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Abstract

Recently, recovery of non-rigid structure by the factorization algorithms have
received attention in the literature. The factorization algorithm decomposes
the feature points over the given image sequence into motion of the camera
and 3D shape bases. The non-rigid structure can be represented by the lin-
ear combination of the 3D shape bases. Although the closed-form solution
of the non-rigid factorization algorithm is proven, the algorithm is sensitive
to noise. In this paper, we propose a batch algorithm to recover multiple
non-rigid structures from subsets of the data. Then, we introduce a set of
non-linear shape constraints to optimize the recovered non-rigid structures.
Synthetic data and real data were used in the experiments. The experimental
results showed that the new factorization algorithm gives significant improve-
ment than the original algorithm. With noisy data, the new algorithm is more
robust and more accurate in recovering non-rigid structure.

1 Introduction
Recovering 3D structure from a sequence of images is one of typical interest topics in
the computer vision community. In the past two decades, factorization algorithms have
been widely applied to structure from motion (SFM) problems. It was first introduced to
reconstruct rigid structure under arbitrary motion by Tomasi and Kanade [11]. Basically,
the factorization algorithm for SFM decomposes the image feature tracks (measurement
matrix) into motion of the camera and the 3D shape matrix via Singular Value Decompo-
sition (SVD) and rank theorem. However, it is an ill-conditioned problem. Their linear
transformations also yield valid motions and bases. Therefore, it is not possible to recover
structure from the image sequence without some prior knowledge. Additional constraints
such as orthogonality of rotation matrix are required to recover the structure.

Generally, orthographic camera model is chosen as the camera model for the factor-
ization algorithm because it is a good approximation to the perspective camera model
when the reconstructed target is far from the camera and the depth variation within the
target is relatively small. [10] and [8] also proposed extended factorization algorithms for
perspective and paraperspective models, respectively.

Recently, recovery of different kinds of structures such as multiple linearly moving
objects [7], articulated objects [14], model based non-rigid objects [3], [1], [12], [13] are
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reported. Model based non-rigid object recovery is attractive because many interesting
non-rigid objects in nature such as human face can be represented by models. Recon-
structing 3D human faces is very useful in face recognition. Compared to 2D face images,
3D face are invariant to pose changes. The pose changes significantly affect the perfor-
mance of face recognition algorithms. Therefore, we can use non-rigid factorization to
decompose the pose and deformation of the non-rigid structure from a image sequence.

To model the deformation of these non-rigid objects, the weighted combination of
basis shapes has been applied in non-rigid SFM [3]. Using this model, Jing Xiao et al.
[13] showed a closed-form solution for non-rigid SFM with rotation constraints and basis
constraints. The solution is exact only when the data is noise free. The method does not
work satisfactorily with noisy data [2].

In this paper, a batch algorithm and a non-linear shape constraint optimization are pro-
posed to improve the existing closed-form solution under noisy environments. The batch
algorithm partitions the matrix and recovers 3D structures from each partition separately.
Then we apply the optimization algorithm to refine the closed-form solution of each par-
tition based on shape constraints. Qualitative and quantitative evaluation showed that
the new algorithm gives more robust and more accurate results compared to the original
factorization method for both rigid and non-rigid structure.

2 Overview of Factorization Algorithm for Non-rigid
SFM

Here the camera model is assumed to be the weak perspective projection model. We also
assumed that the motion is non-degenerate. Let the 2D image coordinates of P feature
points over F frames denoted as W = {w f p = (u f p,v f p)| f = 1, . . . ,F, p = 1, . . . ,P}, the
2F×P measurement matrix:

W =



u11 . . . u1P
v11 . . . v1P
... u f p

...
... v f p

...
uF1 . . . uFP
vF1 . . . vFP


(1)

The camera projection matrix is written as:

R f =

[
r f 1 r f 2 r f 3
r f 4 r f 5 r f 6

]
f ∈ {1, . . . ,F} (2)

The non-rigid structure is represented by a linear combination of K 3D shape bases. Let
S f = {s f p = (xp,yp,zp)|p = 1, . . . ,P} denote the 3D non-rigid structure of the f th frame.
Let B = {bk = (xkp,ykp,zkp)|k = 1, . . . ,K, p = 1, . . . ,P} denote as the 3D shape bases.
Then, the 3D non-rigid structure in each frame can be represented as:

S f =
K

∑
k=1

c f kbk f ∈ {1, . . . ,F} (3)



where c f k are the weights. Then, W = MB + T where M is a 2F × 3K motion matrix,
B is a 3K×P 3D structure matrix and T is a 2F × 1 translation vector. When K=1, the
structure is rigid. The motion matrix is the product of the weighting coefficients and the
corresponding camera projection matrices. We can write this as

M =


c11R1 . . . c1KR1

... c f kR f
...

cF1RF . . . cFKRF

 (4)

The translation vector can be obtained by computing the mean of the P feature points.
The registered measurement matrix, Ŵ is given by subtracting T from W. The world
origin now is placed at the centroid of the feature points, i.e.

1
P

P

∑
p=1

w f p ∀ f ∈ {1, . . . ,F} (5)

When the data is noiseless, the rank of Ŵ is 3K. Applying SVD, Ŵ can be decom-
posed into a motion matrix, M̂ and a 3D basis matrix, B̂. However, it is only up to an
arbitrary 3K×3K invertible transformation, G. The exact motion matrix, M and 3D basis
matrix, B can be written as:

M = M̂ ·G
B = G−1 · B̂ (6)

The corrective transformation matrix, G is compound of K 3K× 3 matrix, Gk. Then,
Qk = GkGT

k . Computing the Qk requires additional constraints. We have

M̂QkM̂T =


c1kR1

...
c1kRF

[
c1kR1 . . . c1kRF

]
(7)

Since rotation matrices are orthonormal, we have RiRT
i = I2×2. In [13], it was showed

that using only these rotation constraints is insufficient to uniquely determine Qk. Thus,
they also assume the first K images to be basis images. The corresponding weighting
coefficients are then

ci j =

{
1 when i = j
0 when i 6= j (8)

We can now obtain a closed-form solution for each Qk by optimizing the rotation and
basis constraints. For the details of proof, the reader is referred to [13].

3 Batch Algorithm Using Matrix Partitioning
In practice, a large number of frames from video sequence are available, and using all
the frames in SVD algorithm to minimize ‖W−MB‖F may bring no advantage, firstly,
because there is a large amount of redundancy in the video frames (this is just increasing
the computational cost). and secondly, minimizing ‖W−MB‖F does not guarantee that



the recovered structure is optimal. The solutions of the motion matrix M and the bases B
also depend on the constraints we used on solving the corrective transformation matrix,
G.

Hence, we introduce a batch algorithm where a registered measurement matrix is
partitioned into N submatrices. Then, the closed-form solution method is applied to each
separately. This yields N estimates instead of a single estimate for the structures from a
large number of frames. We hence expect that the proposed algorithm will improve the
confidence in the result. We then propose to use these in a shape constrained non-linear
optimization technique to find the best shape estimate.

Let Ωi ⊂ {1, . . . ,F}, i = 1, . . . ,N be a subset of frame indexes. Then, let WΩi =
{(u f p,v f p)| f ∈ Ωi, p = 1, . . . ,P} denote a row subspace of the matrix, where |Ωi| ≥
max(K2+K

2 ,3K). The union of all subsets Ωi contains all the elements of {1, . . . ,F}.
All subsets are disjoint. Hence, the information in every frame is used for recovery of the
structure.

Here, we assume that K is known. The set of K basis images which give the smallest
condition number is the set of the most independent basis images. Thus, we can selected
them as the K basis images.

Since the rank of ŴΩi has to be at least 3K, the number of frames in each partition
can be determined in such a way that reasonable amount of the energy of ŴΩi remains
in the first 3K eigen-subspaces. Then each ŴΩi can be decomposed by the non-rigid
factorization algorithm discussed in Section 2 as:

WΩi = MΩiBi i = 1, . . . ,N (9)

The recovered structures are exact for noiseless data.
When K = 1 (rigid case), the motion matrix M and B are simplified as rotation matrix

R and the rigid structure matrix S. When K ≥ 2 (non-rigid case), we do not only need
to recover the bases B, but also the weighting coefficients in the motion matrix M for
recovering the 3D structure. M can be obtained as

Mi = WB+
i i = 1, . . . ,N (10)

where B+
i is the pseudo-inverse of Bi. Since the rotation matrix R f is orthonormal,

||R f || = 1. The corresponding coefficients for each frame can be easily extracted out
from motion matrix.

Let N sets of the estimated structures of the f th frame denote as {S̃ f }i. Given the
3D shape bases Bi and the corresponding coefficients, each recovered structure can be
computed by (3). Since each set of the recovered structures, {S̃ f }i is independently es-
timated from the corresponding WΩi , the reference coordinate systems of each two sets
of the recovered structures are different up to a 3× 3 orthonormal transformation. The
orthonormal transformation can be obtained by applying Procrustes method.

4 Non-linear Shape Constraint Optimization
Here, we introduce an objective function which is optimized to enforce non-linear shape
constraints and estimate the best recovered structure S f from the set of estimated struc-



tures {S̃ f }i from each partition. It is given as:

min
N

∑
n=1

P

∑
i=1

P

∑
j=1
‖s f isT

f j− s̃ f ins̃T
f jn‖2 ∀ f ∈ {1, . . . ,F} (11)

where N is the number of partitions. This optimization minimizes the inner products of
every two feature points. In other words, we are optimizing the errors in the lengths and
the mutual angles of the feature points, so we named it metric optimization. The metric
optimization plays a role in structure refinement of the factorization method. A general-
purpose quasi-Newton method [4],[5],[6],[9] is used to find the optimum solution of (11).

The initialization is critical for non-linear optimization problems. To avoid the solu-
tion of the metric optimization from being trapped at an unsuitable local minimum, we
choose the least mean square of {S̃ f }i as the initial value for the metric optimization. In
the experiments discussed in the following section, we show that the metric optimization
gives more robust and better results than the original algorithm.

Our proposed algorithm is summarized as follows:

1. Partition the measurement matrix W into N submatrices.

2. Choose the K basis images from each subset based on their condition numbers. The
set of the K basis images with the smallest condition number is the set of the most
independent basis images.

3. Apply non-rigid factorization algorithm proposed by Jing Xiao et al. [13]

4. Extract the weight c f k from the motion matrix M.

5. Compute the structures by Eq. (3).

6. Optimize the estimated structures obtained in Step 5 by the objective function in
Eq. (11).

5 Experiments
We evaluated the proposed factorization algorithm with metric optimization quantitatively
and qualitatively on synthetic data and facial expression images, respectively. In the quan-
titative evaluation, our approach was applied on rigid and non-rigid synthetic data sets.
In the qualitative evaluation, a set of human face expressions was used to examine the
performance of our approach. The results are presented below.

5.1 Quantitative Evaluation on Synthetic Data
In this section, three approaches were evaluated on synthetic data. The first approach is
Jing Xiao et al’s [13] non-rigid factorization algorithm. The second approach applies the
batch algorithm to estimate the 3D structures from each partition. The optimum structure
is the mean of the estimated 3D structures which was the smallest mean square distance
to the 3D estimated structures. The third approach is the batch algorithm with metric
optimization. Two experiments were carried out to examine the performance of the algo-
rithms.



In the first experiment, 15 rigid object datasets with Gaussian white noise were gen-
erated. The strength level of noise is defined as ‖noise‖

‖W‖ . Each dataset has 50 3D feature
points and 100 frames with random projection matrices. A 200×50 measurement matrix
W represented the image feature tracks. In the second experiment, 5 non-rigid object
datasets formed by 3 shapes bases were generated. Each dataset has 25 3D feature points
and 203 random projection matrices. A 406× 25 measurement matrix W represented
the image feature tracks. For the non-rigid dataset, Gaussian white noise was added at
strength levels of 5%, 10% and 20% to evaluate the performance of the algorithms.

To make the experiments comparable, all the synthetic datasets were partitioned into
10 subsets and batch algorithm of section 3 was applied. For rigid case, each subset
contains 50 3D feature points and 10 random projection matrices. For non-rigid case,
each subset contains 25 3D feature points and 13 random projection matrices (3 basis
images + 10 non-basis images). They formed 10 smaller measurement matrices Wi. Then
we applied non-rigid factorization algorithm on each Wi to recover 3D structures. Metric
optimization is applied on these 3D estimated structures by quasi-Newton optimization
algorithm.

For rigid case, the relative error measurement, 1
P ∑

P
p=1

‖bp−btruth
p ‖

‖btruth
p ‖ was evaluated for

examining the performance of our approach. For non-rigid case, the mean of the relative

errors between the optimal structure and the ground truth, 1
PF ∑

P
p=1 ∑

F
f =1

‖sp−struth
p ‖

‖struth
p ‖ , was

used instead. The results are shown in Figure 1. From the Figure 1, the relative error
of the proposed algorithm is significantly lower than [13] factorization algorithm. The
variance of the error is also small, showing that the method is more stable and robust than
the original factorization algorithm.

5.2 Qualitative Evaluation on Facial Expressions
Recognizing facial expressions is one of the current challenging problems. Thus, we are
motivated to evaluate our approach with facial expressions. In this experiment, a 3D face
model with four different expressions captured from 3D Facial Expression Database [15]
at the State University of New York was used to examine the qualitative performance of
our proposed approach. The four expressions are happy, neutral, sad and surprise. First,
we manually selected 68 feature points on the 3D models. Then, the 3D models were
rotated about x-axis from −10◦ to −10◦ in 2◦ steps, about y-axis from −20◦ to −20◦

in 1◦ steps and about z-axis from −10◦ to −10◦ in 2◦ steps. In each step, we generated
an image of the 3D model. Therefore, we have 4961 images for each expression. Some
images with different expressions are shown in Figure 2. The ground truth of the 3D
feature points of each expression is shown in Figure 3.

In this experiment, four different levels of Gaussian white noise were added to W,
with strength levels of 0%, 5% and 10%. Then, W is partitioned into 41 subsets for the
batch algorithm and each subset is applied factorization with metric optimization. The
results are showed in Figure 4, Figure 5 and Figure 6, respectively.



(a) (b)

(c) (d)

Figure 1: Relative errors of the three different appoaches of the factorization algorithms
on rigid synthetic data (a) and non-rigid data under different levels of Gaussian white
noise (b, c and d).

6 Discussion and Conclusion
Our approach is an extension of the non-rigid factorization algorithm proposed by Xiao
et al. [13]. In this paper, we proposed a batch algorithm which uses partitions of the
measurement matrix and a metric optimization that recovers the optimized 3D structures
based on nonlinear shape constraints. The batch algorithm allows the system to process
the data in parallel because the factorization algorithm can be applied on each submatrix
separately. Thus, it is suitable for real-time applications such as surveillance and bio-
metric authentication systems. The algorithm does not require to repeatedly compute the
factorization algorithm with the whole measurement matrix every time the new data are
added. The computation becomes more effective by using our proposed approach.

The metric optimization is another significant contribution in this paper. We intro-
duced the metric optimization to refine the recovered 3D structures by using the new
shape constraints. The experiments showed that our approach is more accurate and ro-
bust than the existing factorization algorithm for both rigid and non-rigid objects under
different strength levels of Gaussian white noise.
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(a) (b) (c) (d)

Figure 2: (a) Happy expression image with rotation about x = −10◦, y = 20◦ and z =
10◦ (b) Neutral expression image with rotation about x = 0◦, y = 0◦ and z = 0◦ (c) Sad
expression image with rotation about x = −10◦, y = −20◦ and z = −10◦ (d) Surprise
expression image with rotation about x =−10◦, y = 20◦ and z = 10◦.

(a) (b) (c) (d)

Figure 3: (a) Ground truth of 3D happy expression (b) Ground truth of 3D neutral expres-
sion (c) Ground truth of 3D sad expression (d) Ground truth of 3D surprise expression.

(a) (b) (c) (d)

Figure 4: (a) Reconstructed 3D happy expression (b) Reconstructed 3D neutral expression
(c) Reconstructed 3D sad expression (d) Reconstructed 3D surprise expression under 0%
Gaussian white noise.



(a) (b) (c) (d)

Figure 5: (a) Reconstructed 3D happy expression (b) Reconstructed 3D neutral expression
(c) Reconstructed 3D sad expression (d) Reconstructed 3D surprise expression under 5%
Gaussian white noise.

(a) (b) (c) (d)

Figure 6: (a) Reconstructed 3D happy expression (b) Reconstructed 3D neutral expression
(c) Reconstructed 3D sad expression (d) Reconstructed 3D surprise expression under 10%
Gaussian white noise.


