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Abstract

Detection of unusual objects amongst a highly textured background is a
difficult problem, especially when the texture is manifest in the temporal di-
mension as well. Outdoor scenes involving waving trees or moving water are
examples of such a scenario, but are nevertheless frequently encountered in
real world vision applications. By defining a simple but rotationally sensi-
tive Local Binary Pattern (LBP) operator and applying it in a probabilistic
sense we present a compact but useful feature for tackling moving textures.
But as we demonstrate, this alone is not sufficient for good segmentation in
difficult circumstances. Cooccurrence of different features in a pixel’s local
neighbourhood provides a powerful mechanism for boosting the reliability of
the foreground/background decision task. By using the conditional probabil-
ities yielded by pairwise cooccurrence of 4-connected pixels, and casting the
problem as one of Combinatorial Optimization, our results show that useful
segmentation is possible from challenging dynamic backgrounds.

1 Introduction
Effective background modelling is a crucial first stage in most computer vision applica-
tions, especially in outdoor environments. The reliability with which potential foreground
objects can be identified directly impacts on the efficiency and performance level achiev-
able by subsequent processing stages such as tracking, recognition and threat evaluation.
The nature of such a background is intrinsically statistical. Whilst the concept of statis-
tical scene modelling suggests that there is no exact distinction between what constitutes
foreground and background, a useful practical definition for surveillance in a busy urban
scene is that people and the objects they cause to move are foreground. Buildings, fix-
tures, trees and permanent objects, together with any environmental change in lighting
such as shadow caused by moving clouds, form the background. Critically, we con-
sider that background is in general necessarily amongst foreground, i.e. it can be literally
behind and in front of foreground objects, especially in urban outdoor scenes, as later
examples show. The task of the background model in such a setting is to discriminate be-
tween the two classes under a potentially wide variety of lighting conditions. Evidently,
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confusion might still arise, since trees sway in the wind, tending to become foreground,
whilst people park their cars, which are eventually subsumed by the background. The
most commonly encountered models are based on per pixel techniques such as adaptive
Gaussian Mixture Models [13, 14], or subspace analysis based methods [10, 8], and both
approaches have been used with success in many applications. However, all these tech-
niques require and assume that the background in a scene settles quickly into a stationary
state, so that the distribution of background pixels becomes stable and tight, although not
necessarily continuous. This is often not the case, especially in outdoor scenes.

The focus of this paper is to tackle the more challenging problem of modelling highly
textured nonstationary backgrounds, and in particular, segmenting people moving amongst
dense nonstationary trees and foliage excited by the wind. Traditionally this has been a
difficult problem to solve effectively due to the highly chaotic nature of such image areas
containing branches and leaves. The high information content, or entropy, of patterns
encountered and their temporal behaviour make them inherently incompressible and thus
hard to model compactly. With subspace techniques as employed in [10, 8], the eigenvec-
tors of image covariance represent linkage of pixel variations across the entire scene, and
are thus inefficient at capturing such independent local stochastic processes. Connectiv-
ity in the temporal dimension as exploited by Linear Prediction [14] is also likely to be
ineffective due to the lack of cyclic components of intensity at a pixel.

On the other hand, Gaussian Mixture Models (GMM) [13] have been shown highly
effective when it comes to acquiring and adapting to the statistical characteristics of be-
haviour at a pixel. However, high variance (or covariance for a colour image) inevitably
implies low selectivity for a Gaussian component, so unless the spread of common pixel
values is confined to several narrow modes, there is the danger that a foreground object
will fail to be detected reliably. In addition, the GMM is at the opposite extreme from
the subspace model when it comes to connectivity: in general it offers no mechanism for
support regarding foreground/background decisions between pixels, either local or global.

A further additional requirement for a background model intended for outdoor use is
that it must not be severely affected by changes in scene illumination with regard to both
intensity and chromaticity, although in some implementations [6] constancy of the latter
is used to mitigate the effect of false positives caused by shadows.

From these observations it becomes apparent that a candidate solution should satisfy
the following: (1) have a probabilistic basis, (2) encode local pixel patterns, (3) exhibit re-
silience to lighting variations, (4) provide local support among pixels, and (5) be efficient
in implementation. To this end, we propose a solution which embraces three important
aspects. Firstly, a rotationally variant simplification of the LBP8 operator as the image fea-
ture reduces susceptibility to illumination changes and provides an initial level of pattern
sensitivity. Secondly, a cooccurrence map representing mutual conditional probabilities
between adjacent pairs of pixels lends local support to the foreground/background seg-
mentation decisions, encoding a further degree of pattern dependence. Finally, the array
of image pixels is treated similarly to a Markov Random Field (MRF), and an optimal re-
alization of the segmentation in terms of pixel labelling in a combinatorial sense is arrived
at by a minimum cut on a related graph. Experiments on a challenging dataset involving
objects heavily obscured by tree branches demonstrate the advantage of this approach.



2 High Entropy Scenes
Many typical scenes contain areas of high inherent complexity such as specular reflec-
tion from disturbed water and chaotic occlusion and appearance variation of vegetation
moving under the influence of air flow. From the standpoint of information theory these
represent high entropy sources [7], whilst signal processing tends to consider the effect
spectrally, and refers to sources emitting wideband noise. In single frames, the chaos is a
spatial property, whilst in video such stochastic variation occurs temporally as well. Ex-
act modelling of the precise characteristics of intensity over time in a high entropy image
area is by definition almost impossible: the information is highly incompressible.

From a foreground/background detection point of view we wish to highlight unusual
state or behaviour of the objects in view, which might for example entail a person walk-
ing in front of a tree in leaf, or perhaps passing behind it, causing partial occlusion due
to the background now being in front of the person of interest. In both cases, the require-
ment is to identify some less common pixel intensity configurations amongst a potentially
broad range. Occlusion of the foreground, as in the second case, merely compounds the
detection problem by fragmenting the available useful evidence.

2.1 Rotationally Specific LBP4

High entropy image content is commonly modelled as texture [15]. This general approach
does not encode exact pixel configurations, rather typical patterns exemplary of the region.
The LBP8 operator described in [9] cleverly encodes a summary of patterns in a 3× 3
pixel block into one of ten different codewords in a way which renders it insensitive to
both absolute illumination and pattern rotation. These are both crucial attributes in texture
analysis. Using such a scheme, segmentation on the basis of texture may be achieved by
identifying regions with a similar probability distribution over the ten possible codewords.

But the requirement for foreground/background segmentation is different. We are not
interested in regional statistics, but pattern statistics at a pixel, and furthermore, rotational
invariance is not only unnecessary, but a hindrance with regard to our modelling require-
ment. Thus we introduce the concept of a Rotationally Specific Local Binary Pattern
(RSLBP) operator for grayscale images, obtained by simplifying LBP8. As shown in
Figure 1 the value of the RSLBP4 operator at a pixel is given by subtracting the intensity
value of the centre pixel from each of its 4-connected neighbours. The sign of the result of
each subtraction contributes a single bit to form a 4 bit codeword. For us, the spatial map-
ping from neighbour to bit position is immaterial as long as it is applied consistently. This
rotationally specific texture feature is quick and simple to compute, and yields a compact
characterization of two-dimensional image gradient at a pixel fit for our purpose.

Application of the RSLBP4 operator to an image produces a symbol Sr = {0 . . .15} at
pixel location r. By considering the 16 bin histogram of these symbols at each pixel over
a training set of K frames, we obtain an estimate of Probability Density Function (PDF)
representing pixel configuration over this feature:

p(r = Sr|x,y) =
1
K

K

∑
k=1

u where u =
{

1 if R(IT
x,y,k) = Sr

0 otherwise
(1)

A query image IQ may be tested against this simply by evaluating the RSLBP4 operator
at every pixel and obtaining the appropriate probability from the histogram, which in turn
is tested against a threshold to yield a rudimentary foreground/background segmentation.



Figure 1: Kernel for the new RSLBP4 operator: a 4 bit word is composed from the boolean
results of thresholding the 4-connected neighbours against the centre pixel.

2.2 Cooccurrence Matrix
In order to provide local support between pixels, we also use the training data to build
a cooccurrence matrix between every adjacent pair of 4-connected pixels both horizon-
tally and vertically in the image. This two-dimensional histogram represents the joint
probability of two separate RSLBP4 symbols occurring simultaneously at the two ad-
jacent locations. Although conceptually, cooccurrence between pixels horizontally and
vertically is the same, from an implementation point of view it is preferable to consider
it in two separate arrays, Ch of size (M − 1)×N × 16× 16 elements, and Cv of size
M× (N −1)×16×16 elements.

Ch(x,y, i, j) =
1
K

K

∑
k=1

u where u =
{

1 if R(IT
x,y,k) = i & R(IT

x+1,y,k) = j
0 otherwise

(2)

Cv(x,y, i, j) =
1
K

K

∑
k=1

u where u =
{

1 if R(IT
x,y,k) = i & R(IT

x,y+1,k) = j
0 otherwise

(3)

at location (x,y) where i, j = {1,2 . . .16}, R(·) is the RSLBP4 operator, and IT
k k =

{1,2 . . .K} is the training set. The cooccurrence matrices at each pixel are normalized
to the number of training samples K such that they correctly reflect the joint PDF.

Now consider two horizontally adjacent pixels r and s in a query image IQ hav-
ing RSLBP4 symbols Sr and Ss respectively. If on the basis of our information solely
about pixel r from the training data we decide that it is background, then we can obtain
from the cooccurrence relationship a conditional probability of symbols over pixel s from
Ch(xr,yr,Sr,Ss). But in order for this to be a valid probability, we have to normalize Ch
over its last dimension such that the conditional probability of s given r is:

p(s = Ss|r = Sr,xr,yr) =
Ch(xr,yr,Sr,Ss)

∑ j Ch(xr,yr,Sr, j)
(4)

However, the relationship between r and s is symmetrical, so if s were known to be
background then the conditional probability over r comes from a similar expression. We
note however, that the normalization constant in the denominator must be obtained by
summing along the third dimension of Ch this time:

p(r = Sr|s = Ss,xr,yr) =
Ch(xr,yr,Sr,Ss)
∑i Ch(xr,yr, i,Ss)

(5)



It becomes apparent that these mutually dependent results cannot be acted on se-
quentially, especially when it is remembered that a pixel is potentially supported by four
neighbours. We consider that for any given query image there will be a combination
of foreground/background decisions amongst the pixels, i.e. a segmentation by pixel la-
belling, such that the labelling process is made optimal according to our localized support
measure introduced above. To find the optimal labelling of all pixels in a scene, we assert
that the problem is an exercise in Combinatorial Optimization and look to a graph cut
technique in order to solve it.

3 Combinatorial Optimization
The problem of choosing a label for each pixel in an image from a finite set of labels
according to a set of penalty expressions is the essence of discrete optimization. The ob-
jective is to separate the pixels according to their labels in the configuration which incurs
the least penalty. If the penalty criteria are correctly designed, the optimal separation is
useful in some way.

The labelling of pixels from a discrete set is directly equivalent to making a cut on a
graph consisting of vertices and edges as shown in Figure 2. In such a graph there is a
vertex for each pixel, and a special terminal vertex representing each element of the label
set. Every pixel node is coupled by an edge to every terminal, but edges also exist between
the pixels to represent their interdependencies. According to a scheme of penalties, every
edge is assigned a weight determined by the cost of cutting that edge. The optimal solution
is obtained by cutting enough edges to leave every pixel connected to exactly one terminal,
thereby taking on that terminal’s label, and yielding the combination of pixel to terminal
assignments which gives the minimum cost cut of the graph and hence the overall problem
solution.

It was shown in [4] that for the special case of two labels, an optimal solution can be
obtained in polynomial time using the Minimum Cut/ Maximum Flow (MinCut/MaxFlow)
algorithm. Fortunately our foreground/background segmentation is just such a binary
problem. Segmentation into more regions than this is potentially interesting, but the
multi-way cut has been shown to be NP-complete [3], although [2] describes a way of
achieving a local energy minimum within a constant factor of the global minimum by
their alpha expansion algorithm.

The graph cut problem has much in common with the solution of Bayesian networks
and Markov Random Fields (MRF) [5], whereby a realization of the field encompasses
the interdependencies of the nodes. A method described in [12] demonstrates how local
support can be achieved by considering the grid of pixels as an MRF utilising the Potts
interaction model [11], in which the penalty for separating pixels is a constant. This
leads to their goal of overall smoothness in the segmentation, which whilst might look
appealing may eventually not be accurate.

In solution of the binary label case by the MinCut/MaxFlow algorithm, one can imag-
ine trying to transport as much water from the source node to the sink node by a system
of pipes having capacity limits equal to the edge weights. When no more capacity can be
added to the network, the path traced by the saturated pipes (edges) defines the minimum
cut. In our case, the capacity of a pipe depends on which way the water is flowing, i.e.
which of its end nodes is joined to the source and which to the sink. This is crucial in



determining which conditional probability, and hence penalty, is applied at the final seg-
mentation. In our algorithm, illustrated for clarity here by only three pixels in Figure 3(a),
the cost of a given labelling L is the energy function

E(L) = ∑
r∈IQ

Dr(l)+ ∑
{r,s}∈N

Vrs(p(r|s), p(s|r)) (6)

consisting of penalty terms D derived from a pixel’s probability in isolation of being back-
ground and an interaction term V based on conditional probability from cooccurrence.
Here N represents the 4-connected neighbourhood of connections as shown in Figure 2
(not to be confused with the 4-connectivity earlier in RSLBP4, even though it involves the
same pixels). The edge weights illustrated in Figure 3(a) are assigned as follows:

Edge Forward Capacity Reverse Capacity
tBG(r) 1 1
tFG(r) β

(p(r=Sr)+0.01)
β

(p(r=Sr)+0.01)
n(r,s) λ p(s = Ss|r = Sr,x,y) λ p(r = Sr|s = Ss,x,y)

The V terms can be seen as a penalty for separating pixels which, according to cooc-
currence, should belong together and to the background. To cause them to end up sepa-
rated, one would have to have a very low individual probability of occurring. The con-
stants β and λ control the magnitude of the effect of the D and V penalties relative to each
other, and also to the unity penalty assigned to the cost of being background.

Figure 2: Graph for an array of only 9 pixels: source and sink nodes represent the two
classes A and B. A cut must separate A and B: the MinCut/MaxFlow algorithm finds the
cheapest. A practical graph contains a node for every image pixel. Figure taken from [1].



(a) (b)

Figure 3: (a) More detailed graph for an array of only 3 pixels, showing Background as the
source label and Foreground as the sink. Terminal and neighbourhood link edge weights
are shown as t and n respectively. Cutting a lower t-link joins a pixel to the BG label
incurring cost tBG (b) Scenes chosen for the experiment lie within highlighted windows.

4 Experiment
To demonstrate the effectiveness of our algorithm using RSLBP4 and MinCut-MaxFlow,
the challenging scene shown in Figure 3(b), containing a leafy tree in a courtyard, was
chosen. The leaves move significantly in the wind whilst people pass behind the tree, but
remain visible through the foliage. From a dataset of 2500 monochrome frames of size
128×96 pixels, 2000 are used as the training data to build the probability distributions and
the cooccurrence matrices Ch and Cv. From the remaining frames we select an interesting
subset in which a person enters the scene from the top right and walks towards the camera.
We compare our RSLBP4 operator with the standard LBP8 operator, and also with a more
primitive feature: a 16 level grayscale derived by merely truncating the pixel intensity to
4 bits. The MinCut algorithm and the previously tabulated weighting scheme was applied
in all cases, and results are shown in Figure 4. We further demonstrate contribution of
the MinCut stage with a comparative result in which it is not used: Figure 5 shows what
happens when individual pixel probabilities alone are used for segmentation using the
RSLBP4 operator. Even when the foreground detection threshold is optimized manually
to 0.045, there is only a hint of the presence of a person, and most of the foreground
pixels are noise. Figure 6 provides further evidence in support of the RSLBP4 and MinCut
combination, with images from the right hand window in the scene of Figure 3(b).

Although the Combinatorial Optimization algorithm chooses discrete labels as its so-
lution, the notion of a detection threshold still exists in the form of the relative scaling
of the various edge weights. In our implementation, β controls the effect of the pixels’
individual probabilities, whilst λ regulates the influence of the inter-pixel support. In
each case, since the probabilities vary between 0 and 1, the two constants act as maxi-
mum values for their own particular type of edge. Choosing β = 7 and λ = 10 scales the
optimization favourably when the tBG edges are set to unity.
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Figure 4: Three frames from the left hand window of Figure 3(b) in which a person walks
behind a tree. From top to bottom: Original, Ground Truth, using RSLBP4 operator, using
LBP8 operator, and using 16 level grayscale, all with MinCut. Note that our RSLBP4
operator is the only one to produce a useful segmentation here.
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Figure 5: The same three frames using RSLBP4 but without MinCut, and hence no local
support. The person is barely discernible amongst the noise. LBP8 and Grayscale are
similarly ineffectual without the vital MinCut stage.



Our RSLBP4 operator can generate 16 different values as currently defined, leading to
a cooccurrence matrix with only 16×16 entries. This compactness is convenient for two
practical reasons. Firstly the memory required to store the inter pixel data is manageable,
and secondly the quantity of training data to adequately estimate it remains modest. LBP8
generates only 10 possible values, but as the experiments show, its rotational invariance
renders it useless for our purpose. A rotationally variant version of LBP8 generates 59
combinations and is thus, according to the previous arguments, not so attractive.

Overall the favourable segmentation afforded by RSLBP4 in our results in Figures 4
and 6 strongly supports the idea that it is a better choice than the other two commonly
encountered features for the current application. Furthermore, the comparison between
Figures 4 and 5 show clearly that the graph cut technique contributes enormously to the
quality of the segmentation. We believe that the ‘double level’ of local spatial support
afforded by the partnership of the two techniques is the reason for the distinctive result.
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Figure 6: Further results using RSLBP4 and MinCut from the right hand window in Figure
3(b) in which people pass behind trees. The algorithm succeeds in identifying unusual
objects in spite of considerable local clutter from the leaves.

5 Conclusion
We have introduced a simple new operator RSLBP4 based on existing LBP methods, and
have shown how it can be applied to advantage in the foreground/background segmen-
tation of highly textured dynamic scenes. We claim that its sensitivity to rotation, but
resilience to overall illumination variations, both contribute vitally to its success in this
application. The restricted range of output symbols of RSLBP4 permits tractable acquisi-
tion of adjacent pixel cooccurrence data. We have shown that such data may be used to



construct a graph, of which the minimum cost cut facilitates mutually supporting infer-
ences between pixels, leading to a useful segmentation which would not have been easy
to arrive at otherwise. Although a model involving separate collection of training data is
described here, it is anticipated that an adaptive online derivative would also be possible,
and that this would provide a useful direction for further research.
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