, as determined by a collection of subgraphs. Each
shock subgraph models a patch of the image which we refer to as a shock patch fragment.
The recognition of these object fragments is the basis of our approach to object category
recognition. While the use of shock object fragments based on “shock patch fragments”
enables the use of both shape and appearance cues, we focus on shape features in this
paper. However, it is not difficult to construe how a region descriptor of the sort used for
key feature description can be used for shock patch regions to augment the shape aspects
with appearance.

The paper is organized as follows. Section 2 describes how an edge map is processed
to produce a collection of contour fragments from which a shock graph is obtained, Fig-
ures 2 and 3. In Section 3, we explain extraction of shock patches and show examples. In
Section 4 we describe the procedure to match shock patch sets for object recognition and
we report our results on object detection task in Section 5.

2 Contour Fragments

The success of any method based on shock graphs of curve fragments heavily depends on
the reliability and stability of image contours. We now explain the processing stages of
our approach: edge detection, edge linking, and perceptual grouping.

Edge Detection and Edge Linking: We use a pair of recently proposed edge detection
and edge linking algorithms [31] which robustly extract well-localized sub-pixel edges
and stably links these into curve fragments. For edge detection, it advocates the use of a
third-order edge detector with an extremely low threshold, to get as many edges as possi-
ble so that the linking stage has enough options to choose from. Since the low threshold
creates many spurious curve fragments, we prune these after linking by thresholding a
measure consisting of both length and color contrast in the LAB space as used in [20],
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where Up+ and U are the mean colors of regions on either side of the curve fragment,
and ||.|| is the L, distance in R®. We set y, = 14. If a color image is not available
we find the L; distance of the appearance means. Figure 2b and 3b shows the curve
fragments resulting from this process using a length threshold of 2 pixels and a color
contrast threshold of 0.5 with a support region width of 5 pixels.

Gap Closure: The shock graph of the resulting curve fragments is computed using the
method in [30], see Figures 2c and 3c. There are numerous gaps and spurious curve
fragments which interfere with the process of forming shock segments correspond to ob-
ject fragments. The shock graph provides a clue to the existence of these elements and
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Figure 2: (a) An example image; (b) Curve fragments after pruning based on length and color
contrast; (c) Shock graph of the curve fragment set (d) Curve fragments after the gap transform
where the fragment set is shown in green and the gap completions in yellow.

transformations of it can be used to effect gap closure (gap transform) and the removal
of spurious elements (loop transform). Specifically, observe that waves propagating radi-
ally from curve-ends meet, they form degenerate shocks in the shock graph, when they
meet with normal waves propagating parallel to the contours, they form semi-degenerate
shocks [8]. These edges signify gaps and possible T-junctions, respectively, in the curve
fragment map of the image. See Figure 4a for an example of each kind. The gap transform
is based on closing gaps and forming T-junctions by considering each case as rank-ordered
by a measure reflecting both (i) good contour continuity and (ii) appearance discontinuity.
The results are shown in Figures 4c, 2d and 3d.

3 Shock Patch Extraction

We now explore the notion of forming recognizable and stable image fragments which
in effect are hypotheses for partial segmentations of the image. Assuming that the frag-
ments have detectable boundaries, they must be anchored on curve fragments. Since a
single curve fragment is not sufficiently distinctive, multiple contour fragments should be
used to define image fragments. Since each pair of adjacent contour fragments give rise to
a shock segment, selecting shock subgraphs provides a mechanism for selecting a group
of curve fragments. Specifically, given a particular node in the shock graph, we traverse
neighboring nodes in a depth-first manner to extract subgraphs at various depths. Since
each shock segment typically describes a pair of curve fragments and the portion of the
image in-between, we refer to this as a visual fragment Figure 5a, the shock subgraph de-
scribes an image fragment, which we refer to as the shock patch fragment, Figure Se. The
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Figure 4: (a) Image curves shown in green and shock graph in red (b) D, E and A are degenerate
edges, suggesting the closure of (i-j), (j-i) and (i-k) respectively. B and C are semi-degenerate edges
suggesting to form a T-junction from k to the contour. (b) Completion curves in blue after the gap
(i-j) is closed and a T-junction is formed based on the closure criteria.

boundary of this region is partially detected curve fragments shown in blue in Figure 5d,
and partially by virtual contours imposed by end-nodes, shown in yellow. Figure 6a shows
four subgraphs of increasing depths for a selected node on a real image example. Observe
that when the subgraph contains a loop, e.g. due to a spurious edge, the fragment bound-
ary does not contain this inner boundary, effectively removing it from consideration.

The shock patch fragments then consist of an outer contour as well as an appearance
of the inner region. Each shock graph node produces shock patch fragments at all depths
1,2, etc. This collection of shock patch fragments is highly redundant, since adjacent
nodes produce very similar fragments and since fragments from the same node but at dif-
ferent depths are similar. Furthermore, low-depth patches are often not very informative.
Therefore, we subsample depths (dy,d>,...,d,) = (6,9, 12, 15, 18), and use the extent of
overlap to remove similar patches generated by nearby nodes. All patches with 80% or
more overlap are considered equivalent, and represented by the patch with the highest ap-
pearance contrast. This reduces the number of fragments from thousands to about 30-100
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Figure 5: (a) Visual fragment (b) A simple shape with boundaries in green and shock graph in red
(c) A subgraph at depth 1 (d) Induced boundaries in blue, virtual boundaries in yellow (e) Shock
patch fragment.

(©
Figure 6: (a) Shock subgraphs at depths 1, 2, 3 and 4, respectively. The shock graph is shown in
red and the subgraph in light green, image boundaries are shown in green, shock patch boundaries
in blue. (b) shows the simple closed boundary in blue traced from the outer face of the subgraph.
(c) Four shock patch fragments.

per image, as shown for the horse examples of Figures 2 and 3 in Figure 7.

4 Object Matching and Detection using Shock Patches

Shock patch fragments can depict either object fragments, effectively implementing a par-
tial figure-ground segmentation, they can be pieces of the background, or object combined
with the background, for example in Figure 7 some fragments depict meaningful object
parts, e.g., the horse head, limb, torso, efc., while others do not clearly map to a distin-
guishable part. When we compare the two horse images, we do not expect any similarities
between the second type of fragments, while we do expect some similarity between the
head, limb, torso etc. between the two sets, and this can be confirmed in Figure 8.

Our approach therefore relies on finding similar fragments between the two sets. Frag-
ment similarity can be measured by comparing the shape and appearance of the two frag-
ments. As tempting as it is, we have excluded appearance from our current fragment
similarity measure, both to explore the limits of a shape-based measure, and also because
fragment appearance similarity is very well explored elsewhere in the patch-based object
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Figure 7: Example patches with depths (6, 9, 12, 15, 18) from the example horses. Observe that
all major body parts are covered.

recognition work in the form of local descriptors [14]. We expect that the addition of
appearance would improve our recognition results.

Fragment shape similarity should be measured using an algorithm that is robust against
occlusions. This is because one can view the fragments as partial occlusions of the fig-
ure, i.e., when a horse’s torso is compared to a horse. In addition, it must capture intra-
class shape variations very well. We therefore use the approach proposed by Sebastian
et al. [23] which uses an edit-distance algorithm based on shock transitions [8] which
handles both well. Figure 8 shows some example matches and non-matches.

5 Results

We propose an object detection and classification algorithm using only a few segmented
object images as the training set (one in the case of this paper). We tested our system
on the Horse-side class used in [18] consisting of 88 horse images and 88 background
images. First, to explore the strength of the matching algorithm we used a single shock
patch obtained from the silhouette mask of one of the images as the training set, shown
in the second row of Figure 8. We matched all the test image patches to our model patch
and declare a detection if top 3 matches are below a given similarity threshold and return
the detection box to be the union of top 3 image patches. See Figure 8 for the top 5
matches of some test images. An object is deemed correctly detected if the overlap of
the bounding boxes (detection vs ground truth) is greater than 50%. Our recall with best
threshold settings is 75% with a precision of 85%. There are two reasons for the low recall
rate, one is the use of a single model leading to large deviation, e.g. as the pose varies,
and the other is that the partial matching of a single fragment to a full model degrades as
the ratio of fragment area to the full model decreases. Observe from Figure 8 bottom row
that the head of the example horse is correctly matching to the head of the training image
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Figure 8: This figure illustrates the similarity between the model horse (a) fragments to fragments

from two other horse images (b, c), as measured by the shock graph edit distance [23]. The detection
boxes outputted by our system are superimposed on the test images shown in (b, c).

despite the pose difference, but there is not sufficient shape content to match against a full
model. This motivates replacing the model by the model shock patch fragments. With
this modification and the constraint that at least two model patches’ top 3 matches should
be within the similarity threshold, recall rate at the best threshold settings increases to
92%, with 85% precision. This second test image is classified correctly in this setting.

In conclusion, we have presented a shape based object detection and classification
system which does not require involved training/learning stages and which has promising
results on a difficult test set. These results can be improved by making use of spatial
constraints which are naturally imposed by the shock topology of the training image, e.g.,
head patch should be detected in correct relative position and orientation with respect to
the torso patch e.t.c. Technical enhancements such as the implementation of the loop
transform to further clean the curve fragment set, the inclusion of a few more training
examples, and the use of appearance in the fragment similarity computation, all should
lead to improvements in the recognition rate. Our main contribution in this paper is to
present a novel method to generate fragments of images and illustrate their use in a generic
object recognition and detection task.
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