
Feature-Driven Direct
Non-Rigid Image Registration

V. Gay-Bellile1,2 A. Bartoli1 P. Sayd2

1 LASMEA, CNRS / UBP, Clermont-Ferrand, France
2 LCEI, CEA LIST, Saclay, France

Vincent.Gay-Bellile@univ-bpclermont.fr

Abstract

The registration problem for images of a deforming surface has been well
studied. Parametric warps, for instance Free-Form Deformations and Radial
Basis Functions such as Thin-Plate Spline, are often estimated using additive
Gauss-Newton-like algorithms. The recently proposed compositional frame-
work has been shown to be more efficient, but can not be directly applied to
such non-groupwise warps.

We bring two contributions. First, we propose a Feature-Driven approach
making possible the use of compositional algorithms for most parametric
warps such as those mentioned above. This is demonstrated by an Inverse
Compositional algorithm for Thin-Plate Spline warps. Second, we propose a
piecewise linear learning approach to the local registration problem. Experi-
mental results show that the basin of convergence is enlarged, computational
cost reduced and alignment accuracy improved compared to previous meth-
ods.

1 Introduction
Registering images of a deforming surface is important for tasks such as video augmen-
tation by texture editing, non-rigid Structure-from-Motion and deformation capture. This
is a difficult problem since the appearance of imaged surfaces varies due to several phe-
nomena such as camera pose, surface deformation, lighting and motion blur. Recovering
a 3D surface, its deformations and the camera pose from a monocular video sequence is
intrinsically ill-posed. While prior information can be used to disambiguate the problem,
see e.g. [8, 13], it is common to avoid a full 3D model by using image-based deformation
models, e.g. [2, 4, 6, 10]. TPS (Thin-Plate Splines) warps are one possible deformation
model proposed in a landmark paper by Bookstein [4], that has been shown to effectively
model a wide variety of image deformations in different contexts, including medical im-
ages. Recent work shows that TPS warps can be estimated with direct methods, i.e.
by minimizing the intensity discrepancy between registered images [2, 10]. The Gauss-
Newton algorithm with additive update of the parameters is usually used for conducting
the minimization. Its main drawback is that the Hessian matrix must be recomputed and
inverted at each iteration. More efficient solutions have been proposed by Baker et al. [1]
based on a compositional update of the parameters, and lead to a constant Hessian matrix.
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Most non-rigid warps do not from groups, preventing the use of compositional algorithms
since they require to compose and possibly invert the warps. Despite several attempts to
relax the groupwise assumption by various approximations [8, 12, 14], there is no simple
solution in the literature.

This paper brings two main contributions. The first one is the Feature-Driven regis-
tration concept, allowing to devise compositional algorithms by relaxing the groupwise
requirement for most non-rigid warps such as Radial Basis Functions (with e.g. the Thin-
Plate Spline [4], a multiquadric [11] or the Wendland kernel function [7]). The main idea
is to control the warp by a set of driving features (e.g. for Radial Basis Function warps,
the target centers are used as driving features), and to act on these features directly for
operations such as warp reversion and threading, approximating inversion and composi-
tion which are not guaranteed to exist or can not be easily computed. For instance, we
extend the Inverse Compositional algorithm to TPS warps. The second contribution is
an improvement of Cootes’ linear learning approach [5] to local registration. Previous
work assumes a linear relationship between the intensity discrepancy and the local pa-
rameter update [5, 9]. This assumption induces several practical problems, such as low
alignment accuracy. We use a piecewise linear relationship for which a statistical map
selection criterion is proposed. We experimentally show that it performs much better than
most previous methods in terms of alignment accuracy, computational cost and enlarges
the convergence basin. The combination of the Feature-Driven framework with learning-
based local registration outperforms other algorithms for most experimental setups.
Notation. The images to be registered are written Ii with i = 1, . . . ,n. The template,
e.g. the region of interest in the first image, is denoted I0. The parameterized warp is
written W . It depends on a parameter vector ui for image Ii and maps a point q in the
template to the corresponding point qi in the i-th image: qi = W (q;ui). We write R the
set of pixels of interest and vectR(M ) the operator that vectorizes the elements of M
indicated in R.

2 Previous Work
The registration of images of deformable surfaces has received a growing attention over
the past decade. Direct registration consists in minimizing the pixel value discrepancy.
Registration of an image sequence is posed as a set of nonlinear optimization problems,
each of which estimating ui+1 using the registration ui of the previous frame as an ini-
tial solution. The discrepancy function C is usually chosen as the two-norm of the dif-
ference D between the template and the current one, warped towards the template, i.e.
D(q) = I0(q)−Ii+1(W (q;ui+1)), giving: C (ui+1) = ∑q∈R ‖D(q)‖2. Other choices
are possible, such as Mutual Information.

Using an additive update of the parameter vector, i.e. ui+1← ui+1 +δ , Gauss-Newton
can be used in a straightforward manner for minimizing C or in conjunction with com-
plexity tuning schemes as in [2, 10] for TPS warps. A second order approximation of C ,
theoretically better than the Gauss-Newton one, is proposed in [3]. The major drawback
of these methods is that the image gradient vector for each pixel in R must be recomputed
at each iteration. This is the most expensive step of the process.

A major improvement was proposed by Baker and Matthews [1] through the Inverse
Compositional algorithm. The key idea is to replace the additive update by the compo-
sition of the current warp Wi+1 with the inverse W̃ of the incremental warp: Wi+1 ←
Wi+1 ◦ W̃ . This leads to a constant Jacobian matrix and a constant Hessian matrix whose



inverse is thus pre-computed. This requires that the warp forms a group. In order to
extend the approach to more involved models, several attempts have been made to relax
the groupwise requirement. They are reviewed in §3.3. Previous work on learning-based
registration are reviewed in §4.3.

3 Feature-Driven Registration

3.1 Feature-Driven Parametrization
The backbone of our approach is to represent the warp by a set of features in the current
image, that we call driving features. These features have a fixed position in the template,
depending on the type of warp that is being used. For RBF warps such as TPS warps, they
can be placed anywhere, while for Free-Form Deformations, they must lie on a grid.

Henceforth, we assume that ui contains the coordinates of the driving features in Ii.
In our implementation, we use TPS warps, whose Feature-Driven parameterization based
on points is described in §A. The target centers of the TPS are used as driving features.
The Feature-Driven concept and the registration algorithm we propose are generic in the
sense that they are independent of the type of warp that is being used.

In this context, the warp is essentially seen as an interpolant between the driving fea-
tures. There is obviously an infinite number of such warps. The best one depends on the
nature of the observed surface. Loosely speaking, matching the driving features between
two images is equivalent to defining a warp since the warp can be used to transfer the
driving features from one image to the other, while conversely, the warp can be computed
from the driving features.

The Feature-Driven framework has two main advantages. First, it often is better bal-
anced to tune feature positions, expressed in pixels, than coefficient vectors that may be
difficult to interpret, as for TPS warps. Second, it allows one to use the efficient compo-
sitional framework in a straightforward manner. Indeed, warp composition and inversion
can not be directly done for non-groupwise warps. Representing image deformations by
TPS warps or Free-Form Deformations is empirical. We propose empirical means for ab-
stracting warp composition and inversion through their driving features, called threading
and reversion respectively.

3.1.1 Threading Warps

Given two sets of driving features, v and v′, we are looking for a third set v′′ defined such
that threading the warps induced by v and v′ results in the warp induced by v′′, as shown
on figure 1(a). We propose a simple and computationally cheap way to do it, as opposed
to previous work. This is possible thanks to the Feature-Driven parametrization. The idea
is to apply the v′ induced warp to the features in v: the resulting set of features is v′′. This
is written: v′′ = W (v;v′), where W is meant to be applied to each feature in v. In the
case of TPS warps, for which we use points as driving features, threading two warps is
straightforward. It is also straightforward for all other kinds of RBF warps and for FFD
warps.

3.1.2 Reverting Warps

Given a set v of driving features, we are looking for a set v′, defined such that the warp
induced by v′ is the reversion of the one induced by v, as illustrated on figure 1(b). As for



the threading, the Feature-Driven framework makes a very simple solution possible. The
idea is that applying the v′ induced warp to v gives u0, i.e. the fixed driving features in
the template. This is written: W (v;v′) = u0. This is straightforward for TPS warps. This
amounts to solving an exactly determined linear system, the size of which is the number
of driving features. For some classes of warps, W (v′;v) = u0 may be more practical to
solve for v′. Note that for all other kinds of RBF warps and FFD warps W (v;v′) = u0 is
to be preferred as well.
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Figure 1: (a) The Feature-Driven warp threading process: v′′ is defined by v′′ = W (v;v′).
(b) The Feature-Driven warp reversion process: v′ is defined such that W (v;v′) = u0.

3.2 Compositional Feature-Driven Alignment
Benefiting from the Feature-Driven parameterization properties, we extend the composi-
tional algorithms to non-groupwise warps. The following three steps, illustrated on figure
2 are repeated until convergence:
• Step 1: Warping. The driving features ui+1 are used to warp the input image Ii+1,

thereby globally aligning it to the template: IW (q) = Ii+1(W (q;ui+1)).
• Step 2: Local alignment. The driving features u are estimated in the warped

image. This is described in §4. Note that for the Inverse Compositional algorithm,
warp reversion is done at this step.
• Step 3: Updating. The current driving features ui+1 and those in the warped image

u are combined by threading the warps to update the driving features ui+1 in the
current image: ui+1←W (u;ui+1).

Note that previous work [8, 12, 14] requires a preliminary step before applying the update
rule, as reviewed in the next section. In comparison, the Feature-Driven framework makes
it naturally included into the third step.

Illumination changes are handled by normalizing the pixel value of the template and
those of the warped image at each iteration.

3.3 Relation to Previous Work
Alternative approaches for non-groupwise warp composition as proposed in [8, 12, 14]
consist in finding the best approximating warp for the pixels of interest in R: ui+1 =
argminui+1 ∑q∈R ‖Wi(W̃ (q))−Wi+1(q)‖2. In [8, 12, 14] the warp is induced by a tri-
angular mesh whose deformations are guided by a parameter vector. This minimization



problem is usually solved in two steps. First the vertices in the current image are com-
puted using the assumption of local rigidity. They usually are not in accordance with a
model instance in e.g. the case of 3D Morphable Models [8, 14]. Second, the parameter
update is recovered by minimizing a prediction error, i.e. the distance between the updated
vertices and those induced by the parameters. This last step may be time consuming since
nonlinear optimization is required. Warp inversion is approximated with first order Tay-
lor expansion in [12], while [14] draws on triangular meshes to avoid linearization. By
comparison, our methods revert and thread warps in closed-form: they do not require
optimization.

4 Local Registration
The efficiency of compositional algorithms depends on the local alignment step. For in-
stance, the Inverse Compositional algorithm is efficient with the Gauss-Newton approxi-
mation for local alignment since this combination makes invariant the Hessian matrix. We
show that learning-based local alignment fits in the Forward Compositional framework in
a similar manner. Below, we propose an efficient learning-based alignment procedure.
This is inspired by previous work modeling the relationship between the local increment
δ and the intensity discrepancy D with an interaction matrix. Using a single interaction
matrix has several drawbacks, as reviewed in §4.3. We propose to learn a series F1 . . .Fκ

of interaction matrices, each of them covering a different range of displacement magni-
tudes. This forms a piecewise linear approximation to the true relationship. Each matrix
thus defines a map. A statistical map selection procedure is learned in order to select
the most appropriate matrix Fs given D. The update vector is then given by: δ = FsD.
Details are given below.

4.1 Learning an Interaction Matrix
An interaction matrix F is learned by generating artificially perturbed versions of the
template A j.
Generating training data. The driving features in the template are disturbed from their
rest position with randomly chosen direction and magnitude: u j← u0 +δu j. The latter is
clamped between a lower and an upper bound, determining the area of validity of the in-
teraction matrix. Our Feature-Driven warp reversion process is used to warp the template.

Learning. The residual vector is computed from the pixels of interest in R: D j =
vectR

(
I0−A j

)
. The training data are gathered in matrices U =

(
δu1|...|δum

)
and

L =
(
D1|...|Dm

)
. The interaction matrix F is computed by minimizing a Least Squares

error in the image space, expressed in pixel value unit: F =
(
L U T(U U T)−1

)†
. This

is one of the two possibilities for learning the interaction matrix. The other possibility is
dual. It minimizes an error in the parameter space, i.e. expressed in pixels. Experimental
results show that the former gives better results, being in particular much more robust to
noise.
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4.2 Statistical Map Selection
One issue with the piecewise linear model is to select the best interaction matrix at each
iteration. Each of those indeed has a specific domain of validity in the displacement mag-
nitude which unfortunately can not be determined prior to image alignment. We propose
to learn a relationship between the intensity error magnitude and the best matrix to use.
We express this relationship in terms of probabilities. The intensity error magnitude for
a residual error vector D is defined as its RMS (Root Mean of Squares) e(D). Note that
e2(D) ∝ C (ui+1). Figure 3 shows that P(Fk|e(D)) closely follows a Gaussian distribu-
tion. The mean and variance of the learned intensity error magnitude are computed for
each interaction matrix. Finding the most appropriate interaction matrix given the current
intensity error is simply achieved by solving: s = argmaxt P(Ft |e(D)).

4.3 Relation to Previous Work
Learning approaches in the literature often assume that the relationship between the error
image and the update parameters is linear [5, 9]. The drawback of those methods is that
if the interaction matrix covers a large domain of deformation magnitudes, alignment
accuracy is spoiled. On the other hand if the matrix is learned for small deformations
only, the converge basin is dramatically reduced. Our piecewise linear relationship solves
these issues.

Interaction matrices are valid only locally around the template parameters. Compo-
sitional algorithms are thus required, as in [9] for homographic warps. However in [5]
the assumption is made that the domain where the linear relationship is valid covers the
whole set of registrations. They thus apply the single interaction matrix around the current
parameters, avoiding the warping and the composition steps. This does not appear to be
a valid choice in practice. Our Feature-Driven framework naturally extends this approach
to non-groupwise warps.

5 Experimental Results
We compare four algorithms in terms of convergence frequency, accuracy and conver-
gence rate. Two classical algorithms:



- FA-GN: the Forward Additive Gauss-Newton approach used by [2, 10].
- FA-ESM: the Efficient Second Order registration algorithm [3], adapted to TPS warps.
Two algorithms we propose:
- IC-GN: the Feature-Driven Inverse Compositional registration of §3 with Gauss-Newton
as local registration engine.
- FC-Le: the Feature-Driven Forward Compositional registration of §3, with local regis-
tration achieved through learning as we propose in §4.

5.1 Simulated Data
In order to assess the algorithms in different controlled conditions, we synthesize images
from a template. The driving features are placed on a 3× 3 grid, randomly perturbed
with magnitude r. We add Gaussian noise, with variance σ% of the maximum greylevel
value, to the warped image. We vary each of these parameters independently, using the
following default values: r = 2 pixels and σ = 1%. The noise variance upper bound is
10%, which corresponds to very noisy images. Estimated warps are scored by the mean
Euclidean distance between the driving features which generated the warped image, and
the estimated ones. Convergence to the right solution is declared if this score is lower
than one pixel. The results are means over 500 trials.
Convergence frequency. This is the percentage of convergence to the right solution.
Results are shown on figures 4(a) and 4(b). FC-Le has the largest convergence basin
closely followed by FA-ESM. On the other hand, FC-Le has the worst performance
against noise. However, it always converges for noise amplitude below 8% and converges
at 95% for 10% noise which is beyond typical practical values. IC-GN has the smallest
convergence basin.
Accuracy. This is measured as the mean residual error over the trials for which an
algorithm converged. Results are shown on figures 4(c) and 4(d). The four algorithms
are equivalent against displacement magnitude. Concerning noise amplitude, IC-GN and
FC-Le are equivalent while FA-ESM is slightly worse and FA-GN clearly worse. For
example, at 6% noise, the alignment errors of IC-GN and FC-Le are around 0.2 pixels,
FA-ESM at about 0.25 pixels and FA-GN alignment error at 0.35 pixels.
Convergence rate. This is defined by the number of iterations required to converge.
Results are shown on figures 4(e) and 4(f). The convergence rate of FC-LE and FA-ESM
are almost constant against both displacement and noise amplitudes. However FC-Le
does better, with a convergence rate kept below 10. FA-GN and IC-GN are efficient for
small displacements, i.e. below 5 pixels. The convergence rate increases dramatically
beyond this value for both of them. FA-GN is also inefficient for noise amplitude over
4%. This is explained by the fact that the FA-GN Jacobian matrix depends mainly on the
gradient of the current image, onto which the noise is added.

5.2 Real Data
The four above described algorithms have been compared on several videos. For two of
them (paper, tshirt), we show results on table 1 and registration visualization samples on
figure 5. We measure the average and maximum intensity RMS along the video, computed
on the pixels of interest and expressed in pixel value unit, the total number of iterations and
the computational time, expressed in seconds. All algorithms have been implemented in
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Figure 4: Comparison of the four algorithms in terms of convergence frequency (a)
against displacement magnitude and (b) noise magnitude. Comparison of the four algo-
rithms in terms of accuracy (c) against displacement magnitude and (d) noise magnitude.
Comparison of the four algorithms in terms of convergence rate (e) against displacement
magnitude and (f) noise magnitude.

Matlab. In practice, a great number of driving features with some amount of regularization
are used, making the TPS both flexible and well-constrained. In order to illustrate the
registration, we define a mesh on the template and transfer it to all other frames. Note that
these meshes are different from the estimated driving features. The alignment differences
between the four algorithms are visually undistinguishable, when they converge.

Summary. FA-GN is an accurate algorithm. It is however inefficient, especially for
important displacements. FA-ESM has almost similar performances compared to FA-GN
while being slightly more efficient. The Feature-Driven parametrization yields, via the
proposed IC-GN and FC-Le algorithms, fast non rigid registration with TPS warps. While
IC-GN looses effectiveness for high displacements, FC-Le has the best behavior. In fact, it
is similar to FA-GN for accuracy while being 5 times faster on average and is equivalent
or better than IC-GN and FA-ESM in terms of alignment accuracy, computational cost
and has a larger convergence basin.

Mean/max RMS Iteration # Total/mean time
tshirt paper tshirt paper tshirt paper

FA-GN 8.7/13.6 8.98/17.57 9057 2422 2083/5.2 702/2.0
FA-ESM 9.2/14.7 10.22/20.49 3658 2473 877/2.2 708/2.0
IC-GN 9.7/15.8 Diverges 6231 Diverges 436/1.1 Diverges
FC-Le 6.66/12.87 9.44/19.4 3309 1330 380/0.95 176/0.5

Table 1: Results for the tshirt and paper videos. Bold indicates best performances.



Figure 5: Registration results for FC-Le algorithm. Top: the paper video. Bottom: the
tshirt video.

6 Conclusions
We addressed two important issues for the problem of non-rigid registration. First, we
proposed the Feature-Driven framework, relaxing the groupwise requirement for using
efficient compositional algorithms. Second, we proposed a statistically motivated piece-
wise linear local registration engine. Combining these two techniques results in an al-
gorithm outperforming the other ones in terms of alignment accuracy, computational cost
and having a larger convergence basin. Real-time surface registration is foreseen with this
algorithm. We intend to extend the Feature-Driven approach to more complicated models,
e.g. 3D Morphable Models [14]. This implies occlusion reasoning, that we intend to do
through multiple overlapping patch registration and combination.
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A Feature-Driven Thin-Plate Spline Warps
This parameterization is convenient for centers that remain still in the template. The
TPS is an R2 → R function driven by assigning target values αk to l 2D centres ck and
enforcing several conditions: the TPS is the Radial Basis Function (RBF) that minimizes
the integral bending energy. It is usually parameterized by an l + 3 coefficient vector
hT

α,λ = ( wT aT) computed from the target vector α and a regularization parameter λ ∈
R+. The coefficients in w must satisfie PTw = 0, where the k-th row of P is

(
cT

k 1
)
. These

three ‘side-conditions’ ensure that the TPS has square integrable second derivatives. The
TPS is defined by:

ω(q,hα,λ ) = `T
q hα,λ , (1)

with `T
q = (ρ(d2(q,c1)) · · · ρ(d2(q,cl)) qT 1). Combining the equations obtained for

all the l centres cr with target values αr in a single matrix equation gives:

Kλ w+Pa = α, Kr,k =
{

λ r = k
ρ(d2(cr,ck)) r 6= k.

(2)

Adding λ I acts as a regularizer. Solving for hα,λ using the above equation and the side-
conditions is the classical linear method for estimating the TPS coefficients due to Book-
stein [4]. The coefficient vector hα,λ is a nonlinear function of the regularization param-
eter λ and a linear function of the target vector α .

We write hα,λ = Eλ α , i.e. as a linear ‘back-projection’ of the target vector α . Matrix
Eλ nonlinearly depends on λ . It is given from (2) as a function of Kλ and P by:

Eλ =

(
K−1

λ

(
I−P

(
PTK−1

λ
P
)−1

PTK−1
λ

)
(
PTK−1

λ
P
)−1

PTK−1
λ

)
.

This parameterization has the advantages to separate λ and α and introduces units1. The
side-conditions are naturally enforced by this parameterization.

Incorporating this parameterization into the TPS (1) we obtain what we call the feature-
driven parameterization for the TPS: τ(q;α,λ ) = `T

q Eλ α. Standard R2→R2 TPS-Warps
are obtained by stacking two R2→R TPS sharing their centres and regularization param-
eter:

W (q;u,λ ) = (τ(q;αx,λ ) τ(q;αy,λ ))T =
(
αx αy

)T
E T

λ
`q, (3)

with uT =
(
αT

x αT
y
)
. Notation W (q;u) is used for λ = 0.

1While hα,λ has no obvious unit, α in general has (e.g. pixels, meters).


