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Abstract

In this paper, we propose a distribution-based active contour model for brain
MRI segmentation. As a generalization of the Chan-Vese piecewise-constant
model, our solution uses Bayesian a posterior probabilities as the driving
forces for curve evolution. Distribution prior, if available, can be seamlessly
integrated into the level set evolution procedure. Unlike other region-based
active contour models, our solution relaxes the global piecewise-constant as-
sumption, and uses locally varying Gaussians to better account for intensity
inhomogeneity and local variations existing in many MR images. More accu-
rate and robust segmentations are therefore achieved. Experiments conducted
on synthetic and real brain MRIs demonstrate the improvement made by our
model.

1 Introduction
Magnetic resonance imaging (MRI) is a rich source of information regarding the soft
tissue anatomy of human brains. Segmentation of Magnetic resonance imaging (MRI)
brain images into different tissue types, i.e., gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) is a critical and fundamental task for the large volume of 3D
MRI data to be effectively utilized for disease diagnosis, functional analysis of brains and
the treatment of disease related to brain anamolies.

A variety of approaches to brain MRI segmentation have been proposed in the litera-
ture. Histogram-based approaches estimate the probability of a class label given only the
intensity for each voxel. Such estimation problems are usually formulated in the sense
of maximum a posteriori (MAP) or maximum likelihood (ML) estimates. With respect
to the form of the probability density function, finite Gaussian mixture models [12] are
assumed and used in segmentation.

Recently, segmentation algorithms [15, 2, 3, 10, 13, 5] that use region-based active
contour models have gained great popularity. Active contour without edge model, com-
monly known as Chan-Vese piecewise-constant model [2], uses a stopping term based on
Mumford-Shah segmentation functional so that the model can detect object boundaries
with or without gradient. Although impressive experimental results have been reported
for this model and its variants [10, 5] some common drawbacks and limitations exist
within this group of solutions. A mixture of global Gaussians (piecewise-constant can
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be regarded as the degenerate case) has been used a convenient assumption for modeling
the intensity distribution. Global means are utilized to discriminate regions from each
other. However, ”homogenous regions with distinct means” is rarely an accurate account
in practice, especially for medical images. In addition, spatial distribution priors, often
available and being used extensively in histogram-based models, are normally neglected
in the region-based active contour models. Prior knowledge about the organ’s location
sometimes is an indispensable resource to separate certain tissue types from their sur-
roundings.

Non-parametric region-based active contours models (Chan-Vese [3] and Tsai-Yezzi
[13]) can theoretically handle the local intensity variation problem. In their algorithms,
an image u0 is modeled by piecewise smooth functions u+, u− that are defined inside and
outside a closed active contour, respectively. The curve evolution is carried out through
an iterative process. In each iteration, u+ and u− are estimated first, by solving a Poisson
equation with Neumann boundary condition. Then, the level set function is updated fol-
lowing a gradient flow that minimizes the simplified Mumford-Shah functional. Unlike in
the parametric models, images in the piecewise smooth framework (both Chan-Vese and
Tsai-Yezzi) are modeled as a smooth random field within each region. Intensity variabil-
ity thus can be handled across regions without the need to specify the change on statistical
parameters.

However, with the burden to solve a Poisson PDE in each iteration, piecewise-smooth
models suffer from inevitable high computational costs induced from solving certain huge
sparse linear system. Being computationally expensive has been a major obstacle for these
models to be used in practical 3D medical applications [8].

1.1 Our proposed solution
Aiming to reap the benefits and avoid the drawbacks of the piecewise-constant and piecewise-
smooth models, we propose a bridging solution in this paper. To generalize the Chan-Vese
model, we adopt Bayesian a posterior probabilities as the driving force for the curve evo-
lution. Our model has two desired properties: 1) distribution prior can be seamlessly
integrated into the level set evolution procedure and leads to more robust segmentations;
2) piecewise constant assumption is relaxed from ”global” to ”local”, and local means
are used as the area representatives. Being able to better account for intensity inhomo-
geneity, our model works particularly well for the images with low intensity contrasts and
spatially varying brightness variations. When the computation switches from global to lo-
cal, segmentation ”twisting” (same objects are labeled oppositely at different local areas)
may happen if no global control is in place. We tackle this issue with a selective update
scheme, which enforces a global-to-local consistency over the entire image domain.

2 Methods
Let C be an evolving curve in Ω. Cin denotes the region enclosed by C and Cout denotes
the region outside of C. Chan-Vese (two-phase) piecewise-constant model is to minimize
the energy functional

F(c1,c2,C) = µ ·Length(C)+λ1

∫

Cin

|u0− c1|2dxdy+λ2

∫

Cout

|u0− c2|2dxdy
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Figure 1: Chan-Vese model’s inability to handle local image variations. a) is a slice of
brain MRI image before bias correction. b) is the curve evolution result using Chan-Vese
model. c) is the result using our method.

where c1 and c2 are the averages of u0 inside C and outside C respectively.
This model has several attractive properties: 1) it is very robust to weak boundaries

and noise; 2) interior contours can be automatically recovered; 3) the initial curve can be
anywhere in the image; 4) it has few parameters for adjustment compared to MRF-based
methods; 5) Efficiency wise, re-initialization of the level set function often is not required,
and big step size can usually be taken for level set update.

These appealing advantages, however, are not easily utilizable to the full extent in
practice. Global Gaussian distribution assumption are not an accurate depiction of lo-
cal image profile for many medical images. Negligence of local information would of-
ten result in undesired segmentations. Figure 1 shows an example where the Chan-Vese
piecewise-constant model fails to produce an expected segmentation result. Fig 1.a) is an
MR image with bias field. The bias field lights up gradually from the top to the bottom
of the image. Due to this intensity variation, the global means c1 and c2 can not represent
the image well, and undesired segmentation, as highlighted in Fig 1.b), is resulted. (The
figure is better seen on screen than in print)

Piecewise-smooth models [3, 13] provide a solution for the intensity variability prob-
lem. Gradual intensity changes, as in the Fig. 1 can be handled with [3, 13], however, high
computational cost and being sensitive to curve initialization pose a barrier for practical
applications.

2.1 Our Local Distribution-based Model
Let S = {in,out} be the two classes for a two-phase model. The probability of the pixel
(x,y) belonging to in and out is denoted by P(in|(x,y)) and P(out|(x,y)) respectively. Let
Pr(in) and Pr(out) be the class prior probabilities at (x,y). Then,

P(in|(x,y)) =
Pr(in(x,y))P(u0(x,y)|in)

P(B)
P(out|(x,y)) =

Pr(out(x,y))P(u0(x,y)|out)
P(B)

(1)

where P(u0(x,y)|in) is the likelihood of a voxel in class in has the intensity of u0(x,y).
P(B) is a constant. Bayesian decision rule states that u0(x,y) should be classified into the
class in if:

Pr(in(x,y))P(u0(x,y)|in) > Pr(out(x,y))P(u0(x,y)|out)
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Figure 2: Spatial prior probability images of CSF, GM and WM.

or otherwise into out. If a perfect segmentation/classicition is achieved, this inequality
should hold for each voxel (x,y), if every pixel has been classified into the correct class.
Based on this observation, we can formulate the segmentation problem as the minimiza-
tion of the following energy:

F(C) = µ ·Length(C)−
∫

Cin

log(Pr(in)P(u0(x,y)|in))dxdy

−
∫

Cout

log(Pr(out)P(u0(x,y)|in))dxdy

Note that our overall model is similar to [10, 11], but the setup of the likelihood term
is different, which will be explained next.

2.1.1 Spatial distribution priors: Pr(in) and Pr(out)

Many distribution prior images have been generated from recent brain studies [4]. A
widely used model is provided by the Montreal Neurological Institute [7] as part of the
ICBM, NIH P-20 project. MNI prior is made of three probability images that contain
values in the range of zero to one, representing the prior probability of a voxel being
either GM, WM or CSF after an image has been normalized to the same space (see Figure
2). In this paper, we are particularly interested in extracting sub-cortical GM, therefore we
take the GM and WM prior images as Pr(in) and Pr(out) respectively, for demonstration
purpose. For these prior images to be applied, a registration is need to align the prior and
the input image. We used the affine registration routine provided by SPM [12] in all the
3D experiments of this paper.

2.1.2 Likelihood terms: global Gaussian versus local

As illustrate in Fig. 1, global Gaussians and global means are not an accurate description
of the local image profile, especially when intensity inhomogeneity is present. A remedy
is to relax the global Gaussian mixture assumption and take local intensity variations into
consideration. More specifically, local Gaussians (local binary as the degenerate case)
should be used as a better approximation to model the vicinity of each voxel.

In the Chan-Vese model, two global means c1 and c2 are computed for Cin and Cout . In
our approach, we introduce two functions v1(x,y) and v2(x,y), both defined on the image
domain, to represent the mean values of the local pixels inside and outside the moving
curve. By Local, we mean that only neighboring pixels will be considered. A simple



implementation of the ”neighborhood” is to introduce a rectangular window W (x,y) with
size of 2k +1 by 2k +1, where k is a constant integer. Therefore,

v1(x,y) = mean(u0 ∈ (Cin∩W (x,y)))
v2(x,y) = mean(u0 ∈ (Cout ∩W (x,y)))

With the new setup, our segmentation model can then be updated as a minimization
of the following energy:

F(v1,v2,C) = µ ·Length(C)−
∫

Cin

(
log(Pr(in))− log(σ1)− (u0− v1)2

2σ2
1

)
dxdy−

∫

Cout

(
log(Pr(out))− log(σ2)− (u0− v2)2

2σ2
2

)
dxdy

The variances σ1 and σ2 should also be defined and estimated locally. However, due to
the fact that local variance estimation tends to be very unstable, we use global variances
(for the pixels in Cin and Cout ) as uniform approximation.

2.2 Level set framework and gradient flow
Using the Heaviside function H, and the one-dimensional Dirac measure δ [2] as the
bridge, the energy function F(v1,v2,C) can be minimized under the level set framework.
Let T1 = log(Pr(in)) and T2 = log(Pr(out)), and we have the following new functional to
minimize:

F(v1,v2,C) = µ
∫

Ω
δ (φ |∇φ |)dxdy−

∫

Ω

(
T1− log(σ1)− (u0− v1)2

2σ2
1

)
H(φ)dxdy

−
∫

Ω

(
T2− log(σ2)− (u0− v2)2

2σ2
2

)
(1−H(φ))dxdy

Under the level set framework, we deduce the associated Euler-Lagrange equation for
the level set function φ . Parameterizing the descent direction by an artificial time t ≥ 0,
the gradient flow for φ(t,x,y) is given as

∂φ
∂ t

= δ (φ)
[

µdiv(
∇φ
|∇φ | )− log

Pr(in)
Pr(out)

+ log
σ1

σ2
−

(
(u0− v1)2

2σ2
1

− (u0− v2)2

2σ2
2

)]
(2)

φ(0,x,y) = φ0(x,y) in Ω

where φ0 is the level set function of the initial contour. This gradient flow is the evolution
equation of the level set function of our proposed method.

Correspondingly, v1 and v2 are computed with

v1 =
(u0 ∗H(φ))⊗W

H(φ)⊗W
v2 =

(u0 ∗ (1−H(φ)))⊗W
(1−H(φ))⊗W

(3)

where ⊗ is the convolution operator. One should note that, Chan-Vese model can be
regarded as a special case of our model — when the window W is set to infinitely large.

In practice, the Heaviside function H and Dirac function δ in eqn. 3 have to be
approximated by smoothed versions. We adopt the H2,ε and δ2,ε used in [2]. For all the
experiments conducted in this paper, we set the size of the window W as 21×21.
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Figure 3: Illustration of the occurrence of ”local twists”. a), b), c) and d) are four snap-
shots of the level set propagation. e) is the resulted segmentation. The effectiveness of
the control term is illustrated in (f-i), which are four snapshot of the level set propagation
of the new gradient flow. (The figures are better seen on screen than in black-white print)

3 Global-to-Local Consistency Constraint
In Chan-Vese piecewise-constant model, as the entire image is considered as a whole, the
signs of the level set function φ correspond very well to the segmented classes. In other
words, if certain class S has more than one components, at the time a perfect segmentation
is achieve, each of them would be enclosed at the same side of φ . The positive side
(φ+) and the negative (φ−) side of φ , partition the image domain into two homogeneous
regions.

However, under our proposed local Gaussian environment, this property is not guar-
anteed. Since the level set function φ evolves based on v1(x,y) and v2(x,y) that are com-
puted locally, the multiple components of a same class might be evolved into the opposite
sides of φ , therefore labeled with different classes. We give a name to this phenomena as
local twisting. An example in Fig. 3 illustrates how a twist occurs. The evolving curve
starts as a circle covering part of the left square. As v1 and v2 are computed locally, it
happens that the left half the level set function φ goes up, and the right half goes down.
Eventually the left square is enclosed under φ+ and the right square under φ−. The two
squares are expected to classified into the same class, but the evolution based on Eqn.3
sends them into two different groups, as shown in Fig 3.b. The phenomenon is due to
the lack of global control over the evolution process. Whenever local twisting happens,
incorrect segmentation will be resulted.



Assume we use φ+ to capture the brighter portion of a bimodal image. In order to
eliminate local twists, the following consistency constraint needs to be enforced every-
where in the image domain:

Constraint: v1(x,y)≥ v2(x,y), for all (x,y) ∈Ω

There would be many different implementations to enforce this constraint, and we
find the following approach particularly effective and simple:

Solution: use sign(v1(x,y)−v2(x,y)) as a control term to guide the update of φ .

where sign(x) = 1, if x > 0 and sign(x) = 0 otherwise.
At the locations where no twist is present, v1 > v2, this control term sign(v1(x,y)−

v2(x,y)) would let the level set update as Eqn.3 specifies. At certain locations, if v1(x,y) <
v2(x,y) happens, the control term put a halt to the level set update at (x,y), and further de-
velopment of a potential twist is avoided. Through this mechanism, twists are controlled
at an early stage, and will eventually disappear when the normal configuration (v1 > v2)
dominates over the image domain.

The above analysis, together with the solution, also applies to the case that we use
φ+ to capture the darker object. Putting the above analysis together, the updated gradient
flow for our model is modified to:

∂φ
∂ t = sign(v1− v2) ·δ (φ)

[
µdiv( ∇φ

|∇φ | )− log Pr(in)
Pr(out) + log σ1

σ2
−

(
(u0−v1)2

2σ2
1

− (u0−v2)2

2σ2
2

)]
(4)

φ(0,x,y) = φ0(x,y) in Ω

4 Results and Discussions
The fist experiment we conducted is based on the image shown in Fig 1.a. We tried to
segment this 2D brain image into GM and WM. Since no prior information is available,
we set log(Pr(in)) and log(Pr(out)) both to 0.5. Our result is shown in Fig 1.c, along
with that of Chan-Vese model in Fig1.b. It is evident that our method can capture the
local details, and produces a very accurate segmentation.

The second example is another MR image with bias field. Due the existing bias field,
this image greatly violates the global Gaussian/mean assumption, therefore traditional
region-based approaches, including the Chan-Vese model, are expected to fail. Figure
4 shows the result of using Chan-Vese model (left column) and that of using our local
median model (right column). Three snapshots of the executions are provided. As evident,
Chan-Vese model has trouble in capturing the GM area in the top-left and right-bottom
corners, while our model separate the two issues very accurately.

The third experiment is based on the same MR image, but with an added artificial bias
field. The result is shown in Fig 5. The purpose of the added field is to test how well our
new model in handling severe intensity variation. Owing to the tremendous amount of
inhomogeneity, piecewise-constant model totally failed, while our model still works very
well without being affected by the bias level. This experiment also serves as a very good
indication of the robustness of our approach.

The last group experiments were conducted on seven 3D MR images. All subjects
are participants in the longitudinal University of Kentucky Alzheimer’s Disease Center
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Figure 4: Segmentation comparison of Chan-Vese model and our model in handling bias
field. First row: three snapshot of the execution on Chan-Vese model; Second row: three
snapshot for our model. (The figures are better seen on screen than in print)

”biologically resilient adults in neurological studies” (BRAiNS) group. Scanning was
performed on a Siemens Vision 1.5T instrument. We compared our solution with that of
SPM [12] and Chan-Vese model. Fig. 6 shows a single slice result from all three meth-
ods. Fig.6.a is the input image, and 6.b, 6.c and 6.d are the GM segmentation from SPM,
Chan-Vese and our model, respectively. The sub-cortical GM tissues in all the seven im-
ages have a bit higher intensity values than cortical GM, therefore the Chan-Vese model,
using a piece-wise constant assumption, mis-classifies quite a portion of putamen as WM.
Our model, on the other hand, clearly separates the putamen and thalamus from their
surrounding WM. The comparison for the sub-cortical area has been highlighted with a
red circle in Fig.6 (Figures are better seen on screen than in black-white print). Spatial
distribution prior and local Gaussians both play a role in achieving this improvement.
Compared to SPM, our model has the edge in outlining cleaner cortical GM (highlighted
with a blue circle; better seen on the screen). Since level set methods all generate binary
segmentations, our model can be used as a discrete alternative for SPM.
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