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Abstract

In most previous works, histograms are simply treated as n-dimensional
arrays or even reshaped into vectors when measuring the distances between
them. However many histograms have their intrinsic topologies, such as
HSV histogram (cone), shape context (polar), orientation histogram (circle).
The topologies are important for so-called cross-bin distance, because they
determine the similarities between histogram bins, and influence the cross-
bin distances between histograms. In this paper, we proposed the topology-
preserved diffusion distance to take the topology into account. This method
extracts the distance by measuring the heat diffusion process defined on the
topology of the histogram. Moreover, a fast implementation with time com-
plexity O(N) is developed. Experiments on image retrieval and interest point
matching show the effectiveness and efficiency of the proposed method.

1 Introduction
Histograms are widely used in many applications of image analysis and computer vision,
such as interest point matching [8, 9], shape matching [2], image retrieval [12] and tex-
ture analysis [11]. They are very effective due to the rich information captured by the
distribution. However, it is well known that histogram is sensitive to the changes of il-
lumination and viewpoints, as well as quantization effects [2], therefore the design of a
robust histogram distance is a challenging task.

According to the type of bin correspondence, histogram distance is divided into two
categories [12], i.e. bin-to-bin and cross-bin distance. The former just compares each bin
in one histogram to the corresponding bin in the other. The Minkowski distance (such
as L1 and L2), histogram intersection, and χ2 statistics belong to this category. These
distances are sensitive to distortions, and suffer from the quantization effect. In contrast,
the cross-bin distances allow the cross-bin comparison, and therefore are more robust
to distortions. Quadratic Form distance (QF) [4], Earth Mover’s Distance (EMD) [12],
EMD-L1 [7], EMD-Embedding [5], Pyramid Matching Kernel (PMK) [3] and diffusion
distance [6] fall into this category.
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Almost all of the previous works simply treated the histogram as an n-d interval. How-
ever in practice, many histograms have their special topological structures. For example,
HSV colour histogram has a cone-shaped structure, orientation histogram is a circle, and
shape context is based on the polar coordinate system. The simple treatment as an interval
results in great distortions of the similarities between some bins, and then degrades the
accuracy of the cross-bin distance. Take 1-d orientation histogram as an example. It’s
often represented as an interval [0,2π), though it’s a circle actually. Given a small posi-
tive ε , two orientations 0 and 2π− ε are almost the same. However, with the traditional
representation, the two locate at two extremes of the interval, respectively. The distance
between them is almost the longest, which means the smallest similarity. It contradicts
with human perception. The similar contradictions also exist in HS colour histogram with
the first dimension for Hue and the second for Saturation, which is usually represented
as a 2-d interval [0,1)× [0,1]. Compared to the polar representation, the distances be-
tween colours locate at different sides of the line H = 0 are enlarged improperly, and the
same for the distances between colours with small saturations. Similar problems exist in
some other histograms, such as Scale-Invariant Feature Transform (SIFT) [8] and shape
context [2], when they are represented as n-d intervals.

In the paper, we proposed the topology-preserved diffusion distance for histogram
matching, which is inspired by Ling and Okada’s work [6]. In their work, the cross-
bin relations are simulated by the heat diffusion on the n-d interval, and the distance is
the integral of the diffusion process. Different from [6], the proposed method solves
the diffusion process on the histogram’s intrinsic topology, rather than the interval. By
preserving of the topology, it’s more consistent with human perception. Sophisticated
numerical method for Partial Differential Equation (PDE) is used to handle the non-trivial
topology. Compared to the convolution in [6], it has solid mathematical background, such
as the error bound and the numerical stability. The time complexity of the distance is
O(N), where N is the number of bins. The experiments are conducted on image retrieval
and interest point matching. The proposed distance is compared with other state-of-the-art
methods, and hypothesis tests are conducted to show its superior performance.

The rest of the paper is organized as follows. Section 2 discusses the related works.
Our work is described in Section 3. Experiments are reported in Section 4 and then
conclusion is drawn in Section 5.

2 Related Works
In this section, we briefly review the cross-bin distances, because our method belongs to
this category. For more comprehensive discussion, please refer to [11, 12].

QF [4] is an early proposed cross-bin distance. Given two histograms h1 and h2, the
distance is defined as

QF(h1,h2) = (h1−h2)T A(h1−h2), (1)

where A = [ai j] is the weight matrix and the weights ai j denote similarities between bins
i and j. In the comparison of colour histograms [4], the topology is taken into account by
defining

ai j = 1−di j/dmax, (2)

where di j is the L2 distance between colours i and j, and dmax = maxi, j(di j). QF makes
each bin in one histogram to correspond to all the bins in the other, and thus tends to



overestimate the mutual similarity without a pronounced mode [12]. Different from QF,
Our method use the diffusion process to simulate the cross-bin relations, and the bin in
one histogram dynamically corresponds to some neighbouring bins in the other.

EMD dynamically selects the correspondences by solving a transportation problem.
Although it achieves good performances in image retrieval [12] and texture analysis [11],
its computation is costly, and usually large than O(N3), where N is the number of bins.
Several fast approximations have been proposed. [5] embeds the EMD metric into a
Euclidean space, and the EMD can be approximated by the L1 distance in the space after
embedding. Its time complexity is O(Nd log∆), where N is the number of features, d is
the dimension of the feature space and ∆ is the diameter of the union of the two feature
sets. PMK [3] is proposed for feature set matching. First, a pyramid of histograms of a
feature set is extracted, and then the similarity between two feature sets is defined by a
weighted sum of histogram intersections at each level of the pyramid. EMD-L1 [7] utilizes
the special structure of the L1 ground distances on histograms for a fast implementation
of EMD.

The major difference between our method and the EMD related distances above is
that the topology of the histogram is not considered in the latter. EMD uses ground dis-
tances defined on the n-d interval, and the other approximate methods are all developed
for this specific type of ground distance. Although EMD may handle non-trivial topol-
ogy by using properly defined ground distance, it’s costly to compute (> O(N3)). Our
method is much faster (O(N)). Besides the major difference, our method differs from
PMK in another two ways. First, PMK focuses on feature distributions in the image do-
main [3], while ours focuses on comparison of histogram-based descriptors, such as SIFT.
Second, PMK uses intersection to allow partial matching, which is important for handling
occlusions for feature set matching. In contrast, we employ the L1 distance, because the
histograms are all normalized.

Diffusion distance [6] measures histogram distance by heat diffusion. The difference
of two histograms h1 and h2 is treated as the initial condition of a heat diffusion process
u(x, t), and the distance is defined as

K(h1,h2) =
∫ T

0
‖u(x, t)‖1 dt, (3)

where T is a constant, and ‖·‖1 represents the L1 norm. [6] convolutes the initial con-
dition with a Gaussian window iteratively to approximate the diffusion, and sums up the
L1 norms after each convolution to approximate the integral. The bin correspondences
are implicitly determined by the diffusion. Its time complexity is O(N), where N is the
number of bins.

Similar to the diffusion distance, our method is also defined as the integral of the dif-
fusion process. However, there are some significant differences. First, we define diffusion
process on the histogram’s intrinsic topological structure, while diffusion distance solves
the process on an n-d interval. Second, we utilize numerical methods for PDE, i.e. finite
volume method [1] and backward Euler scheme [10], to solve the diffusion process. In
contrast, diffusion distance uses convolution to approximate the diffusion, which cannot
handle the non-trivial topology.



3 Our Work
In this section, we first introduce the numerical method for heat diffusion equation, and
then present the topology-preserved diffusion distance. At last, a fast implementation is
described.

3.1 Numerical Method for Heat Diffusion Equation
We discretize the heat diffusion equation with Neumann boundary condition

∂u(x, t)
∂ t

= ∇ ·∇u(x, t), x ∈Ω, (4)

∂u(x, t)
∂x

= 0, x ∈ ∂Ω, (5)

and then solve it numerically. The approach is briefly introduced as follows.
First, the spatial derivative ∇ ·∇u(x, t) is discretized by finite volume method [1].

With division D , the domain Ω is divided into N cells {ck}N
k=1, and the solution u is

approximated in each cell as a constant, i.e.

u(x, t)≈ uk(t), x ∈ ck. (6)

Integrating both sides of (4) over cell ck, and using Gauss theorem and the boundary
condition, we can approximate (4) and (5) with the spatial discretized equation

Vk
duk

dt
= ∑

j∈Nk

αk j(u j−uk), (7)

where Nk is the set of neighbours of the cell ck, and Vk and αk j are constants related to
the topology of domain Ω and the division D only.

By including the solutions of all cells, (7) can be rewritten in matrix form

M
du
dt

= Au, (8)

where diagonal matrix M and operator matrix A consists of {Vk}N
k=1and

{
ak j

}N
k, j=1, re-

spectively, and column vector u = [u1,u2, . . . ,uN ]T consists of solutions in all cells.
Second, the time domain [0,T ] is discretized into a series of time steps 0 = t0 < t1 <

· · · < tL = T . Using the backward Euler scheme [10] to approximate the time derivative,
the linear ordinary differential equation (8) becomes completely algebraic equation

M
u(k)−u(k−1)

∆tk
= Au(k), k = 1,2, . . . ,L, (9)

where u(k) = u(tk) is the solution at the k-th time step, and ∆tk = tk − tk−1. In nu-
merical computation, we usually use fixed time step ∆tk = ∆t. Defining matrix B =
(M−∆tA)−1M, we can simply advance solution by

u(k) = Bu(k−1). (10)



Further more, we can get the solution at any time point directly by

u(m) = Bmu(0). (11)

Due to the properties of the backward Euler scheme [10], our discretization (9) is
stable for any positive time step ∆t. The accuracies of both the spatial and temporal
discretization are first-order. Therefore, the error in the numerical solution is O(∆t) +
O(∆x), where ∆t is the size of the time step, and ∆x is the size of the cells.

3.2 Topology-Preserved Diffusion Distance
Some notions are introduced first. A normalized histogram h is a probability density
function defined on domain Ω, which is embedded in a normed space X . The topology
of h is actually the topology of Ω. For example, the domain of colour histogram for Hue
and Saturation is a disk embedded in the 2-d plane. The histogram ĥ often referred in
computer vision is the discrete version of h. It corresponds to a division D , which divides
Ω into cells {ci}N

i=1. The integral of h over a cell is the value of the corresponding bin in
ĥ. We use “ˆ” to represent discrete histogram and other related functions.

To compute the topology-preserved diffusion distance between two histograms, the
heat diffusion equation with their difference as the initial condition is solved first. And
then, the distance is extracted by integrating the L1 norm of the process along time. Given
two histograms, h1(x) and h2(x), their corresponding initial condition is

u(0,x) = h1(x)−h2(x). (12)

Given the solution of heat diffusion equation (4) with conditions (5) and (12), the topology-
preserved diffusion distance is defined as

K(h1,h2) =
∫ T

0

∫

Ω
|u(x, t)|dxdt. (13)

If Ω is an n-d interval and the division D is uniform, (13) reduces to the diffusion distance.
The method introduced in Section 3.1 is used to compare discrete histograms. Given

two histograms ĥ1 and ĥ2, (4) and (5) are spatial discretized according to their common
division D , and the initial condition is

u(0) = ĥ1− ĥ2. (14)

We can get the discretized temperature field u(t) at any time t by (11). Since the integral
over Ω can be approximated by L1 norm, and the integral along time can be approximate
by summation, (13) can be rewritten as

K̂(ĥ1, ĥ2) =
L

∑
i=0
‖u(Ti)‖1 (15)

where T0 < T1 < .. . < TL are time points. L is usually set to 2 or 3. The time complexity
of this distance is O(LN2), where N is the number of bins. In the next section, a fast
implementation is introduced, and its complexity is O(LN).

A toy example is given in Figure 1 to illustrate the advantage of the proposed method.
In the three Hue-Saturation histograms in Figure 1(a), only one bin in each is nonzero.
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ĥ2

 

 

0

0.5

1

−5 0 5
−5

0

5
ĥ3
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Figure 1: Toy example to show the advantage of the proposed method. (a) Histograms on disks. (b) Histograms on rectangles.
(c) Diffusion process of ĥ1 and ĥ2 on the disk. (d) Diffusion process of ĥ1 and ĥ2 on the rectangle. (e) Diffusion process of ĥ1
and ĥ3 on the disk. (f) Diffusion process of ĥ1 and ĥ3 on the rectangle. Time points and L1 norms of the temperature fields are
shown above the images.

Intuitively, the similarity between ĥ1 and ĥ2 is larger than the one between ĥ1 and ĥ3,
because the ground distance between the nonzero bins in the former pair is smaller. Cut-
ting along the red line in Figure 1(a), i.e. H = 0, and performing some transformation,
we get the common histograms in Figure 1(b). The diffusion processes on both disk and
rectangle with different initial conditions are illustrated by Figure 1(c), (e), (d) and (f)
respectively. The L1 norms above the images show that the process in Figure 1(c) decays
faster than the one in Figure 1(e). But there’s no similar phenomenon in Figure 1(d) and
(f). In fact, the L1 norm of the last image in Figure 1(d) is even slightly larger than the
corresponding one in Figure 1(f). The topology-preserved distances of Figure 1(c) and (e)
are 3.6564 and 5.6270, respectively. This is consistent with the intuition. In contrast, the
diffusion distances of Figure 1(d) and (f) are 3.2331 and 2.8826, respectively. Obviously,
the diffusion distance fails in this case.

3.3 A Fast Implementation
Because of the linearity, the diffusion process with initial condition (12) can be viewed
as the difference of two sub-processes, which use two histograms as the initial conditions
respectively. The same holds in the discrete case. Plug (14) and (11) into (15), we get

K̂(ĥ1, ĥ2) =
L

∑
i=0

∥∥(Bmi ĥ1)− (Bmi ĥ2)
∥∥

1, (16)



where mi = bTi/∆tc. Since the division D , the domain Ω, the time step ∆t and the time
points T0 < T1 < .. . < TL are all predetermined, B can be computed in advance. Therefore
both vectors, i.e. Bmi ĥ1 and Bmi ĥ2, can be computed at feature extraction step. The online
computation only includes the differences of the vectors and the L1 norms, and thus the
online complexity is O(LN) = O(N).

4 Experiments
The proposed methods are tested on natural image retrieval and interest point matching.
Seven distances are compared, including L1, L2, χ2, QF, EMD, Diffusion Distance (Dif-
fusion) and Topology-Preserved Diffusion Distance (Topology). The weight matrix of
QF is determined according to [4]. For the diffusion distance, we set σ = 0.5 as [6], and
use 3× 3 window for image retrieval and 3× 3× 3 window for interest point matching.
L2 ground distance on the n-d interval is used in EMD. For the proposed method, we
empirically choose time points {0,1,2} for image retrieval and {0,2,4} for interest point
matching.

4.1 Natural Image Retrieval
This experiment is performed on the widely used Corel-5000 database [13], which con-
sists of 5000 images. 8×8 HS colour histogram is used as the only feature. 1000 images
(10 categories) with relatively significant colour characteristics are selected as the queries.
For each query, the nearest 100 images are returned.

The average precisions of different distances are plotted in Figure 2 with respect to the
scope. The time costs of different distances are shown in Table 1. EMD outperforms all
the other methods, but its time cost is too high. The proposed method places the second,
with much smaller time cost. L1 and diffusion distance perform almost the same, and
they are both the third. Although topology is taken into account, QF is worse than L1,
which is only a bin-to-bin distance. It confirms the analysis in Section 2, i.e. the static
correspondence limits QF’s performance. χ2 and L2 are the last.

Distance Topology Diffusion L1 χ2 L2 QF EMD
Times (s) 18.0 14.1 6.3 13.4 7.2 238.4 8023.4

Table 1: Time costs in image retrieval

To further confirm the improvement, hypothesis tests are conducted. For a specific
scope and a specific distance, the average precisions of 10 categories are treated as i.i.d.
samples drawn from some distribution. The proposed method is compared with the oth-
ers using these samples. Since the distribution is unknown, non-parametric Wilcoxon’s
signed rank test (one-sided) for two related samples is adopted. The p-values of the tests
are listed in Table 2. Except EMD, all the others are small than 0.05, which means the
improvements over the corresponding methods are all statistically significant.
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Figure 2: Retrieval precisions with respect to the scope in image retrieval

Scope Diffusion L1 χ2 L2 QF EMD
20 0.0469 0.0371 0.0039 0.0020 0.0020 0.5566
40 0.0020 0.0059 0.0039 0.0020 0.0020 0.6250
60 0.0039 0.0273 0.0039 0.0020 0.0137 0.7695
80 0.0098 0.0117 0.0059 0.0020 0.0420 0.6250

100 0.0039 0.0059 0.0039 0.0020 0.0322 0.6953

Table 2: p-values of hypothesis tests in image retrieval

4.2 Interest Point Matching
This experiment is performed on the Affine Covariant Regions Dataset [9], which consists
of 40 image pairs with known plane projective transforms. We extract SIFT like descrip-
tors from the interest regions detected by the Hessian-Affine detector [9]. The descriptor
differs from SIFT by ignoring the tri-linear interpolation [8] and by being normalized by
L1 norm. The number of local descriptors varies from 200 to 4000 per image depending
on the content.

The evaluation strategy in [9] is utilized. For each pair of images, the ground truth
correspondences are first determined by the known transform. Then, we use the threshold-
based strategy to match descriptors, i.e. two descriptors are matched if the distance be-
tween them is below a threshold. Varying the threshold, a Receiver Operating Character-
istic (ROC) curve can be obtained. For some image pairs, it’s hard to obtain the complete
ROC curve with any distance because the precision keeps low. It’s probably due to the
limitations of the detector and/or the descriptor. For this reason, 21 image pairs are se-
lected, and ROC curves in Figure 3 of different methods are the averages on these pairs.

Compared to image retrieval, similar ranking are shown in Figure 3. EMD is the best,
followed by the topology-base diffusion distance. The diffusion distance and L1 place the
third, and then QF, L2 and χ2. The margin between Topology and Diffusion (or L1) is
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Figure 3: ROC curves in interest point matching

1−Precision Diffusion L1 χ2 L2 QF EMD
0.2 7.9802e-005 1.2267e-004 5.9570e-005 5.9570e-005 7.1872e-005 0.7823
0.4 0.0033 4.1887e-004 5.9570e-005 5.9570e-005 6.4356e-004 0.5829
0.6 6.1791e-004 5.4342e-004 5.9570e-005 5.9570e-005 3.5792e-005 0.8392
0.8 0.0037 4.1887e-004 5.9570e-005 5.9570e-005 5.0872e-005 0.5929

Table 3: p-values of hypothesis tests in interest point matching

roughly 1%. In spite of the superior performance, the computation of EMD costs about
300 hours. In contrast, our method uses only about 10 minutes, and the diffusion distance
uses about 7 minutes.

The same hypothesis tests are conducted. For a specific precision and a specific dis-
tance, the recalls of different image pairs are treated as i.i.d. samples, on which the com-
parisons are based. The p-values are listed in Table 3. Again, the improvements over
the other methods are significant, except EMD. Compared to Table 2, the p-values are
smaller, which means the improvements are more significant in the sense of statistics, in
spite of the smaller margins showed in Figure 3.

5 Conclusions
In this paper, we extend the diffusion distance by combining the idea of topology preserv-
ing. The proposed method defines the diffusion process on the topology of the histogram,
and measures the distance by integrating the L1-norm of the process along time. It outper-
forms most existing histogram distances by preserving the topology, and also outperforms
topology-based QF by utilizing the diffusion process. Among the methods with complex-
ities lower than O(N2), the proposed one is the most accurate. Moreover, it’s also very
efficient with the complexity O(N).
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