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Abstract

Image segmentation methods like active shape models, active appearance
models or snakes require an initialisation that guarantees a considerable over-
lap with the object to be segmented. In this paper we present an approach that
localises anatomical structures in a global manner by means of Markov Ran-
dom Fields (MRF). It does not need initialisation, but finds the most plausible
match of the query structure in the image. It provides for precise, reliable and
fast detection of the structure and can serve as initialisation for more detailed
segmentation steps.

Sparse MRF Appearance Models (SAMs) encode a priori information
about the geometric configurations of interest points, local features at these
points and local features along the edges of adjacent points. This information
is used to formulate a Markov Random Field and the mapping of the modeled
object (e.g. a sequence of vertebrae) to the query image interest points is
performed by the MAX-SUM algorithm.

The local image information is captured by novel symmetry-based in-
terest points and local descriptors derived from Gradient Vector Flow. Ex-
perimental results are reported for two data-sets showing the applicability to
complex medical data.

1 Introduction
The reliable and fast detection and segmentation of anatomical structures is a crucial is-
sue in medical image analysis. It has been tackled by a number of powerful approaches,
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among them active shape models [3], active appearance models [4, 5], active feature mod-
els [12], graph-cuts [2] and snakes [7].

These approaches have been successfully employed to segment structures in cardiac
MRIs [16] or for registration in functional heart imaging [19]. In [17] vertebrae in the
spine were delineated, and in [20] active shape models were utilised for bone densiome-
try.

All approaches rely on a reasonable initialisation of the iterative active appearance
model or active shape model search: ASMs and AAMs need to be placed with consider-
able overlap with the object of interest. Graph-cuts need a set of manually annotated seed
points placed within and outside of the object, and while snakes need spatial constraints,
to ensure the delineation of the correct object. Usually the initialization is either done
manually or by application specific approaches.

Several approaches to a detect coarse initialization positions rely on pair-wise point
matching using local descriptors like SIFT [13], shape context [1] or PCA-SIFT [8], and
typically rely on a robust method like RANSAC [6] to deal with ambiguous structures.
They match interest points between a source (i.e. example) image and the until now
unseen target image. These approaches have several drawbacks: (1) For complex non-
rigid transformations between source and target image a large number of correct interest
points matches is required, which increases computation time considerably for the robust
matching. (2) Information about the spacial relation of adjacent descriptors is difficult to
incorporate into the matching process.

In this paper we propose a deterministic method based on Markov Random Fields
(MRF) that incorporates both interest point positions and local features to perform the de-
tection of landmark configurations from a single example. The detection is performed in
a fast manner by the MAX-SUM algorithm [21]. The approach uses all interest point fea-
tures and positions and finds a solution which minimizes the combined costs of non-rigid
deformations and local descriptor feature differences. Arbitrary interest points and local
descriptors can be used. We report results for interest points based on local symmetry and
a complementary local descriptor derived from gradient vector flow [22].

Local symmetry detectors were investigated in [15, 10], but they are either computa-
tionally expensive or use radial symmetry detection with predefined radii. Recently [14]
proposed an approach to detect symmetry in the constellation of interest points detected
by existing point detection methods.

The paper is structured as follows: In Sec. 2 we explain the interest point detector
and local descriptor. Sec.3 details Markov Random Fields and in Sec. 4 the mapping of
the source- to the target points by MRFs are explained in detail. In Sec. 5 we present
the experimental evaluation of our approach, followed by a conclusion and an outlook in
Sec. 6.

2 Symmetry based interest points and descriptors
Many structures of interest to medical experts, like bones, veins and many anatomical
structures or their parts exhibit a shape with a high degree of symmetry w.r.t. one or more
axes. This property of (local) symmetry is well preserved even when dealing with 2D
slices of 3D data sets like MRIs, as the cross sections of these body parts will appear as
round or elongated structures. Even regions of interest that do not exhibit this property can
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be localized by observing their neighborhood, e.g. an initialization for e.g. meniscoids
can be provided by correctly localizing the discs and vertebrae of the spine.

2.1 Interest Points from Local Symmetry
Popular interest point detectors which are often used in conjunction with SIFT are the
Harris corner detector and the Difference of Gaussians (DoG) approach, neither of which
possess an affinity to local symmetry. A comparison of the interest points detected by
DoG and interest points derived from local symmetry is shown in Fig. 1 (a,b).

To detect points of high local symmetry we use the gradient vector flow (GVF) field,
which was originally proposed in [22] to increase the capture range of active contours.
Its strengths include the ability to detect even weak structures while being robust to high
amounts of noise in the image. The GVF can be computed either from a binary edge
map or directly from the gray level image I. We compute the GVF of an image as G =
u+ i∗v = GV F(I), yielding the complex matrix G used for all subsequent computations.
The resulting field G is depicted in Fig. 2 for a synthetic example and a section of a hand
radiograph, overlaid over the image I.

The field magnitude |G| is largest in areas of high image gradient, and the start- and
endpoints of the field lines of G are located at symmetry maxima. E.g. in the case of a
symmetrical structure formed by a homogeneous region surrounded by a different gray
level value the field will point away form or towards the local symmetry center of the
structure, as shown in Fig. 2 (a,b). The symmetry interest points are thus defined as the
local minima of |G|. In contrast to techniques based on estimating the radial symmetry
using a sliding window approach this will yield a sparse distribution of interest points
even in large homogeneous regions.

After detecting the interest points the orientation αi ∈ [0,2π[ of the local region sur-
rounding the interest point can be estimated. Around each interest point rays gr

α at the
360 angles α ∈ [0, . . . ,2π[ at radii r ∈ {2, . . . ,8} are sampled from |G| using bilinear
interpolation. The interest point i is then assigned the angle αi which minimises

αi = argmin
α∈[0,2π[

∑
r

gr
α . (1)

The scale si of the region around the interest point is estimated by the mean distance of
the interest point i to the two closest local maxima of |G| in the directions of αi and αi +π .
Examples for the resulting estimates for orientation and scale are shown in Fig 1 (c). If
the scale varies only within a limited range as for the medical images examined in this
paper the scale can remain fixed.

2.2 Local Descriptors from Gradient Vector Flow Fields
A measure is needed to specify the similarity of the local regions around the symmetry
interest points and edges. Several local descriptors have been proposed in recent years,
including SIFT [13] and Shape Context [1]. While most of these approaches yield de-
scriptors suitable for building the MRF, they would require additional computations. In
contrast, we can directly use G to describe local context.

In [8] normalized patches of the image gradient are used, extracted according to the
interest points’ orientation and scale as local descriptor are. Similarly, we extract patches
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(a) (b) (c)

Figure 1: Comparison of the (a) interest points found by Difference of Gaussians (DoG)
and (b) the symmetry points found as minima of GVF magnitude. Note how the symmetry
points pick up the structures which are of interest to medical experts, greatly facilitating
the correct localization of these structures. (c) depicts the scale and orientation estimates
obtained around the symmetry points.

of G around the symmetry interest points, according to scale si and orientation αi, as de-
picted in Fig. 2. They are re-sampled to a 10×10 grid and the vector field’s orientations
are stored relative to αi to form the actual local descriptor. This encodes the information
about the image gradients within and around the patch in a rotation-invariant way. Be-
cause of the GVF’s smooth structure, Euclidean distance can be used used to compute
the distance between two descriptors. This eliminates the need for complex histogram
construction as performed by SIFT for example, while still retaining a feature vector of
low dimensionality.

As the orientation of the local interest point is usually only stable up to ±π , the ac-
tual distance between two local descriptors D1 and D2 is computed as min(‖abs(D1 −
D2)‖,‖abs(D1−D∗

2)‖), where D∗
2 denotes the descriptor 2 rotated by π .

Local edge descriptors In addition to the local descriptors around interest points the
appearance along the models’ edges forms an important part of sparse appearance models.

Again the GVF G is used to extract the relevant information. Given 2 interest points
in the image, G is sampled at equidistant points along the edge. The sampled field is
then stored relative to the edge’s orientation, forming a complex vector e as displayed in
Fig. 2 (d). For the experiments in this paper, 40 points were sampled per edge.

By describing an image using the GVF-based local descriptors around interest points
and along edges, the essential information about the structure of the anatomical object is
captures in a sparse fashion. Sec. 4 describes how the descriptors from several training
images are combined to form a sparse appearance model.
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Figure 2: (a) Examples of GVF with the detected symmetry interest points (diamonds).
(b) Descriptor extraction from the GVF field. Around each symmetry point patches are
extracted from the vector field according to their scale and orientation. The patch is
then resampled to a 10× 10 grid, relative to the interest points’ orientation, to form the
actual descriptor. The image is displayed for better visualization, the symmetry points
are marked as diamonds. (c) Schematic edge descriptor of the edge between two points,
formed by sampling the GVF at equidistant points along the edge. (d) Resulting edge
descriptor, relative to the edge’s orientation.

3 Markov Random Fields and the MAX-SUM problem
The Markov Random Fields considered in this paper represent graphs where each of the
M nodes, called objects, has N fields, or labels, with associated qualities. The labels
of two adjacent nodes are fully connected by N2 edges, again with a weight to encode
quality. Which objects are adjacent is encoded in an additional graph A with A edges.
This basic structure is depicted in Fig. 3 (a). There are 4 objects with 3 labels each, with
N2 = 9 edges between the adjacent objects, A is 5.

Of interest is now to select one label for each object, so that the sum of label and
edge qualities of the resulting sub-graph becomes maximal, illustrated as thick lines. The
MAX-SUM solver can be used to tackle this problem. The MAX-SUM (labeling) problem
of the second order is defined as maximizing a sum of bivariate functions of discrete
variables. The solution of a MAX-SUM problem corresponds to finding a configuration
of a Gibbs distribution with maximal probability. It is equivalent to finding a maximum
posterior (MAP) configuration of an MRF with discrete variables [21].

Let the M×N-matrix C represent the label qualities for each of the objects, and the
A×N2-matrix E represent the edge qualities between the pairs of labels.

The total quality of the label selection S = {n1, . . . ,nM} with ni ∈ {1, . . . ,N} is then
defined as

C(S) = ∑
m=1...M

C(m,S(m))+ ∑
a=1...A

E(a,β (E,S,a)), (2)

where β (E,S,a) denotes the column representing the quality of the edge between the
labels chosen to represent the edge A (a).

Solving the MAX-SUM problem means finding the set of optimal labels

S∗ = argmax
S

C(S). (3)

Recently, a very efficient algorithm for solving this problem through linear program-
ming relaxation and its Lagrangian dual, originally proposed by Schlesinger in 1976 [18],
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Figure 3: (a) The MRF graph consists of M objects with N labels each. Qualities are
assigned to both labels and edges. Finding the solution to a MAX-SUM problem means
selecting a label for each object, such that the sum of qualities of the selected labels
and the edges connecting them is maximized. (b) Illustration of how the relative angles
between an edge and the orientations of its adjacent vertices is computed.

has been presented [21].
The MAX-SUM solver permits several labels to be defined while still keeping the

processing time within reasonable bounds. There are other attempts to solve the label-
ing problem for MRF using, e.g., second order cone programming [11], sequential tree-
reweighted max-product message passing [9] or belief propagation methods [23]. How-
ever, neither of the algorithms, nor the MAX-SUM approach, solve the problem of a multi-
label MRF exactly, as it is NP-hard. If the graph is a tree the global optimum of Eq. (3)
is guaranteed [9], in the case of a non-tree graph MAX-SUM takes various approximations
into account to reach a possibly optimal solution.

4 Sparse Appearance Model Matching
This sections describes how the sparse appearance model is constructed from training
data. This model is then used to specify the Markov Random Field for a target image.

Building a Sparse Appearance Model Sparse appearance models extract information
from images using local descriptors around interest points and along the edges between
these points. No PCA based model is used to avoid the need for a large number of training
samples and the global character of PCA-based models. The shape model is based on a
Delaunay triangulation of the model points, and statistical models of the edges’ lengths,
relative angles and local descriptors are recorded. This yields a locally deformable ro-
tation invariant model. The interest points and local point/edge descriptors are based on
local symmetry and GVF as described in Sec. 2.

For each of the n model images, a subset of M interest points is manually selected
to describe the anatomical structure to be found. One of the model images is used to
define the graph structure using a Delaunay triangulation of its M model points. The
resulting adjacencies of model points yield the set A of index-tuples describing the edges.
Examples of the generated model are shown in Fig. 4 (a,b).
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The M selected model points represent the objects of the MRF graph, while the N
target interest points correspond to the labels. A solution S thus represents a mapping of
the model interest points to a subset of the target interest points.

We now need to build the a priori statistical models from the n training samples for
the M model points and the A edges between these model points. First the orientations of
the model points are normalized. As the n training orientations for a model point m are
only stable up to ±π , π is added to a subset of them such that the circular variance of the
n orientations of model point m is minimised.

As there are generally too few training samples to estimate the parameters of a multi-
variate Gaussian in the space of the local descriptors, only the mean of the n local descrip-
tors for each model point m is used, yielding descriptors Dm.

For each edge a of the A model edges, the mean length la and the standard devia-
tion lσ

a is computed. Similarly, from the n angles βa1 and βa2 between the edge and the
orientations of its vertices the mean angles and standard deviations β a1,β a2 and β σ

a1,β σ
a2,

computed using circular statistics, are stored (see Fig. 3 (b)). The third edge property
which is modelled is the local descriptor (see Fig. 2). Similarly to the point descriptors,
the mean descriptor ea is computed for each model edge.

Constructing the MRF Given a sparse appearance model and a target image, the Markov
Random field is used to model the confidences that a model point or edge should be
matched to a certain interest point or edge in the target image. As we are solving a max-
imization problem, all confidences or qualities are in the interval [−∞,0]. The descriptor
distances are normalized to having a maximum of 0 and a median of -1, while the length
and angle confidences are ∈ [−1,0].

The quality of a (model point, target point)-match equals the negative distance be-
tween the local target descriptor and the model point descriptor Dm. All mutual dis-
tances between model and potential target correspondences are computed, resulting in the
M×N-matrix C.

The qualities of the AN2 edges in the model are stored in E. The quality of an edge e
between two labels ni,n j in E is computed by comparing its length le and relative angles
βe1, βe2 with the corresponding Gaussian distributions of the model edge (la, lσ

a , β a1,β a2,
β σ

a1,β σ
a2). Identity with the mean yields a confidence of 0, the minimum confidence is -1.

The confidence for the edge’s appearance equals the negative distance between the edge
descriptor and the model edge descriptor ea. The overall confidence of edge e representing
the model edge a is finally set to the minimum of the confidences for length, angles and
descriptor, thus effectively filtering out unlikely candidates.

It can occur that no interest point is detected in one location of the medical structure
in the target image where the model would expect one. It is thus important to include
the possibility of omitting a model point. This is achieved by adding one artificial target
interest point (dummy point), yielding Cd and Ed of sizes M×N + 1 and A× (N + 1)2,
respectively. The last column of Cd is set to the mean of C multiplied by a factor f
controlling how costly it should be to omit a model point. Similarly, the edges of Ed
involving the dummy point are set to f times the mean of E.

The MAX-SUM solver is then applied on Cd, Ed, yielding the set S = {n1, . . . ,nM} of
optimal labels for each model node, maximizing the quality C in Eq. 3.
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(a) (b) (c) (d)

Figure 4: (a,b) Model graph A automatically generated from the M selected interest
points (landmarks) depicted for two of the training images. (c,d) The results of the model
matching for two test images.

5 Experiments
The approach was evaluated1 on 2 data sets (Fig. 4). 1. For a set of 25 hand radiographs
(300×450 pixels) 17 landmarks in each image were manually annotated. 2. On 8 spine
MRIs (280×320 pixels) manual annotations of the centers of 6 inter-vertebral discs were
used for validation, plus 2 landmarks to disambiguate the matching. The error between
found landmarks and ground truth landmarks was recorded, where only the points of
medical interest (only the 6 spine landmarks which correspond to vertebral discs) where
considered. The typical number of detected interest points was between 400 and 600, the
model graphs contained 17 and 8 nodes, respectively. In Fig. 4 (a,b) the model graphs are
depicted on two of the training images. In Fig. 4 (c,d) matching results are depicted: the
red lines represent the model graph matched to the target image, while the green circles
are the positions of the found landmarks.

Quantitative analysis was performed by a leave-one-out procedure i.e a single image
was chosen as target image and the model graph was built from the the remaining 24 or
7 images respectively. The mean/median error for matches is 2.79 / 0.0 pixels for hand
data and 0.56 / 0.0 pixels for the spine data, reflecting the excellent matching accuracy.
The error histograms for both sets are depicted in Fig. 5. Typical run times for solving the
MRF are in the order of few seconds.

6 Conclusion and Outlook
We present a framework for the fast and accurate localisation of anatomical structures.
Configurations of symmetry interest points and local descriptors derived from Gradient
Vector Flow are represented by graphs and Markov Random Fields. The matching is
performed by the MAX-SUM algorithm. The approach integrates local descriptor similar-
ities and deformation constraints in a single optimization step. Results indicate that the
method provides the localization accuracy necessary for the initialization of subsequent
segmentation algorithms. Future research will focus on improvements to allow for the
application to segmentation tasks as well as the extension to 3-dimensional data sets.

1 The implementation used in this evaluation is available at http://www.aamir.at/bmvc07/
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Figure 5: Result histograms for the pixel distances of result landmarks to ground truth
landmarks for (a) the hand radiograph data set and (b) the spine MRI data set. Note the
high quality of the model matching, with most of the landmarks being matched perfectly.

Figure 6: Example of the rotation invariance of Sparse Appearance Models: The model
was trained on upright hand radiographs. As only relative angles are modeled, the hand
is successfully detected in the rotated image.

References
[1] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using

shape contexts. IEEE PAMI, 24(4):509–522, 2002.

[2] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & region
segmentation of objects in N-D images. In Proc. ICCV, pages 105–112, 2001.

[3] T. Cootes. Active shape models - ‘smart snakes’. In Proc. BMVC, 1992.

[4] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. IEEE
Trans. PAMI, 23(6):681–685, 2001.

[5] R. Donner, M. Reiter, G. Langs, P. Peloschek, and H. Bischof. Fast active appear-
ance model search using canonical correlation analysis. IEEE TPAMI, 28(10):1690
– 1694, October 2006.

[6] M. A. Fischler and R. C. Bolles. A paradigm for model fitting with applications to
image analysis and automated cartography. Comm. of the ACM, 24, 1981.

[7] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. Interna-
tional Journal on Computer Vision, 1:321–331, 1988.



REFERENCES 10

[8] Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive representation for local
image descriptors. In CVPR (2), pages 506–513, 2004.

[9] V. Kolmogorov. Convergent tree-reweighted message passing for energy minimiza-
tion. PAMI, 28(10):1568–1583, 2006.

[10] P. Kovesi. Symmetry and asymmetry from local phase. In Proceedings of the Tenth
Australian Joint Conference on Artificial Intelligence, pages 185–190, 1997.

[11] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Solving Markov random fields using
second order cone programming. In Proc. CVPR, pages I: 1045–1052, 2006.

[12] G. Langs, P. Peloschek, R. Donner, M. Reiter, and H. Bischof. Active feature mod-
els. In Proc. ICPR, pages 417–420, 2006.

[13] D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.

[14] G. Loy and J.-O. Eklundh. Detecting symmetry and symmetric constellations of
features. In Proceedings of ECCV ’06, 2006.

[15] G. Loy and A. Zelinsky. Fast radial symmetry for detecting points of interest. IEEE
Trans. Pattern Anal. Mach. Intell., 25(8):959–973, 2003.

[16] S. C. Mitchell, J. G. Bosch, B. P. F. Lelieveldt, R. J. van der Geest, J. H. C. Reiber,
and M. Sonka. 3-d active appearance models: Segmentation of cardiac MR and
ultrasound images. IEEE TMI, 21(9):1167–1178, 2002.

[17] M. Roberts, T. F. Cootes, and J. E. Adams. Vertebral morphometry - semiautomatic
determination of detailed shape from dual-energy x-ray absorptiometry images us-
ing active appearance models. Investigative Radiology, 41(12):849–459, 2006.

[18] M. Schlesinger. Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh
pomekh (syntactic analysis of two-dimensional visual signals in noisy conditions).
Kibernetika, (4):113–130, 1976. In Russian.
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