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Abstract

In this paper we will consider a combination of the RANSACalthm and
the Hough transform for fast model estimation under thegires of outliers.
The model will be computed by sampling a smaller than minisodiset, fol-
lowed by a voting process of the remaining data. In order &othe com-
bined method for this purpose, an adequate parametenizatithe model
in the Hough space is required. We will show that in case oehgiane and
fundamental matrix estimation, there is a similar and venyagal parameter-
ization possible. It will allow these models to be estimadted very efficient
manner.

1 Introduction

The Hough transform determines for every data point therpatar subspace of models
it supports, and increases the votes in the Hough spacd tbheaé models. An extension
of this principle is to vote for sets of data points insteadiofyle points. The subspace
of supported models is then smaller, while the number otbffit point sets is larger.
For example, a hyperplane RN is specified byN points, and a single point imposes a
N — 1 dimensional subspace of supported models in the HouglespAlhen a pair of
points is considered, the set of supported modelsNs-a2 dimensional subspace. The
voting process is then faster, but we have to cons@)edifferent pairs instead of only
n points. The limiting case is when precisely setdNopoints are selected, which then
results in a single point in the Hough space. This is the placf the randomized
Hough transform [11]. Instead of the total number of possimts(y), only a small

number of random sets is selected which is sufficient to fiedtst model.

In contrast to the Hough transform, the RANSAC algorithm $8mplesN points
and verifies the amount of support for the corresponding inddeview of the above,
it is also possible to sample less thdrpoints and verify the support for each supported
model in the parameter subspace. This use of RANSAC in caatibmwith the Hough
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transform has been proposed in [8, 9] to improve the effigieamtd quality of model
estimation. It was argued that using setd\of 1 points is probably the best choice in
terms of efficiency. This results in a one-dimensional sabspof models, which may
be parameterized by a single quantity. Then there is no reeaddumulate the largd
dimensional Hough space.

The number of iterationd needed in the RANSAC algorithm is determined from the
required probability of success, i.e. the probability thateast one all-inlier sample is
found inJ iterations [3]. Lete denote the outlier ratio in the data, addhe number of
points needed to hypothesize a modelp i the probability of success, e.g. 0.99, then
we have the relation

p=1-(1—(1—¢))’ (1)

The necessary number of iterations of the combined RANSAS Hough method is
clearly lower than for standard RANSAC, since only setslef N — 1 instead od = N
points are sampled for forming model hypotheses.

In general, an explicit parameterization of the fundamlentrix in the Hough space
is impractical. Its estimation requires a 7-dimensiondingparray (due to the 7 degrees
of freedom [4]), which becomes unmanageable even for a ratelaumber of quantiza-
tion levels. To be able to use the method in [8], we proposenapsameterization for
hyperplanes which can also be applied to the fundamentalxnahe parameterization
is based on the nullspace of a sample, where the sample withicoone point less than
the minimally required number. For hyperplane estimatwa&can include the threshold
for the support set directly into the voting process. As altethe whole range of models
supported by the remaining data is taken into account. Fofgmental matrix estima-
tion, the correspondences will vote for single models. Hseilting estimation by 6-point
samples will be very efficient due to the reduced number odiitens. In [8] the quality
of the model was also improved by using an error propagatiechanism for the data.
Error propagation is not incorporated in our method, sireexplicit parameterization of
the model is used. Note that the standard RANSAC algorittsm méglects noise effects
of points in the sample [2].

Several other modifications of RANSAC have been proposegeed up the algo-
rithm; the most directed to homography or fundamental matstimation. For example,
in [10] the feature matching score is used in the selectiobatvilities of the correspon-
dences in order to sample inliers more often. In [2], hypsitterd models are optimized to
compensate for noisy inliers and the resulting loss of sttpguints. A faster support set
evaluation has been proposed in [1], where a small numbanafomly selected points is
initially evaluated for support. Only when the hypothedizeodel has sufficient support
points among this number, the remaining data is tested fyat

All these methods apply different speed-up mechanismsdbaalgorithm, and can
therefore be combined with our algorithm to achieve evetefdandamental matrix esti-
mation.

In Section 2 the proposed parameterization techniquedsised for hyperplane esti-
mation. Section 3 describes the application of the methddrtdamental matrix estima-
tion. In Section 4, hyperplane and fundamental matrix estion are evaluated on range
data and real image pairs, respectively. Section 5 will katecthe paper.



2 Hyperplane estimation

The data points; fori =1,...,nin RN will be denoted by = (xq,%p,...,xn) . A hy-
perplane with normal vectar = (ay,a,...,ay) " and offseb is given by

aix; +axXe + ...+ anxn + b= 0. In short, the parameters of the hyperplane will be indi-
cated byh = (n" b)T. The random samples that will be drawn consisNof 1 points
{X1,X%2,...,%n-1}, and solving for the hyperplane

% 1
%, 1

_ h=0 (2
Xyoq 1

yields a two-dimensional spa¢l;, h,} for h. This nullspace can in practice be computed
by a singular value decomposition of the lefthand-side imalfrthe sample
{X1,%2,...,XN—1} contains only inliers, then the true hyperplane can be dyea linear
combination of the nullspace vectors as

h=ah;+(1—a)h, 3)

The value ofa can be found by solvingx™ 1)h = 0 for another inlying poink, and
should be the same for all other inliers. The outliers witiguce different values fax.

To find the true value off we use a Hough-based voting mechanism for the remaining
n—N + 1 data points [8]. We could use the projectionsxainto h1 andhy directly for
computinga, but this may result imr values which are difficult to quantize. In particular,
the nullspace vector with the largest singular value, Isgyis likely to constitute the
largest part oh and thereforer ~ 1. The binning of many values close to 1 and possibly
some values far from 1 is impractical. It would be more coimento have ara with
equiprobable values over a large range.

For this purpose, we will make use of an orthonormal basisu,} for the space
spanned byn; andny, which are the normals ih; andh, from (3). We will take a
point X, from the sample, and project all vectots— X1 for i =1,...,n (except those
from the sample) onto this basis. The paftcan be seen as the origin for the space
spanned by{us,uz}, which is shown in Fig. 1 for a line in 2D. From (3) we have that
n=an;+ (1— a)ny, and sincen; andn; are linear combinations dfu;,u,} we can
write

N = C1U1 + CoU2 4)

for certain values; andcy. It then follows, that for the inliers the ratio of projeati®
ontou, andu; becomes

(x—%1)Tup  (x=%)"(n—cau) g
(xf>”<1)Tu1 (X*)~(1)TU1
~ T —C
_ (x—X1) U1t
(x—il)Tul

=— (5)
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Figure 1: The sampled poifij will serve as the origin for the space spanned by,n»}.
Each poinix is projected onto this space by projecting the vegteX; onto the orthonor-
mal basis{us, uz}.

since(x — %) 'n = —b— (—b) = 0. The outliers will produce different values for the
projection ratio since in that casé n # —b. The projection ratio in (5) will cover a
relatively large range of values, and the angtd the projected vector — X1 with respect
to the basiqus,uy}

_ g \T
y= arctan(g);_;:;TEi) (6)

offers a quantity which can conveniently be used in a votjpars.

In principle, not only the hyperplane which crosses a prishould receive a vote,
but all possible hyperplanes that are within allowableatise from the point. A data
point will support a hyperplane if its orthogonal distanocetite hyperplane is smaller
than a threshold (which is usually chosen heuristically in the RANSAC algiom), see
Fig. 2. Here the anglf determines for which models the indicated point can pogsiel

uy

X u

Figure 2: The projection of the poixtin the frame{us,u>}. There is a range of hy-
perplanes which the point supports. The maximum aifigfer the range depends on
thresholdT and the lengtld of the projection of the vector— X;.

a support point, and we have §8) = £ whered = /((x —%1) Tu1)2 + (X — &1) Tu2)2.
A data point will vote for all angles in the ranfige— 3, y+ ]. We note that the distance



from pointx to the hyperplane is equal to the projected distance in taeesppanned by
{u1,uz}, since the component afthat lies outside this space is orthogonal to it.

The angley will be measured in degrees and we choose to use a voting epagée
bins; one bin for each degree from -90 to 89. After calcutathis angle for all points, it
should result in a large number of votes in the bin of the tnge A drawback of using
all data points for voting, is that the voting operation magdme quite complex for large
data sets. Following the concept of the probabilistic Hotrghsform [6], we can also
examine a subset of randomly sampled data points and ceddhia best angle for this
subset. This should give a sufficiently accurate estimathefingley while making the
voting process much faster. In the experiments we have otfosa total of 100 randomly
sampled data points, and only in casg 100 we use all data.

The bin containing most votes determines the apgl®r which the final hyperplane
is calculated according to

- u1 +tan(y* + 3muz
h‘( % (Uy +tany” + Emuy) ) 0

where poini; is taken from the sample.

3 Fundamental matrix estimation

The fundamental matrix can be estimated by following roughke same technique as
for hyperplane estimation. However, there are two majdediéhces with the preceding
scenario.

First, the 7-point algorithm uses the singularity constréo determine the fundamen-
tal matrix. After seven correspondences are selectedngolor the fundamental matrix
yields a two-dimensional nullspace [4]. Then the singtyazonstraint of the fundamen-
tal matrix needs to be used to find the solution. If we samplgsints, the resulting
nullspace is three-dimensional. We would like to use thgudarity constraint for remov-
ing one dimension and use voting to find the final solution. ddiihately, the singular-
ity constraint on the three-dimensional nullspace is acpblynomial in two variables,
which does not allow voting with respect to a fixed pair of spéce vectors. As a result,
we have to solve the singularity constraint for each comadpnce individually. The
complexity of the algorithm will therefore increase, butves have already indicated, a
subset of the data points will suffice in the voting process.

Second, since there is no fixed two-dimensional nullspac@aglwoting, we can not
calculate the range of allowable models as in Fig. 2. The murobfundamental matrices
consistent with a seventh correspondence will be eitheroorteree, just like for the 7-
point algorithm. Therefore, there is no range of matriceswhich e.g. the Sampson
distance can be evaluated, and votes are cast for either ¢teee separate angles.

To start the estimation process we sample 6 correspondences
{X = X,..., %X < X5}, and solve

. %N X Y% Vo % 1

: S S ®)
%XG )'Z%VB )?25 )7526 )76)76 )76 X6 )76 1

which results in a three-dimensional space of solutions



f=af1+Bf2+(1—a—B)fz 9)
If we take a single correspondence- x’ and solve

(Xx Xy ¥ yx yy ¥y x y 1)f=0 (10)

for f from (9) we get a linear constraint mmandp. When the correspondence is an inlier,
the true values foor and will satisfy this constraint. Let the resulting linear risten be
B =ra+g. Then we use the singularity constraint

detaF+ (ra+g)R+(1—a—(ra+g))F) =0 (11)

whereFy, F,, andF; are the 3x 3 matrices containing the elements fef f, andfs,
respectively. This will result in either one or three redusions fora and thus foff. Now,
writing the vectord, f, andfz in (9) asfi = (n] by) ", f=(n] b) " andfz = (n§ bg) ",
we construct an orthonormal bagis;,uz,us} from {ns,n2,n3}. This basis is used for
the projection of the solutions fdr In particular, we calculate the angles

. (f1~~-f3)U2 B (fl"'fS)U3
Y= arctan(mme)uJ Yo = arctan<(f1mf8)uz> (12)

and use them to cast a vote in a two-dimensional array. Thiesngll be rounded
towards full degrees in the range -90 to 89.

As in hyperplane estimation, we do not use all data pointsnduroting. When the
data set contains more than 100 correspondences, only A00mdy selected correspon-
dences are considered. Examples of vote distributionsieea  [5].

After having located the values gf andy; for the bin containing most votes, we can
find the first eight elements of the correspondity

f1
= ug +tan(yy)uz +tan(yy) tan(ys )us (13)
fg
and the last element by
f1
fo=—( X% X% K % ¥ ¥ % )| (14)
fg

The correspondendg « X; is part of the 6-point sample, and therefore lies on the final
f.

The fundamental matrix that is found this way does not autmally satisfy the sin-
gularity constraint. Due to the rounding effect in the vgtarray, the matrix will slightly
deviate from a singular one. We can solve this by applying¥® to this matrix, and
setting the smallest singular value to zero [4]. A preretgif®r this to work properly is
a normalization of the correspondences. This entails alatan which results in zero
means for théx,y) coordinates, followed by a scaling which makes their avedigtance
to the origin equal ta/2. The transformation is applied to both images’ correspands



independently. Before the support of the fundamental matvaluated, the coordinates
are transformed back again to their original values.
The whole sequence of steps in the estimation processad iistFig. 3. Note that the
number of iterationd is determined adaptively as in [4]. When the largest supirss
far is found, i.e.|Sj| > |Swax/|, the outlier ratios is updated accordingly. The number of
iterationsJ is then recomputed according to (1).

¢ J = 17 J= o, S"nax =0
* Normalize the image correspondences.
* while j <Jdo

* Re-estimate the fundamental matrix based on the largepbsigetSyax.

Randomly select 6 correspondené&s — X1, .. .,%Xs < X} and use then)
to compute their nullspacf,f»,f3} by solving (8).
Determine the orthonormal basjsi1,u;, us} for the space spanned b
the normals in{f1,f2,f3}.

if n > 100then

* form the setC by randomly selecting 100 correspondences fTj
{X1<—>X'17 . ,XnHXf]}\{)?l — )N(’l, e 7)’26 — )?%}
else
e formC = {xy—=X],... . Xn =Xy} \{X1 = X, ..., X — X5}
for each x«<x’ in C do

* Find the possible solutions for— X’ by solving (10) and (11).

* Determiney; andy, according to (12) for each solution, and rou

the angles to the nearest degree.

* Add one vote for each pair of anglég, y») in the voting array.
Determine the paify;, y5) with the maximum number of votes.
Construct from (13) and (14) for; andys;.

Find the closest approximatidrto f with detF) = 0 using the SVD.
Determine the set of support poir8sfor the denormalized by verifying
which points are within distance.

if |Sj| > |Smax| then

* J=log(1—p)-log? (1— (Snj)a>
* Sx= 3
j=i+1

nd

Figure 3: The RANSAC-Hough algorithm for fundamental matstimation using a
two-dimensional voting space.



l BROAP TR AP v |t |5 [Srexlr (L0[3 [Sralrn (100)] #hr [ #hey |
image 0]9.50E L.42] 1.63=0.17]|10.0+2.37[3.84+0.31] 62910032 | 6.29-0033 |140+0.7]138+06
image 1|3.41+0.48) 0.72+0.09|5.47+0.64/1.39+0.13| 6.37+0.029 | 6.37+0.028 |10.8+0.6/10.4+0.6
image 2(5.36+0.75 1.05+0.11|9.58+1.53|2.06+0.24| 6.41+0.034 6.41+0.034 (13.04+0.7|]127+0.6
image 3|2.124+0.37| 0.51+0.07 {4.13+0.70/1.13+ 0.14| 6.41+0.028 6.41+0.026 [10.04+0.6| 9.7+0.6
image 4|2.88-+ 0.50| 0.63+0.08|5.71+ 0.73/1.45+0.14| 6.41+0.029 | 6.40+0.028 |11.1+0.7/10.6+0.6
image 5|2.55-+ 0.34| 0.58+0.07 |4.32+ 0.57|1.14+0.13| 6.39+0.029 | 6.39+0.030 |10.0+0.6 9.7+0.6
image 6|5.03+ 0.68) 1.00+0.11|9.80+ 1.182.18+0.20| 6.36+0.029 | 6.36:0.031 |123+0.6/120+0.6
image 1|1.62+0.29| 0.41+0.05(3.744+0.39/1.07+0.08 6.44+0.026 6.44+0.024 | 9.7+0.6|9.3+0.5
image §|2.00+0.36| 0.47+0.07 [3.61+0.57|1.00+ 0.11| 6.40+0.028 6.40+0.028 [ 9.2+0.6|8.9+0.6
image 91.91+ 0.37| 0.46+0.07 |4.09+ 0.52|1.14+ 0.10| 6.44+0.029 | 6.44+0.029 |10.2+0.7| 9.7+0.7

Table 1:The results for finding all planes using RANSAC (R) and RANSAC-Ho(RH) in the
ABW range images. Indicated are the averages and standard dev{atidios the total number of
iterationsy J per image, the running tirmein seconds, the total size of the maximum support sets
S |Svax| @and the number of planesifound.

4 Experimental results

We will compare the proposed RANSAC-Hough method with tlendard RANSAC

algorithm for plane fitting and fundamental matrix estiraati For all experiments we
report the averages and standard deviations over a numiben®bf both the executed
number of iterationd and the size of the maximum support £&ax|. Furthermore, the
average running time for a single run is listed. The finalstreation step in RANSAC

will be omitted. The algorithms were implemented in C andearintel Xeon 3.07 GHz

/ 3.2 GHz computers. For implementation details see [5].

4.1 Plane fitting

As application we consider the fitting of planes in range imdgta. We have used 10
images (“train” 0 to 9) from the ABW structured light scanirethe USF databaseThe
images contain several different planar objects, and tleagity values correspond to the
measured depth by the scanner. An example of one of the inimghswn in Fig. 4(a).
We have subsampled the images with a factor 2 to obtain<2®6 sized images. We
search with RANSAC for planes in the images, and subseqgudaléte the points from
the data set which belong to a plane. The repeated applicati@ANSAC is stopped
when a plane is returned with support smaller than 500 piXéts the shown example
image, the number of planes extracted this way will be ab@ut The experiment is
repeated 500 times for each image. The threshold for thegotial distance to the plane
is set toT = 2.5, which is large enough to capture noisy variations of tiiers. Table 1
shows the results of the experiments.

The RANSAC-Hough method outperforms RANSAC in all aspaatspme cases itis
up to a factor 5 faster. The total number of points on the etdhplanes is comparable,
while the number of planes is a bit smaller. This means thatetttracted planes are
actually better fits, since they contain a larger part of tad

4.2 Fundamental matrix estimation

Some of the real images we have used for testing are showig i) and 4(c). There
are differences in viewpoint and/or zoom factor betweenld¢fteand right images. The

1Available at http://marathon.csee.usf.edu/range/segpfimages.html.



SIFT keypoint detectdr[7] has been applied for establishing correspondenceseastw
the image pairs. The left images in Fig. 4(b) to 4(c) show thal ets of inlying feature

points, and the right images the outlying feature pointssoAhdicated for every image
pair are the total number of correspondenneand the outlier raticc. The Sampson

distance is chosen as error measure, and we have set the sqagaof the threshold to
T = 1.5 pixels.

(&) A range image used for (b) Wadham collegen = 921 ands = 0.71.
plane fitting.

(c) Pile of booksn =548 ands = 0.82.

Figure 4: Some of the images used in the experiments.

The results of running RANSAC 500 times on the image pairshosvn in Table 2.
The difference in running times is best noticeable for highgtlier ratios. The number
of iterations is reduced here considerably and the ad@iticomplexity of the voting pro-
cess does not prohibit a speedup anymore. The support sets goe slightly smaller
than those for RANSAC. This is a result of the rank 2 enforagimeéhich finds an ap-
proximation of the fundamental matrix computed from theadaBince the data is not
considered in finding this approximation, some inliers ast in the process.

5 Discussion

The combination of RANSAC and the Hough transform, that heenbadvocated in the
past, is made applicable to hyperplanes and the fundanmaatak by a new parameter-
ization of the model. For hyperplanes, the result is an efficone-dimensional voting
space and a reduction of the sample size by one point. Fowutidamental matrix, a
two-dimensional voting space is applied because of theutanity constraint. Instead of
sampling 7 correspondences per model, we now only need édGtgoint samples. This

2The code is obtained from http://www.cs.ubc.cawe/keypoints/.



[ image pair [[ € [#inlierg Jr | Jrrt [ [Swexlr [ ISvexlrrt | [ [ tra ]
books 0.74] 189 [7.2+0.64 -10°[1.92+0.17 -10° 187+25[185+2.9] 251+3.6 | 11.7+19

pile of books 0.82] 97 [4.03+0.71-10°)0.93+0.18 -10°| 109+ 2.9 | 106+3.5| 114+24.2 [ 525+120
Wadham college [[0.71] 264 |7.08+2.93 -10%[1.96+0.73 -10°|241+13.8[236+ 14.4| 290+ 124 | 124+4.9
Univ. British Columbid|0.56] 399 [2.65+0.56 -10°|1.14+0.25 -10°(372+11.0{369+ 12.8| 1.13+0.28 | 0.72-0.20

Corridor 0.43] 150 466+ 160 261+955 139+5.8 | 138+ 6.8 |0.08+0.031/0.13+ 0.055
Valbonne church [[0.58] 127 [2.56+0.63 -10°[1.23+0.40 -10°| 123+3.7 | 121+5.4| 0.49+0.13] 0.64-+0.23

Table 2: Fundamental matrix estimation using RANSAC (R) and RANSAC-Hough)(&Hreal
image pairs. Indicated are the averages and standard deviatiptigr(the executed number of
iterationsJ, the maximum number of support poin&nax| and the running timéin seconds.

makes it much easier to find an all-inlier sample by randoatgriln addition, we use for
both models randomly selected subsets of the data to spethe upting stage.

The consecutive extraction of planes in range images tookiderably less time us-
ing the RANSAC-Hough method. The quality of the solutiongither equal or better
than standard RANSAC. In case of the fundamental matrix, enfiaster estimation is
achieved for high outlier ratios, with only a minor decreasthe size of the support.

A further improvement of the algorithm may be circumventthg loss of support
points caused by enforcement of the singularity constraint
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