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Abstract

This paper presents an empirical comparison of several shape representations
in order to search a database of training examples (silhouettes) for the task
of human pose estimation. In particular, we compare the Discrete Cosine
Transform (DCT), Lipschitz embeddings and the Histogram of Shape Con-
texts that has previously demonstrated some success in this task. Our results
suggest that a simple linear transformation of the image (such as the DCT) is
as effective as the more complex, non-linear methods.

1 Introduction

Due to the rapid increase in affordable secondary storage over the last few years, it is
becoming increasingly important to develop systems that retrieve data based oncontent
rather than annotating the data by hand. This has led to the growth of interest in shape
matching and retrieval algorithms with applications including searching the Web (e.g.
Google Images) and more specific fields such as trademark enforcement. Since it is typ-
ically infeasible to use the raw, high-dimensional image to describe the data,D features
are computed that retain the most informative data in the image. This dimensionality
reduction provides three major benefits:

• Lower storage requirements:each image is reduced to a compact feature vector.

• Increased efficiency:the training data can be processed more rapidly.

• Reduced sensitivity to noise:features capture the most informative shape charac-
teristics whilst ignoring irrelevant details.

In this work, we compare three shape representations that reduce the dimensionality of
training images for the purpose of image retrieval in human pose estimation. In particular,
we compare the recently proposed Histogram of Shape Contexts [1] with two simpler
descriptors, namely the Discrete Cosine Transform (DCT) and Lipschitz embeddings.
Although the success of the Histogram of Shape Contexts for recovering human pose was
demonstrated within a sparse regression framework [1], resulting in its adoption in other
studies (e.g. [10]), to date no empirical evidence has been presented to support claims that
this is due to the efficacy of the descriptor rather than the regressor. This work presents
the first quantitative comparison to investigate this claim by comparing representations
under controlled conditions where meaningful comparisons can be made.
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1.1 Related Work

The range of shape descriptors available for applications such as human pose estimation
from binary silhouettes is very large. However, we can argue that many representations
are inappropriate for this task. Descriptors based on the topology of the occluding con-
tour [7] change dramatically with small changes in underlying pose (e.g. as the subject
places their hands on their hips such that ‘holes’ are created that modify the topology).
Representations based on curvature [15] typically require a continuous (or sufficiently
high resolution) contour that is rarely available in this application. Similar arguments rule
out Fourier decompositions [16] and shock graphs/median axis representations [9].

Of the remaining candidates,global representations use every pixel to compute every
feature such that a localized corruption of the input image (e.g. due to occlusion or
shadow) induces an error in every feature. Such representations include embeddings [5],
moments [8, 12, 14] and Principal Component Analysis (PCA). In contrast,local repre-
sentations use only a subset of the image to compute each feature such that only certain
features are affected by a localized error in the input image. Such representations include
the recently proposed Histogram of Shape Contexts (HoSC) that has successfully been
employed in human pose estimation [1]. It is this property of locality that is claimed to
make such representations superior.

1.2 Paper structure

We begin in Section 2 by describing the selected shape descriptors, including a discussion
of how appropriate parameters were selected for each. Section 3 describes the experimen-
tal data and how the descriptors were compared. Results are presented in Section 4.

2 Shape representation

2.1 Discrete Cosine Transform (DCT)

We begin with a form of the Discrete Cosine Transform of theP×Q image, I(x,y),
whereby each feature (DCT coefficient),Mmn, is defined by:

Mmn = ∑
x

∑
y

fm(x)I(x,y) fn(y) (1)

and we define
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√
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P
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P
·
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)}
(2)

wherem= 0. . .P−1 andx = 0. . .P−1. This transform can be an interpreted as a rota-
tion of the vectorized image such that the Euclidean distance between feature vectors in
PQ-dimensional space is equal to the sum of squared error between the original images.
Using only a subset ofD coefficients therefore approximates the SSE between images.
Furthermore, this form of the DCT belongs to the family oforthogonal momentssince:

∫
fi(x) f j(x)dx=

{
1 if i = j

0 if i 6= j
(3)



Figure 1: Filter bank equivalents (up to order 5) of DCT moment generating functions,
fmn(x,y) = fm(x) fn(y).

such that correlation is low between coefficients and fewer are required (compared to
non-orthogonal moments) to describe the image within a given error bound.

Other transformations were also considered such as Tchebichef [8], Krawtchouk [14],
geometric and Hu [6] moments in addition to PCA. Although PCA provides an optimal
(in terms of capturing maximum variance) basis set over the set of images, the basis set is
data-dependent and impractical to compute for the image sizes involved. Tchebichef mo-
ments were found to be qualitatively similar to the DCT, effectively providing a frequency
decomposition of the image, although with slightly worse performance in the evaluation
task. Krawtchouk moments (another orthogonal moment) also performed slightly worse
than the DCT, possibly as a result of limited spatial support of lower order moments.

Geometric moments are seldom employed due to the concentration of ‘mass’ at the
edges of the image (where the least informative data resides) and the lack of an intuitive
distance metric between feature vectors (in contrast to orthogonal moments). Similarly,
although Hu moments are popular due to their rotational invariance they are based on
geometric moments and hence suffer the same shortcomings. Furthermore, only seven Hu
moments are typically defined which do not capture sufficient variation in many datasets.

In order to make the comparison fair, we first undertook a number of experiments to
assess the impact of various parameters [13]. These experiments suggested that:

• Although performance improved as more DCT coefficients were retained (since the
distance between feature vectors more closely approximates the true SSE between
images), most useful information was captured byD ≥ 64 features.

• When ranking the database in order of similarity to the query in feature space,
Euclidean distance (the most intuitive metric since it is directly related to the SSE)
gave very similar performance to the Mahalanobis and Manhattan (L1) distances.

• Feature selection heuristics such as maximum order (max{m,n}), order (m+n) and
RMS value all gave similar results whilst variance was a poor indicator of feature
information. More complex feature selection is beyond the scope of this work.
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Figure 2: Overview of HoSC descriptor: (a) Each contour point is assigned a high-
dimensional ‘Shape Context’ based on the local distribution of other contour points; (b)
Shape Contexts from all database examples are clustered to generateD cluster centres
(codebook vectors); (c) A normalized histogram is generated for each example based on
the distribution of cluster centres voted into by the Shape Contexts of its contour points.

2.2 Lipschitz embeddings

The second global representation we consider is the Lipschitz embedding [5], whereby
an image is represented by the vector of distances from the query image toD ‘pivot’
exemplars and has recently demonstrated success in hand tracking applications [3]. More
specifically, we embed each image by extracting its contour points and computing its
(asymmetric) chamfer distance from theith pivot examplar to give theith element of the
feature vector. Intuitively, images that are close together in image space have similar
distances to the pivot examples and therefore have similar feature vectors. However,
selecting pivots from the same region of space results in highly correlated (i.e. redundant)
features that may degrade performance.

Experiments to investigate the effect of various parameters [13] suggested that:

• Most information for this dataset was captured usingD ≥ 100 features (pivot ex-
amplars).

• Due to the non-linear nature of the Lipschitz embedding, it is difficult to identify
an intuitive distance metric between two feature vectors. However, using the Ma-
halanobis distance resulted in a noticeable improvement over the Euclidean and
Manhattan metrics.

• No significant difference in performance was observed over 100 randomly selected
sets of exemplars although a more intelligent approach to feature selection was
recently investigated using Boosting [2].

2.3 Histogram of Shape Contexts (HoSC)

Our final selected shape descriptor is the Histogram of Shape Contexts, suggested by
Agarwal and Triggs [1], and demonstrated using silhouettes of the human body. In this
representation (see Figure 2), every point along the contour of the silhouette is assigned a
histogram (known as its Shape Context [4]) representing the distribution of other contour



Figure 3: In this example, both the angel and the demon are composed of identical contour
segments such that their histograms become indistinguishable as the spatial extent (i.e.
the radius) of the shape context vector approaches zero. Note thatexacttesselation is not
required for very different silhouettes to result in very similar feature vectors.

points in a local neighbourhood (defined by the Shape Context ‘radius’). Having com-
puted the Shape Context for all contour points on all silhouettes in the database,D Shape
Contexts are then selected at random and used as initial centres in ak-means clustering
scheme. Following clustering, the updated cluster centres are used as a vector quantiza-
tion ‘codebook’ in order to assign each contour point on a given silhouette to a cluster.
A histogram over cluster assignments then forms the feature vector for a given silhou-
ette. This histogram should be normalized with respect to the number of contour points to
make the descriptor scale-invariant. Furthermore, in order to reduce quantization effects,
‘soft’ voting allows each contour point to vote into more than one bin.

It is suggested that this descriptor may be superior due to its locality – corrupting
a small region of the silhouette should modify only a few features, in contrast to the
DCT and Lipschitz embeddings where the whole silhouette contributes to every feature.
However, we note that: (i) in most cases the corruption of the silhouette (e.g. due to
shadows or occlusion) results in an increase or decrease in the number of contour points
such that normalizing the histogram then affectseverybin; (ii) typical distance metrics
(e.g. Euclidean distance, Bhattacharyya coefficient) do not exploit this locality in any
beneficial way; (iii) no explicit distinction is made between the interior and exterior of the
silhouette, thus discarding potentially valuable information (see Figure 3).

These concerns provided the motivation behind comparing the Histogram of Shape
Contexts to other descriptors in order to quantify any benefit gained from the substantial
increase in computational complexity. As with the other descriptors, a basic analysis of
the parameters [13] suggested that:

• Again, most information was captured byD ≥ 64 features (codebook vectors).

• The use of intuitive distance metrics for histograms (e.g. Bhattacharyya distance)
did not significantly improve performance over other (less correct) metrics such as
the Manhattan and Euclidean distance (this has previously been attributed to ‘soft’
voting [1]).

• Since codebook vectors are typically well distributed after clustering, performance
was largely insensitive to their initial random selection as evaluated over 100 trials.



Figure 4: Example silhouettes from the synthetic dataset.

• Performance was stable for any sensible Shape Context ‘radius’ of at least the mean
distance between all pairs of contour points.

• Although we used 12 angular bins (a common value), performance is stable for any
value above 8. Performance was largely invariant to the number of radial bins.

• The use of ‘soft’ voting (as advised in [1]) to avoid quantization effects provided a
small benefit when each contour point voted into> 4 bins.

3 Method

In order to evaluate the selected shape descriptors, we used motion capture data (avail-
able at the time of printing fromhttp://mocap.cs.cmu.edu) to generateN=10000
128×128 binary silhouettes of a human body model (Figure 4). This training set included
synthetic silhouettes from several different ‘exercise’ motions generated from 4 camera
locations equally spaced from 0◦ to 90◦ in azimuth.

In addition to the training data, an additional 250 silhouettes were generated from
synthetic data to test the retrieval performance of the shape descriptors. Furthermore,
40 real test images were obtained by background subtraction of several sequences of a
subject undertaking exercise motions similar to those in the training data.

For the purposes of this evaluation, all images were normalized by translating and
scaling the silhouette such that it lay within the central 90% of the image. We also as-
sumed that the subject was upright in the image to avoid any need for rotation invariance;
any exceptions to this rule (e.g. handstands, cartwheels) were explicitly modelled in the
dataset. All silhouettes were then reduced to a feature vector ofD = 100 dimensions
using each of the proposed descriptors.

Silhouettes generated from synthetic data were automatically labelled with the image
projections of the joint centres since these values were directly available. For silhou-
ettes obtained from real sequences, the image projections of joint centres were labelled
manually using the mouse in order to evaluate performance.

Like many other studies, we employ silhouettes since they are readily obtained from
image data by background subtraction and are relatively invariant to clothing and light-
ing. However, they are generally restricted to scenes with a static camera and known
background, and useful image data (e.g. internal edges) are discarded.
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Figure 5: Example graph ofk/N againstf (k)/ f (N). For comparison, the dashed line at
unity indicates the average curve produced by random ordering whilst the dash-dot curve
indicates the best possible ranking where distance in image space correlates perfectly with
distance in pose space.

3.1 Evaluation method

Image retrieval tasks typically requireclassificationof the query input such that stored
examples of the same class are returned. Recovered exemplars are therefore classed as
positive or negative and evaluation tools such as the Receiver Operating Characteristic
(ROC) curve and Precision-Recall curve may be used to compare retrieval accuracy be-
tween different shape descriptors.

In the context of human pose estimation, however, exemplars cannot be classified
into ‘positives’ and ‘negatives’ since the underlying pose space is continuous. Therefore,
we use the sum of squared errors between corresponding joint centre projections1 in the
image to compute the distance,d(xi ,xq), in pose space between each training example,xi ,
and a query,xq. Given a query silhouette, we rank the training data in order of similarity
to the query as quantified by the chosen shape descriptor, denoting the index of the closest
training example byr(1) and the furthest byr(N). We then generate a curve,f (k):

f (k) =
∑k

j=1d(xr( j),xq)
k

, (4)

indicating the mean distance to the query of thek highest ranking training examples for
k = 1. . .N. For a qualitative performance evaluation, we compare the normalized curve
of k/N againstf (k)/ f (N) in addition to the corresponding curves for the expected per-
formance of a random ranking of the training data (i.e. unity) and for the best possible
ranking, as shown in Figure 5. Each curve can be interpreted as a measure of correlation
between distance in state space and distance in feature space – high correlation (desirable)
produces a ‘low’ curve whereas low correlation produces a ‘high’ curve.

1Using projected joint centres rather than their full 3D position avoids many (though not all) problems
associated with ‘kinematic flip’ ambiguities [11] where very different poses give rise to very similar projected
joint centres.



(a)

(b)

(c)

(d)

Figure 6: Four test datasets: (a) clean silhouettes; (b) with added noise; (c) with lower
quarter removed; (d) real silhouettes manifesting some segmentation error.

4 Results

We compared the three selected shape descriptors using four test datasets (Figure 6) con-
taining silhouettes that were: (i) perfect; (ii) noisy; (iii) partially occluded; (iv) real.

We begin by comparing the three methods for clean data (Figure 6a) taken directly
from the synthetic dataset. Figure 7a shows that, although Lipschitz embeddings perform
slightly worse than the other descriptors, accuracy is similar for all three representations.

To create a noisy data-set, we corrupted the clean test silhouettes with Gaussian noise
along the contour (Figure 6b). Such corruption typically results from segmentation errors
at the boundaries and compression artefacts. From Figure 7b, we see that performance
is largely unchanged by the added noise, with the exception that DCT coefficients mar-
ginally outperform the Histogram of Shape Contexts. This may be explained by the fact
that lower order DCT coefficients (as used in this case) encode the lower frequencies
within the image and therefore suppress noise. Again, Lipschitz embeddings do not per-
form as well as the other two methods.

In order to simulate occluded data, we removed the bottom quarter of each test silhou-
ette and renormalized, as if the subject had been obscured from approximately knee-level
down (Figure 6c). Although this is a relatively crude approach, it presents each method
with data that is somewhat different from the training data yet is typical in real life appli-
cations. Figure 7c shows that the Histogram of Shape Contexts performs well for small
k (approximately the top 1% of the data) but is out-performed for higherk by the DCT.
Lipschitz embeddings are again typically out-performed by the other two methods.

For the final experiment, we use real silhouettes from a ‘starjumps’ sequence (Fig-
ure 6d), obtained via background subtraction and with projected joint centres labelled by
hand. Due to the limited number of test images, the curves in Figure 7d are slightly noisier
but suggest that DCT coefficients significantly outperform both Histogram of Shape Con-
texts and Lipschitz embeddings. More specifically, the Histogram of Shape Contexts and
Lipschitz embeddings have perform similar to a random ranking for this data-set. This is
a surprising and interesting result, particularly since this is arguably the most important
test set of the four. It may be questioned whether the normalization procedure employed
in this experiment might favour one method over another. However, the test silhouettes
show little corruption that would have a significant effect on this process.
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Figure 7: Results for (a) clean data; (b) noisy data; (c) occluded data; (d) real data.
Curves correspond to DCT coefficients (ortho), Histogram of Shape Contexts (hists) and
Lipschitz embeddings (lipschitz)

5 Conclusion

We have presented a comparison of three shape descriptors for the application of human
pose estimation from binary silhouettes. In particular, we compare two straightforward
and established methods (the DCT and Lipschitz embeddings) against the recently pro-
posed Histogram of Shape Contexts (HoSC), a ‘local’ descriptor that is claimed to be
superior to ‘global’ methods. However, despite its computational complexity, our results
suggest that the HoSC offers little (if any) benefit over the alternative, simpler methods.

Although it has not escaped our attention that some of our results appear to contradict
those that have appeared in previous works, we note that these studies often employed a
limited number of training images [1] or more a complex matching process [2]. To the
best of our knowledge, this study is the first to evaluate such descriptors under controlled
conditions where meaningful comparisons can be made.
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