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Abstract

We present a novel method of image expansion using vector quantisa-

tion. The algorithm is inspired by fractal coding and uses a statistical model

of the relationship between details at different scales of the image to inter-

polate detail at one octave above the highest spatial frequency in the original

image. Our method aims at overcoming the drawbacks associated with tradi-

tional approaches such as pixel interpolation, which smoothes the scaled-up

images, or fractal coding, which bears high computational cost and has lim-

ited use due to patent restrictions. The proposed method is able to regenerate

plausible image detail that was irretrievable when traditional approaches are

used. The vector quantisation-based method outperforms conventional ap-

proaches in terms of both objective and subjective evaluations.

1 Introduction

Digital cinema sequences can be captured at a number of different resolutions, for ex-

ample 2K pixels across or 4K pixels across. The cameras used for high resolutions are

expensive and the data files they produce are large. Because of this, studios may chose to

capture some sequences at lower resolution and others at high resolution. The different

resolution sequences are later merged during post production. The merger requires that

some form of image expansion be performed on the lower resolution sequences. In this

paper we present a new method of doing the image expansion that has some advantages

over the orthodox interpolation methods.

The paper is organised as follows. Section 2 will review some of the existing tech-

niques of image expansion and highlight their shortcomings. In Section 3, we will de-

scribe the proposed algorithm in details including the process of training the algorithm,

constructing the library used in it, and producing as well as enhancing the expanded image

using the algorithm. Section 4 contains our experimental results in which our proposed

method is evaluated. The paper concludes in Section 5.
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2 Background

In the traditional pixel interpolation method, new pixels are generated in the scaled-up im-

age; however, there is no information pertaining to what these pixels should contain, other

than interpolation of the original pixels by some polynomial function. Because the poly-

nomial function works over a neighbourhood in the original, smaller image, the scaled-up

image will contain less energy at the highest spatial frequencies than the original, making

it looks smoother.

An alternative approach through fractal encoding, originally reported by Barnsley [1],

allows rescaled images to contain new high frequency information. Fractal encoding

takes advantage of the self similarity across scales of natural scenes. A fractal code for an

image consists of a set of contractive affine maps from the image, onto the image. Taken

as a whole, these maps compose a collage such that each pixel is mapped onto by at least

one such map. The maps operate both in the spatial and the luminance domain. In the

luminance domain they specify a target pixel p by an equation of the form p = a + bq

where q is the mean brightness of a downsample region of source pixels. In the spatial

domain they specify the coordinates of the source pixels supporting q as the result of

rotation, scaling and translation operations on the coordinates of the destination pixels.

The image is regenerated from the codes by iterated application of the affine maps.

The iteration process has an attractor that is the output image. If the maps have been well

chosen this attractor approximates well to a chosen input image.

A particular fractal code might specify each 4x4 rectangle within a 256x256 pixel

output image in terms of a contractive map on some 8x8 rectangle at some other point in

the image. As the iteration proceeds higher and higher frequency information is built up.

If we start from a uniform grey image, the first iteration will generate detail at a spatial

frequency of 8 pixels. After one iteration source blocks of 8 pixels across will contain

up to one spatial wave. After the second interpolation these waves will have been shifted

up in frequency to 4 pixels across. Each iteration adds detail one octave higher until the

Nyquist limit of the output image is reached: 128 spatial cycles in this case.

It is evident that if we specify the contractive mappings relative to the scale of the

whole image rather than in terms of pixels, then the same set of mappings could be used

to generate a 512x512 pixel output image. In this case the contractive mappings would

shrink 16 pixel blocks to 8 pixel blocks. After an additional round of iteration the 512

pixel output image will contain spatial frequencies up to 256 cycles.

Fractal codes can thus be used to expand an image, generating new and higher spatial

frequencies in the process. Although the additional detail that is added by this process can

not have been available in the source image it nevertheless ‘looks plausible’ because the

‘new’ details are scaled down versions of details that were present in the original picture

(see Figure 1). The search process used in a fractal encoder scans a half sized copy of

the original image to find a match for each small block in the original image. In fractal

enhancement the small blocks are then replaced by their full sized corresponding blocks.

The detail enhancement comes because there is a systematic relationship between the

low frequency and high frequency information within blocks. This allows high frequency

information in a larger block to be plausibly substituted into a smaller block when the

latter is enlarged.

Fractal codes however suffer from two serious obstacles to their widespread adoption:

the encoding algorithm is slow and their general use is blocked by patent restrictions. In



Figure 1: Illustration of how shrinking is used to fill in detail in fractal enhancement.

this paper we present an alternative approach that learns lessons from fractal coding but

avoids these difficulties. Instead of using fractals we use vector quantisation to enhance

the detail of an image.

3 Proposed method

The key idea of our approach is that because there is a systematic relationship between

low and high frequency information within a neighbourhood, it should be possible for a

machine learning algorithm to discover what this relationship is and exploit this knowl-

edge when enhancing an image. We use vector quantisation to categorise areas of the

image at different scales, learn the systematic relationship between the coding of cor-

responding areas at varying scales, and then use this information to extrapolate a more

detailed image. The entire process works by

1. Running a training algorithm to learn the cross-scale structure relations in exam-

ple pictures. In the experiments here two images were used; one from the ‘face’

sequence and one from the outside ‘trees’ sequence.

2. Using this information to automatically construct a new image enhancing program.

3. Applying the enhancing program to digital cine images to generate new images at

twice the resolution.

3.1 The Training Algorithm

The aim of the training algorithm is to learn what high frequency detail is likely to be

associated with the low frequency features at a given point in an image. Given an im-

age I we construct a half sized version of the image I0.5 and expand this to form a new

blurred image Ib which is the original size, by using linear interpolation. We now form a

difference image Id = I− Ib which contains only the high frequency details.



It is clear that we have a genetive association between position I0.5[x,y] and the four

pixel block Gx,y = {Id[2x,2y], Id[2x + 1,2y], Id[2x,2y + 1], Id[2x + 1,2y + 1]}. We aim

to categorise the regions around each position in I0.5[x,y], categorise the corresponding

blocks Gx,y and learn the associations between these categories.

3.1.1 Categorising the Upper Layer

Associate with each pixel p ∈ I0.5 a neighbourhood
p

and compute the differences

between p and its neighbours. These define a 4 element vector. Using the algorithm given

in [6] construct a vector quantisation codebook B1 for these features. Assume that the

code book has n entries.

3.1.2 Categorising the Lower Layer

Use the same vector quantisation algorithm to construct a second vector quantisation

codebook B2 for the set of vectors Gx,y. Assume that the code book again has n entries.

3.1.3 Learning the Association

Encode the neighbourhoods around each pixel p ∈ I0.5 with B1 to yield an encoded image

E0.5. Encode each Gx,y associated with each pixel p ∈ I0.5 with B2 to yield an encoded

image Eb. The entries in both the encoded images are indexed into the respective code-

books.

Construct an n×n frequency table F that counts how frequently each code from B1 is

associated with each code from B2. Finally convert the frequency table to a conditional

probability table by dividing by the number of observations.

3.2 The Program Generator

The aim of the program generator is to take the tables B1,B2,F and use them to generate

pascal libraries that can be used to index and predict detail in subsequent images. The

process is analogous to the way Lex [5] constructs scanner tables in C from a regular

grammar.

Two optimisations are performed prior to outputting the tables:

1. Table F is converted from a conditional probability table to a table encoding the

cumulative probability of each entry in B2 being associated with and entry in B1.

2. Hierarchical Vector Quantisation [2] indices are constructed for the two codebooks

to enable future encoding to be of O(4) rather than O(n).

3.3 The Enhancement Algorithm

The enhancement program has the library produced above linked to it. The aim of the

program is to read in an image J and produce an image J2 of twice the size with enhanced

detail. The algorithm is described by Algorithm 1.

Once this process has been completed for each pixel in J the image Jd contains details

whose spatial frequency is one octave higher than those that are represented in Jb. Each



Algorithm 1 Proposed method

1: Create image Jb of twice the size of J using linear interpolation.

2: Create an empty image Jd twice the size of J.

3: for all pixel p ∈ J at position x,y do

4: Compute its differences with its four neighbours as described in 3.1.1

5: Encode the four differences using a vector quantisation index for book B1 to yield a code index number

i

6: Select the ith row of F

7: Draw a real number r at random such that 0 ≤ r < 1

8: Scan row F [i] until F[i, j] > r is found

9: Select the 4 element vector B2[ j].
10: Place this vector in the image Jd at positions {Jd [2x,2y],Jd [2x+1,2y],Jd [2x,2y+1],Jd [2x+1,2y+1]}.

11: end for

12: Forms the enhanced image J2 by the operation J2 = Jb + Jd

detail occurs with the same probability with respect to the categorisation of localities in J

as details occurred in Id with respect to the categorisation of localities in I0.5.

4 Results

Our experiments were conducted on 1920×1080 video frames in the DPX image format

captured by a Thompson Viper D-Cinema video camera. The pixels were in 10 bit loga-

rithmic format. Image expansion using our system was compared to conventional bilinear

and B-spline interpolation techniques. The experimental procedure can be described as

follows:

1. The enhancement system was trained on a 1920× 1080 DPX frame from an out-

door sequence. The test images used were a studio frame (Figure 2), a later frame

from the outdoor sequence from which original training frame had been selected

(Figure 4), and a train sequence (Figure 6). The training and test frame from this

sequence had different zoom settings, the training frame having had a higher zoom

factor than the second test frame.

2. The test images were downsampled using bilinear interpolation to 960× 540 and

output in DPX format.

3. Image expansion to double the original resolution of 1920× 1080 was performed

using our algorithm, bilinear and B-spline interpolations.

4. Original and expanded DPX video frames were compared subjectively based on

perceived detail in image patches. The quality of reproduction was also evaluated

objectively using several image quality metrics described below.

We used several methods of assessment to evaluate the quality of the reconstructed

images. First, a traditional measure based on Peak Signal-to-Noise Ratio (PSNR) [7]

was calculated. In this paper, the PSNR was calculated on the 10-bit logarithmic repre-

sentation of pixel values. This metric is very practical and easy to compute, however critic

says that it does not always correlate well with the quality perceived by human users [3].

An alternative using a modified version of the PSNR based on perceived visibility of er-

ror, namely Weighted Peak Signal-to-Noise Ratio (WPSNR) [8], was also computed. In

this metric, error on textured area would be given less weighting factor than that on flat

surface.



Figure 2: Reduced scale colour image from original DPX digital cine frame from studio sequence

‘face’. Relatively soft focus is used with a moving subject. Box indicates where detail is shown in

Figure 3. Note that this and all following images are uncorrected log colour space.

(a) Original (b) Our algorithm

(c) B-spline (d) Bilinear

Figure 3: A region with high frequency detail from original DPX video frame from the ’face’

sequence (a) and the corresponding region generated by expansion of the half-resolution video

frame by our algorithm (b), as well as by B-spline interpolation (c) and bilinear interpolation (d).

Since image expansion algorithms usually introduce blur artifacts, a quality metric

[4] capable of detecting and measuring the degree of blurriness on the degraded image

was used. This metric computes features extracted from the frequency domain through

two-dimensional Discrete Fourier Transfrom (DFT) computation over a localised area

on the gradient image. In an image contaminated by blurring distortion, some frequency

components appear attenuated when compared to the corresponding set of components

on the original image. Blurriness detection can be done by analysing the decay in the



Figure 4: Image taken outside in bright light, with sharp focus containing more high frequency

detail. Box shows area used in Figure 5.

(a) Original (b) Our algorithm

(c) B-spline (d) Bilinear

Figure 5: Samples taken from the frame shown in Figure 4. The algorithm convincingly synthesises

speckle on the concrete wall but leaves the white wall in the background speckle free.

strength of these frequency components. One of the quality parameters produced by this

metric is harmonic loss blur index, which we used to measure the degree of blurriness on

our images in this paper. Because blur index is a distortion metric, higher value of the

index on an image implies that the image contains more blurring artifacts.

In addition to the above metrics, we also use another quality metric that is sensitive to

structural distortions. Blurriness in the expanded images may appear as a result of edge

widening as well as change of contrast. The universal quality index (UQI) [9], which

is a special case of structural similarity (SSIM) index, has the ability to measure such

structural distortions due to image expansion. This metric is significantly different from

the traditional PSNR/WPSNR since the latter attempt to quantify the visibility of errors

between the degraded images and the original image, whilst UQI models any distortions

as a combination of three different factors: loss of correlation, luminance distortion, and



Figure 6: Image from ‘train’ sequence. The details are shown in Figure 7.

(a) Original (b) Our algorithm

(c) B-spline (d) Bilinear

Figure 7: Detail samples from ‘train’ sequence in Figure 6.

contrast distortion. This metric has a dynamic range of [−1,1], with 1 is the best value

(correspond to highest quality).

It is subjectively apparent that our algorithm has regenerated plausible image detail

that was irretrievable when using the B-spline and bilinear interpolation approaches (Fig-

ures 3, 5, and 7). The down-sampling suppressed visual information which only our algo-

rithm could recover based on its knowledge of statistical co-occurrence of low and high

frequency image content. It was also observed that VQ-based enhancement method was

better than conventional method (e.g. B-spline) since the latter introduces more blurriness

to the processed images. The above mentioned figures show the degree of the blurriness

of details from these sequences which have been enhanced by three different methods

(our proposed VQ-based, bilinear, and B-spline).

Objective comparison of our algorithm with bilinear and B-spline interpolations for

image expansion are shown in Table 1. As an example, Figure 7, which was taken from

the ‘train’ sequence and excluded during the training stage, is used for the computation of



Objective quality metrics Proposed method Bilinear B-Spline

PSNR [7] 36.9 dB 28.4 dB 36.6 dB

WPSNR [8] 44.8 dB 39.2 dB 44.5 dB

Blur index [4] 0.180 0.193 0.298

UQI [9] 0.836 0.456 0.826

Table 1: Objective image quality metrics for the image expansions shown in Figure 7.
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these metrics. Our method is superior than the others in terms of the objective measures

used in this paper. For example, the blur index values are in favour of our VQ-based

method; it shows that the blurriness indices of the B-spline and bilinear enhanced images

are generally higher than those of VQ-based, with B-spline enhanced image is the worst

in quality (i.e., contains the most blur distortions). The bilinear method, although compa-

rable with our method in terms of blur index, has the most damaged structure as shown

by the UQI values.

The blurring effect of expansion method on edges can also be illustrated by observing

pixel-value cross-section along a row (or column) in an image. Cross-sectional luminosity

profile of the detail images (Figure 7) are shown in Figure 8. In this figure, the local

maxima around edges are indicated by the dashed lines (P0 and P1) and local minima by

the dotted lines (P2 and P3). The graph shows that the edge in the image expanded by the

B-spline method is wider (with an edge width of P3−P0) than those in the original and

the VQ-based enhanced images (edge width of P2−P1). It explains that the blur in the

traditional expansion method is due to the increased edge width.

5 Conclusions

This paper presented a novel approach to image enhancement using a technique which

would avoid the known shortcomings of fractal enhancement. We learnt the statistical

properties of the co-occurrence of low and high frequency image content and used these



probability distributions to predict image content during image expansion. Subjective

evaluations show that our algorithm outperforms conventional approaches. This is also

confirmed by the results of objective evaluations based on several published quality met-

rics suitable for the application presented here. We hope to continue working on our

algorithm which is still in its preliminary stages by: 1) Learning statistical co-occurrence

of neighbouring codebook blocks in images; and 2) Mediating the addition of high fre-

quency predicted detail with the energy of the underlying region in the image to prevent

prediction of detail in the absence of high frequency information in the original image.
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Pun. A stochastic approach to content adaptive digital image watermarking. In In-

ternational Workshop on Information Hiding, volume LNCS 1768 of Lecture Notes

in Computer Science, pages 212–236, Dresden, Germany, 29 September –1 October

1999. Springer Verlag.

[9] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero P. Simoncelli. Im-

age quality assessment: From error visibility to structural similarity. IEEE Transac-

tion on Image Processing, 13(4):600–612, April 2004.


