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Abstract

Vision-based human affect analysis is an interesting and challenging prob-
lem, impacting important applications in many areas. In this paper, beyond
facial expressions, we investigate affective body gesture analysis in video
sequences, a relatively understudied problem. Spatial-temporal features are
exploited for modeling of body gestures. Moreover, we present to fuse facial
expression and body gesture at the feature level using Canonical Correlation
Analysis (CCA). By establishing the relationship between the two modalities,
CCA derives a semantic “affect” space. Experimental results demonstrate the
effectiveness of our approaches.

1 Introduction
The ability to recognize affective states of a person is indispensable and important for suc-
cessful interpersonal social interaction. Affective arousal modulates all nonverbal com-
munication cues such as facial expression, body moment and posture, gesture, and tone
of voice. Design and development of an automated system that can detect and interpret
human affective behavior is an interesting and challenging problem [22], impacting im-
portant applications in many areas.

In computer vision, affect analysis from facial expression has been widely studied in
recent years [23, 8]. However, little attention has been placed on affective body posture
and gesture analysis (see Figure 1 for examples of affective body gesture), although bod-
ily expression plays a vital role in conveying human emotional states, and the perception
of facial expression is strongly influenced by the concurrently presented body language
[1, 19]. This is probably due to the high variability of the emotional body posture and ges-
ture that can be displayed. The existing studies on vision-based gesture recognition have
been primarily carried out on non-affective gestures such as sign languages [27]. Emo-
tional bodily expression has been studied in psychology and non-verbal communication.
For example, Coulson [5] presented experiments on attributing six universal emotions to
static body postures using computer-generated mannequin figures, and his experiments
suggest that recognition from body posture is comparable to recognition from the voice,
and some postures are recognized as well as facial expressions. Statistical techniques
were used in [25] to determine a set of posture features in discriminating between emo-
tions. Burgoon et al.[4] discussed the issue of identifying emotional states from bodily
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cues for human behavior understanding. Mota and Picard [15] studied affective postures
in an e-learning scenario, where the posture information was collected through a sensor
chair. An affective gesture recognition system has been introduced in [26] to recognize
children’s emotion with intensity in context of game. Recently some tentative attempts
have been made on vision-based affective body gesture analysis [2, 11]. However, there
are some limitations in these studies. For example, they used very limited data (for in-
stance, only 27 video sequences from 4 subjects were processed in [11]), and the feature
extraction and representation are rather simple (for instance, the neutral and expressive
frames are manually selected in [11]).

Figure 1: Examples of affective body gestures (from the FABO database [10]). From top
to bottom: Fear, Joy, Uncertainty, and Surprise.

The face and the body, as part of an integrated whole, both contribute in conveying
the emotional state of the individual. The studies in psychology [1, 19] suggest that the
combined visual channels of facial expression and body gesture are the most informative,
and their integration is a mandatory process occurring early in the human processing
stream. Therefore, fusing facial expression and body gesture in video sequences provides
a potential way to accomplish effective affect analysis. However, there is few efforts
reported on visual affect analysis by combining face and body cues [24]. Kapoor and
Picard [15] presented a multi-sensor affect recognition system for classifying the affective
state of interest in children who are solving puzzles, which combines the extracted sensory
information from the face videos, the senor chair (body posture), and the state of the
puzzle. Balomemos et al.[2] attempted to analyze emotions from facial expressions and
hand gestures. Recently Gunes and Piccardi [11] combined expressive face and body
gestures for emotion recognition in video sequences. However, how to effectively fuse
these two different modalities is still an understudied problem.

In this paper, we investigate affective body gesture analysis in video sequences. Par-
ticularly, we exploit spatial-temporal features based on space-time interest point detection
[6] for representing body gestures in videos. Different from the previous studies [2, 11],



which rely on much human supervision and robust hand tracking and segmentation, our
approach makes few assumptions about the observed data, such as background, occlu-
sion and appearance. The underlining motivation is that, although two instances of the
body gesture representing the same emotion may vary in terms of overall appearance and
motion, due to variations across subjects or within each individual, many of the spatial-
temporal features detected are similar. With regard to combining different modalities,
we exploit Canonical Correlation Analysis (CCA), a powerful statistical tool that is well
suited for relating two sets of signals, to fuse facial expression and body gesture at the
feature level. Our motivation is that, as face and body cues are two sets of measurements
for affective states, conceptually the two modalities are correlated, and their relationship
can be established using CCA. CCA derives a semantic “affect” space, in which the face
and body features are compatible and can be effectively fused.

Compared with the previous attempts [2, 11] in vision-based affective body gesture
analysis, we make the following favorable contributions: (1) we adopt spatial-temporal
features based representation for body gestures, avoiding difficulties of tracking and lo-
calization in dealing with real-world video data; (2) we present to effectively fuse two
modalities at the feature level using CCA; (3)we carry out study on a much large dataset.

2 Affective Body Gesture Recognition
Recently spatial-temporal features have been investigated for event detection and behav-
ior recognition in videos [7, 18, 16, 6, 21]. Efros et al.[7] introduced a motion descriptor
based on optical flow measurements in a spatio-temporal volume, which was applied to
recognize human action at a distance. By extending 2D rectangle features into the spatio-
temporal domain, Ke et al.[16] presented volumetric features for event detection in videos.
Laptev and Lindeberg [18] extended the spatial interest points into the spatio-temporal
domain, and presented a method to detect local structures in space-time where the image
values have significant local variation in both space and time. Recently Dollár et al.[6]
proposed an alternative approach to detect sparse space-time interest points based on sep-
arable linear filters, and utilized the cuboids of spatio-temporal windowed data surround-
ing interest points for behavior recognition. Based on their work, Niebles et al.[21] more
recently presented an unsupervised method for action categorization. Spatial-temporal
features have been proven useful to provide a compact abstract representation of video
patterns. Here we adopt spatial-temporal features to represent body gesture in videos.

2.1 Spatial-Temporal Features
We extract spatial-temporal features by detecting space-time interest points in videos.
Following [6, 21], we calculate the response function by application of separable linear
filters. Assuming a stationary camera or a process that can account for camera motion,
the response function has the form:

R = (I ∗g∗hev)2 +(I ∗g∗hod)2 (1)

where I(x,y, t) denotes images in the video, g(x,y;σ) is the 2D Gaussian smoothing
kernel, applied only along the spatial dimensions (x,y), and hev and hod are a quadra-
ture pair of 1D Gabor filters applied temporally, which are defined as hev(t;τ,ω) =



−cos(2πtω)e−t2/τ2
and hod(t;τ,ω) = −sin(2πtω)e−t2/τ2

. In all cases we use ω = 4/τ
[6]. The two parameters σ and τ correspond roughly to the spatial and temporal scales of
the detector. Each interest point is extracted as a local maxima of the response function.
As pointed out in [6], any region with spatially distinguishing characteristics undergoing
a complex motion can induce a strong response, while region undergoing pure transla-
tional motion, or areas without spatially distinguishing features, will not induce a strong
response.

Figure 2: (Best viewed in color) Examples of spatial-temporal features extracted from
videos: the first row is the original input video; the second row visualizes the cuboids
extracted, where each cuboid is labeled with a different color; the third row shows some
cuboids, which are flattened with respect to time.

At each detected interest point, a cuboid is extracted which contains the spatio-temporally
windowed pixel values. See Figure 2 for examples of cuboids extracted. The side length
of cuboids is set as approximately six times the scales along each dimension, so contain-
ing most of the volume of data that contribute to the response function at each interest
point. After extracting the cuboids, the original video is discarded, which is represented
as a collection of the cuboids. To compare two cuboids, different descriptors for cuboids
have been evaluated in [6], including normalized pixel values, brightness gradient and
windowed optical flow, followed by a conversion into a vector by flattening, global his-
togramming, and local histogramming. As suggested, we adopt the flattened brightness
gradient as the cuboid descriptor. To reduce the dimensionality, the descriptor is projected
to a lower dimensional PCA space [6]. By clustering a large number of cuboids extracted
from the training data using the K-Means algorithm, we derive a library of cuboid pro-
totypes. So each cuboid is assigned a type by mapping it to the closest prototype vector.
Following [6], we use the histogram of the cuboid types to describe the video.

2.2 Recognition: SVM
we adopt the Support Vector Machine (SVM) classifier to recognize affective body ges-
tures. SVM is an optimal discriminant method based on the Bayesian learning theory. For
the cases where it is difficult to estimate the density model in high-dimensional space, the
discriminant approach is preferable to the generative approach. SVM performs an implicit



mapping of data into a higher dimensional feature space, and then finds a linear separating
hyperplane with the maximal margin to separate data in this higher dimensional space.

Given a training set of labeled examples {(xi,yi), i = 1, . . . , l} where xi ∈ Rn and yi ∈
{1,−1}, a new test example x is classified by the following function:

f (x) = sgn(
l

∑
i=1

αiyiK(xi,x)+b) (2)

where αi are Lagrange multipliers of a dual optimization problem that describe the sepa-
rating hyperplane, K(·, ·) is a kernel function, and b is the threshold parameter of the hy-
perplane. The training sample xi with αi > 0 is called the support vector, and SVM finds
the hyperplane that maximizes the distance between the support vectors and the hyper-
plane. Given a non-linear mapping Φ that embeds the input data into the high dimensional
space, kernels have the form of K(xi,x j) = 〈Φ(xi) ·Φ(x j)〉. SVM allows domain-specific
selection of the kernel function, and the most commonly used kernel functions are the
linear, polynomial, and Radial Basis Function (RBF) kernels.

3 Fusing Facial Expressions and Body Gestures
A single body gesture can be ambiguous. For example, the examples shown in the second
and fourth row in Figure 1 have much similar body gesture, but the affective state they
express are quite different, as shown by their facial expressions. As suggested in psycho-
logical studies [1], combining visual channels of facial expression and body gesture is a
potential way to accomplish effective affect analysis.

The psychological study [19] suggests that the integration of facial expression and
body gesture is a mandatory process occurring early in human processing stream. So
the two modalities should be processed in a joint feature space [23], rather than fused at
the decision-level. The main difficulties for the feature-level fusion are the features from
different modalities may be incompatible, and the relationship between different feature
spaces is unknown. Here we propose to fuse face and body cues at the feature level
using CCA. Our motivation is that, as facial expression and body gesture are two sets of
measurements for the affective state, conceptually they are correlated. CCA can establish
their relationship, deriving a semantic “affect” space, in which the face and body features
are compatible and can be effectively fused.

3.1 Canonical Correlation Analysis
CCA [13] is a statistical technique developed for measuring linear relationships between
two multidimensional variables. It finds pairs of base vectors (i.e., canonical factors) for
two variables such that the correlations between the projections of the variables onto these
canonical factors are mutually maximized. Recently CCA has been applied to computer
vision problems [3, 20, 12, 17]. Borga [3] adopted CCA to find corresponding points in
stereo images. Melzer et al.[20] applied CCA to model the relation between an object’s
poses with raw brightness images for appearance-based 3D pose estimation. Harsoon et
al.[12] presented a method using CCA to learn a semantic representation to web images
and their associated text.



Given two zero-mean random variables x ∈ Rm and y ∈ Rn, CCA finds pairs of di-
rections wx and wy that maximize the correlation between the projections x = wT

x x and
y = wT

y y. The projections x and y are called canonical variates. More formally, CCA
maximizes the function:

ρ =
E[xy]√

E[x2]E[y2]
=

E[wT
x xyT wy]√

E[wT
x xxT wx]E[wT

y yyT wy]
=

wT
x Cxywy√

wT
x CxxwxwT

y Cyywy

(3)

where Cxx ∈ Rm×m and Cyy ∈ Rn×n are the within-set covariance matrices of x and y,
respectively, while Cxy ∈ Rm×n denotes their between-sets covariance matrix. A num-
ber of at most k = min(m,n) canonical factor pairs 〈wi

x,wi
y〉, i = 1, . . . ,k can be ob-

tained by successively solving argmaxwi
x,wi

y
{ρ} subject to ρ(w j

x,wi
x) = ρ(w j

y,wi
y) = 0

for j = 1, . . . , i−1, i.e., the next pair of 〈wx,wy〉 are orthogonal to the previous ones.
The maximization problem can be solved by setting the derivatives of Eqn. (3), with

respect to wx and wy, equal to zero, resulting in the eigenvalue equations as:
{

C−1
xx CxyC−1

yy Cyxwx = ρ2wx

C−1
yy CyxC−1

xx Cxywy = ρ2wy
(4)

Matrix inversions need to be performed in Eqn. (4), leading to numerical instability if
Cxx and Cyy are rank deficient. Alternatively, wx and wy can be obtained by computing
principal angles, as CCA is the statistical interpretation of principal angles between two
linear subspace [9] (see [17] for details).

3.2 Feature Fusion of Face and Body
Given B = {x|x∈Rm} and F = {y|y∈Rn}, where x and y are the feature vectors extracted
from bodies and faces respectively, we apply CCA to establish the relationship between x
and y. Suppose 〈wi

x,wi
y〉, i = 1, . . . ,k are the canonical factors pairs obtained, we can use d

(1≤ d ≤ k) factor pairs to represent the correlation information. With Wx = [w1
x , . . . ,wd

x ]
and Wy = [w1

y , . . . ,wd
y ], we project the original feature vectors as x′ = WT

x x = [x1, . . . ,xd ]T

and y′ = WT
y y = [y1, . . . ,yd ]T in the lower dimensional correlation space, where xi and yi

are uncorrelated with the previous pairs x j and y j, j = 1, . . . , i−1. We then combine the
projected feature vector x′ and y′ to form the new feature vector as

z =
(x′

y′
)

=
(WT

x x
WT

y y

)
=

(Wx

0
0

Wy

)T (x
y

)
(5)

This fused feature vector effectively represents the multimodal information in a joint fea-
ture space for affect analysis.

4 Experiments
There are several facial expression databases in affective-computing community, but few
databases containing affective body gestures. Gunes and Piccardi [10] recently collected
a bimodal face and body gesture database (FABO), which consists of facial expression
and body gesture recorded simultaneously. The database includes 23 subjects in age from



18 to 50 years, of which 12 were female, 23 were from Europe, 2 from Middle East, 3
from Latin America, 7 from Asia, and 1 from Australia. In total there are around 1900
videos. Examples of the video sequences are shown in Figure 1. In our experiments,
we selected 262 videos of seven emotions (Anger, Anxiety, Boredom, Disgust, Joy, Puz-
zle, and Surprise) from 23 subjects. Gunes and Piccardi [11] reported some preliminary
results on this database, but they only used 54 videos from 4 subjects.

4.1 Affective Body Gesture Recognition
To evaluate the algorithms’ generalization ability, we adopted a 5-fold cross-validation
test scheme in all recognition experiments. That is, we divided the data set randomly
into five groups with roughly equal number of videos, and then used the data from four
groups for training and the left group for testing; the process was repeated five times
for each group in turn to be tested. We report the average recognition rates here. In all
experiments, we set the soft margin C value of SVMs to infinity so that no training error
was allowed. Meanwhile, each training and testing vector was scaled to be between -1
and 1. In our experiments, the RBF kernel always provided the best performance, so we
report the performance of the RBF kernel. With regard to the hyper-parameter selection
of RBF kernels, as suggested in [14], we carried out grid-search on the kernel parameters
in the 5-fold cross-validation. The parameter setting producing the best cross-validation
accuracy was picked. We used the SVM implementation in the publicly available machine
learning library SPIDER 1 in our experiments.

We compare the SVM classifier with the 1-nearest neighbor classifier used in [6] for
affective body gesture recognition. The average recognition rates of SVM and 1-nearest
neighbor classifier are 72.6% and 68.6% respectively. We plot the confusion matrices of
the two classifier in Figure 3. It can observed that the SVM classifier slightly outperforms
the 1-nearest neighbor classifier.
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Figure 3: Confusion matrices of affective body gesture recognition with the 1-nearest
neighbor classifier (left) and the SVM classifier (right).

1http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html



4.2 Emotion Recognition by Fusing Face and Body Cues
In the FABO database, video sequences were recorded simultaneously using two video
cameras, one is for capturing the facial expression only and the other for capturing upper-
body movements. We extracted the spatial-temporal features from the face video and the
body video, and then fuse the two modalities at the feature level using CCA. We first re-
port the classification performance based on facial cues only. The confusion matrices of
the two classifiers are shown in Figure 4, and the recognition rates of SVM and 1-nearest
neighbor classifier are 79.2% and 74.8% respectively. We can see that the emotion clas-
sification based on facial expressions is better than that of body gesture. This is possibly
because there are much variation in affective body gestures.
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Figure 4: Confusion matrices of facial expression recognition with the 1-nearest neighbor
classifier (left) and the SVM classifier (right).

We then fused facial expression and body gesture at the feature level using CCA. Dif-
ferent numbers of CCA factor pairs can be used to project the original face and body
feature vectors to a lower dimensional CCA feature space, and the recognition perfor-
mance varies with the dimensionality of the projected CCA features. We report the best
result obtained here. We compared the CCA feature fusion with another three feature fu-
sion methods: (1) Direct feature fusion, that is, concatenating the original body and face
features to derive a single feature vector; (2) PCA feature fusion: the original body and
face features are first projected to the PCA space respectively, and then the PCA features
are concatenated to form the single feature vector. In our experiments, all principle com-
ponents were kept. (3) PCA+LDA feature fusion: for each modality, the derived PCA
features are further projected to the discriminant LDA space; the LDA features are then
combined to derive the single feature vector. We report the experimental results of differ-
ent feature fusion schemes in Table 1. The confusion matrices of the CCA feature fusion
and the direct feature fusion are shown in Figure 5. We can see that the presented CCA
feature fusion provides best recognition performance. This is because CCA captures the
relationship between the feature sets in different modalities, and the fused CCA features
effectively represent information from each modality.

Feature Fusion CCA Direct PCA PCA+LDA
Recognition Rate 88.5% 81.9% 82.3% 87.8%

Table 1: Experimental results of affect recognition by fusing body and face cues.
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Figure 5: Confusion matrices of affect recognition by fusing facial expression and body
gesture. (left) Direct feature fusion; (right) CCA feature fusion.

5 Conclusions and Discussions
In this paper, we investigate affective body gesture analysis in videos, a relatively un-
derstudied problem. Spatial-temporal features are exploited for modeling of body ges-
tures. We also present to fuse facial expression and body gesture at the feature level using
Canonical Correlation Analysis. The current spatial-temporal features based video de-
scription does not consider the position relations of cuboids detected. By including the
relative position information between the cuboid types, the representation will be much
more discriminative. This will be studied in our future work.
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