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Abstract

This paper deals with the retrieval of scene-oferi(or scene) shoeprint images from a
reference database of shoeprint images by usireyvalatal feature detector and an improved
local feature descriptor. Our approach is basedawel modifications and improvements of a
few recent techniques in this area: (1) the sadd@ted Harris detector, which is an extension to
multi-scale domains of the Harris corner detec{@} automatic scale selection by the
characteristic scale of a local structure. (3) S{E¢ale-Invariant Feature Transform), one of the
most widely investigated descriptors in recent yedrike most of other local feature
representations, the proposed approach can alsdivided into two stages: (i) a set of
distinctive local features are selected by firdedeing scale adaptive Harris corners where each
of them is associated with a scale factor, and sfeéecting as the final result only those corners
whose scale matches the scale of blob-like strastaround them. Here, the scale of a blob-like
structure is detected by the Laplace-based scidetiom. (ii). for each feature detected, an
enhanced SIFT descriptor is computed to represasitféature. Our improvements lead two
novel methods which we call the Modified Harris-laage (MHL) detector, and the enhanced
SIFT descriptor.

In this paper, we demonstrate the applicationhef proposed scheme to the shoeprint
image retrieval problem using six sets of synthetiene images, 50 images for each, and a
database of 500 reference shoeprint images. Thievat performance of the proposed
approach is significantly better, in terms of cuative matching score, than the existing
methods used in this application area, such as ditgetional histogram, power spectral
distribution, and pattern & topological spectra.

Key words: Shoeprint image, Forensic application, Local imégmtures, Content-based
image retrieval.

1 Introduction

Shoeprint Classification Shoeprints are often found at crime scenes andidgaovaluable
forensic evidence. It has been estimated that rie 30% of all burglaries provide usable
shoeprints that can be recovered from the crimaes§]. Because of the pattern of repeated
offences, rapid classification of such shoeprintsilet enable investigating officers not only to
link different crimes, but to identify potentialsaects while the crime is still ‘hot'.
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The objectives of the forensic investigator aneally: (i) to determine the make and model
of a shoe; (ii) to determine if a particular shaepwas made by a specific shoe; (ii)) to match
the shoeprint with other shoeprints, possibly fratimer crime scenes. An image of a shoeprint
is first obtained using a technique such as phafay, gel or electrostatic lifting, or by making
a cast when the impression is in soil, snow or sAnghatching of the shoeprint is then made
against specific image databases containing curedt previous shoeprint images and/or
images of shoeprints found at other crime sceeeasling to a few of candidate images, which
are then used in the second stage. This matchimgegs is usually in two stages: an initial
classification which results in a hitlist of likebandidates, followed by a visual identification
from this reduced set. For this paper, we are emmed with automating the first classification
process.

The study of automatic shoeprint classificatior atrieval is still relatively new and
immature. Some work has recently been reported-ih 28, 29]. Usually, these algorithms first
automatically extract a set of feature vectors frmrmshoeprint image using different kinds of
descriptors, such as Fourier descriptors, Fraatdiges, or pattern and topological spectra, and
then sort a database of shoeprints in responsesdmple shoeprint. However, several practical
difficulties exist which hinder the effectiveneskreal world shoeprint classification — both
manual and automated, such as capture device-deptemaise, distortions, and cutting-out. In
this paper, we generate six sets of synthetic seaages to simulate scene images, from a
‘clean’ dataset with 500 shoeprints by adding Giansisoise or scene backgrounds, cutting-out,
rescaling, rotating, or selecting salient patterns.

Local Feature Descriptors These are computed from distinctive local regi@ms] do not
require segmentation beforehand. They have pravdzbtvery successful in the applications
such as image retrieval and matching [5-8], objecbgnition and classification [9-13], and
wide baseline matching [14]. Consequently, manjedifit scale- and affine-invariant local
feature detectors, robust local feature descriptansl their evaluations have been widely
investigated in the literature [15-25].

Typically, a local image feature should have fqmoperties: locality, repeatability,
distinctiveness, and robustness to different degials. The above studies suggest that no
single local feature representation so far can btbatrs in terms of all the above four properties,
so a good local feature representation should bmde off of these properties. The work
described in this paper firstly detects a set atimiétive local features from an image by
combining a scale adaptive Harris corner detecitht & Laplace-based scale selection. Then,
for each local feature, an enhanced SIFT [18] d&®secris computed to represent the feature.
Finally, the matching of descriptors in two images been conducted by combining the nearest
neighbour with the threshold-based screeningtviie descriptors are matched only if one is the
nearest neighbour to the other one in the featpeees and at the same time the distance
between them is less than a threshold. The distagtweeen two images is computed from only
the matched pairs.

The main contributions of this paper are: firsfheav robust and distinctive local feature
detector, Modified Harris-Laplace; second, an enbdrSIFT descriptor has been presented for
the local features detected at the first stageallfinwe have investigated the application of
these new local image features to the forensiciegifmn of automated shoeprint image
retrieval, and compare this technique with otheedahup-to-date methods on the same sets of
shoeprint images, and in terms of the same evaluateasure.

This paper is organized as follows: In sectionv@,present the new local feature detector
based on the adaptive Harris corner detector amd.diplace-based automatic scale selection.
Section 3 introduces the enhanced SIFT descrifpta@ection 4, we present the image databases
used in this work, and also the experiments of ghioeimage retrieval based on local image
features. We then summarize the paper in section 5.



2. Modified Harris-L aplace Detector

A local feature here refers to any point and itgmieourhood in an image where the signal
changes significantly in terms of two dimensionsn@entional “corners”, such as L-corners,
T-junctions and Y-junctions satisfy this, but sottie isolated points, the endings of branches
and any location with significant 2D texture. Ferthall of these local structures have their
characteristic size. K. Mikolajczyk et al in [6]\reproposed a new Harris-Laplace detector by
using the benefit from the Harris corner detec®&] [(high accuracy of location) and that from
LoG [27] (robust scale selection). But the way tleeynbine the two powerful techniques does
not necessarily result in an accurately locatedstable scaled local feature detector, since this
detector is actually to check if the response eflttarris measure reaches a maximum at the
spatial domain and so does the response of the dtohe same location along the scale
direction. In most cases, the unstable componethi®fietector is the scale selection, since the
stability of the scale selection based on LoG isditioned that this measure should be
computed at the centre of a blob structure. In #iistion, we shall present our solution to
combine the two powerful techniques. Considerirggiiarris-Laplace detector in [6], we hame
our detector Modified Harris-Laplace.

The scale adaptive Harris detector [6] is basedamrextension of the second moment
matrix as shown Formula (1), where, is the integration scalegy is the differentiation scale
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An example of the scale-adaptive Harris cornerdietie on a synthetic image is shown in
Fig. 1 (a), where the figure suggests that forrmenq there might be a series of points detected
by this approach due to the diffusion and the apatitent of the corner. Obviously, only a few
of them (normally one or two) present the charastiersize of this corner.

The normalized LoG response of an image is defaseHormula. (2), where is the scale,
and L,, is the second derivative computed in the directbmr. The LoG based automatic

scale selection is based on the fact that the ctaaistic scale of a local structure very often
corresponds to the local extremum of the LoG alinegscale direction at the centre of a local
blob (see the right curve of Fig. 1 (b)). But it shioe noted that in most cases, this principle
does not work well for the structures like cornéns-ig. 1 (b), the middle curve shows the LoG
responses over scales, at the top-left cornersufuare. The figure clearly illustrates why the
scale selection of the Harris-Laplace detectoid@instable. There are too many extrema on the
curve of the LoG responses, resulting in redundadtunstable corners.

However, Fig. 1 also suggests that the scale ofdheers, located around a blob, might be
related to the scale of that blob, which can bectetl by referring to the LoG response. In real
world, it is reasonable, in most cases, to assuraea corner can be associated with a blob
structure around this corner, since any cornerug p part of an object. Based on this
assumption, only those candidate corners, whode bea a predefined relationship with the
scale of a blob structure around them, can beteelexs a characteristic scale of a corner. Here,
two factors should be considered for this stratemg is the searching region, the other one is
the relationship between the scale of a blob strecand that of a corner. Fig. 2 illustrates this
strategy, where the long-dashed circte @enote a blob structure, and the short-dashetkesir



denote the search region with the radius,0énd the reference circle with the radiusrgf

The solid circles are the candidates of the sammecdocated at the up-left of the square, and
the bold solid circle is eventually selected asdharacteristic scale of this corner. In all of our
experiments, Formula (3) is applied to relate teference scale, and the search region

with the blob scale . (This formula is derived by assuming a squaré)lo
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Figure 1 (a), an example of adaptive Harris corner detectimd LoG based scale selection. (b), the
responses of the LoG measures at different locatadong the scale direction (x-axis) on a synthetic
image at the left. The middle curve correspondbeaop-left corner in the left image, and the righrve

Figure2 An illustration of automatic scale selection basedhe scale of a blob-like structure

3. Local Feature Descriptors

The local photometric descriptors computed in gfa@iper, as mentioned in the first section, are a
further extension of the GLOH (Gradient Locationda@®rientation Histogram) [23, 25],
originally from SIFT descriptors. Our method isfdient from GLOH in that:

(i) First, we apply a circular binary template @tk normalized local region to increase the
rotation invariance of the descriptor. This is amonichange but has a significant impact on the
robustness of the descriptors. Either SIFT or GLObtains the rotation invariance by
weighting the local region with a Gaussian winddtawever, it is very often the case that
when one chooses a larger sigma of the Gaussiarelkghe descriptors computed on this
region are distinctive but rotation sensitive; tre bther hand, when one chooses a smaller
sigma of the Gaussian kernel, the descriptors@egion invariant but not distinctive. In most
cases, it is hard to choose a proper sigma of thes§lan window. Therefore we apply a binary
template to model the region as a circular one, me@nwhile use a larger sigma of the
Gaussian window to keep the distinctiveness ofitseriptors.

(ii) Second, we bin the histogram with the orieiotatrange of 180° rather than the original
360° for inverse contrast robustness. In the apgdin of shoeprint image matching, it is very



often that two images contain the same print bth wiverse contrast, i.e. in one image the grey
level of the print itself is larger than that oktbackground, whereas in the other image it is
otherwise. This difference can be overcome by ihoprihe histogram with the orientation
range of 180°, i.e. without considering the poiarit

The construction of our local descriptors is simila GLOH, i.e. we apply to bin the
gradients a log-polar location grid with three binghe radial direction and four bins in the
angular direction (the central grid does not agpigular binning), resulting in a 9 location grid.
Considering the orientation range of 180°, 4 birsapplied in gradient orientation. Finally, the
descriptors of an image are composed hy 836 matrix, whereN is the number of the local
features detected in the working image.

The similarity between two images depends on thiemireg strategy of the local features.
For the sake of retrieval speed, we apply the iseareighbour and thresholding jointly to
compute the distance between two images, i.e. doh elescriptor in one image, the nearest
neighbour in another image is found as a potemtatch, then only those matches whose
distance is below a threshold are selected adrthkrhatches. The similarity of two images is
computed from the summation ekp(-d) , whered denotes the distances of the final matches.

Of course, there are many other strategies for oting the similarity or matching score
between two images. For instance, the nearest n@ighcan be applied to obtain the initial
matches, and then the RANSAC (Random Sample Consemsethod is used to fit the
geometric transformation and reject the mismatcheie the geometric transformation can be a
fundamental matrix.

4. EXperiments

4.1 Datasets

Our experiments and evaluations for shoeprint imagéeval are conducted on a database of
500 reference images, termed dClean. To simulatedkne images, a few of degraded image
sets, have been generated from this base dataset.

(@) dNoisy- Gaussian noise of five different levels is adtte@ach shoeprint in the base
dataset. The noise leved () varies from 10 to 50 with a step of 10, wherertirege of the grey
levels is from O to 255.

(b) dRotate- We have rotated each shoeprint in the base afatagh five random
orientations in the range of 0°-90°. The selectibthis range, but not 0°-360°, is based on the
fact that the algorithms developed in this paperfbp invariant both in horizontal and vertical
directions

(c) dRescale We have rescaled each shoeprint in the basseatatdth five random scale
ratios in the range of 0.35 to 0.65.

(d) dPartial - Five partial shoeprint images are generatedefmh shoeprint in the first
dataset. The percentage of the partial shoeprighademains varies fromd0% to 95%.

(e) dScene We simulate the scene images from the baseealatasr each image in the
base dataset, we randomly select five scene imagesF&F Ltd as the background, and put
the “clean” shoeprint on each of the backgrounadesgresulting in 2500 scene images.

() dComplex- This dataset contains 50 shoeprint images witmpdex backgrounds,
geometric transformations, significant “cut-outf,tbeir combinations.



4.2 Other methods

Edge Directional Histogram (EDH- The authors in [29] claimed that the interidrvape
information of a shoeprint image was describeaims of its significant edges. Therefore, they
applied a histogram of the edge direction as theatiire of a shoeprint image. This method
first extract the edges using a Canny edge detettten a total of 72 bins are used to bin the
edge directions quantized at 5° intervals. To obtatation invariance, they compute the 1-D
FFT of the normalized edge direction histogram aakk it as the final signature of the
shoeprintimage.

Power Spectral Distribution (PSD) [4} this method considers the power spectral
distribution as the signature of shoeprint image. cbmpute the PSD, one needs to firstly
down-sample an input image, and secondly take®aXET on the down-sampled image, and
then the power spectral distribution is computewlfy, a step of masking is taken to obtain the
signature. In the similarity computation, the PStaauery image has to be rotated 30 times,
with 1° for each time, and the similarity takes tlaegest one over the 30 times. In our
experiments, the step of rotation is removed bexdirst it is very time consuming to
exhaustively try each rotation, and secondly assgrifie rotation degree in the range of 30° is
not suitable at all for many cases, finally, frome technical point of views any signature can
obtain the rotation invariance by this brutal way.

Pattern & Topological Spectra (PT8)8] - This method starts by (i) de-noising a ghra#
image by a partial differential equation (PDE) aggmh; (i) forming a binary shoeprint image
by thresholding using Kittler's thresholding appeba(iii) this binary image is then filtered by
a series of morphological operations (open) withegncreasing structuring elements. The
pattern spectrum and the topological spectrum anstoucted by either measuring the area or
the Euler number of the filtered images againssthe of the structuring elements.

4.3 Performance evaluation

Cumulative Matching Characteristics (CMCJhis measure is suitable for the case where the
reference database contains only one relevantddopthe query record, and it was claimed in
[4] to be able to answer the question “What isghabability of a match if one looks at the first

n percent of the database records?” and it can traaged by computing the proportion of
times during trails of the searching when the rahewecord appears in the firatpercent of
the sorted records in the database. The perfornafraeetrieval system is reflected as a graph
which plots the probability of a match (also calledmulative matching score, vertical axis)
against the percentage of the records reviewedz@rdal axis).

4.4 Experimental results

The following experiments are to compare the perforce, in terms of CMC, of four
signatures: i.e. Edge Directional Histogram (EDIPQwer Spectral Distribution (PSD), Pattern
& Topological Spectra (PTS), and the Local Imageattie (LIF). The experiments are
conducted as follows: we first take a shoeprintgentom the six degraded datasets as a query
image (considering the computation, we randomlyosko50 images from each of degraded
datasets (all 50 images from dComplex), thereféfefrials for each degraded dataset), and
search against the dataset of dClean. For eacketiatae compute the CMC curve, and the
results are shown in Fig. 3. Further to the abavantjtative comparisons, a few of retrieval
examples are shown in Fig. 4, and table 1 alse ti& signature sizes of the compared methods.
These results suggest that:



(i) For the degradations of Gaussian noising,imgtbut, and rescaling, the signatures of
PSD and LIF can almost achieve the perfect resatits, LIF can also reach the similar results
for the degradations of rotation and scene backgtaaddition.

(ii) The performance of EDH and PTS is a littlé worse than that of PSD and LIF for the
degradations of Gaussian noising, cutting-out,alésg, and rotation, but both of them still are
efficient approaches considering that the costnétigre size) of the two signatures is
significantly less than the other two. Within baththem, PTS beats EDH in most cases, while
the only exception is on the rescaled databases fratches the results achieved in [28].
Furthermore, it is a surprise that both PTS and Hi2et PSD on the dataset of dScene, even
though they both have much less cost than PSD does.

(i) The signature of LIF works very well for akinds of degradations. It clearly
outperforms other signatures on the dataset wéhh#rdest complex degradations. However, it
also costs much more than the signatures of ED¢HPars.

5. Conclusion

In this paper, we have proposed a new method, dcdlle, which combines two novel
improvements of existing techniques: Harris-Laplde¢ector and SIFT descriptor. The new
local feature detector, coined Modified Harris-Laq® detector, applies in a new way the scale-
adaptive Harris corner detector to determine thliciates of local features, and the Laplace-
based automatic scale selection strategy to pEkKitlal local features. We further improve the
widely used local feature descriptors — SIFT tavimee robust to rotation and inverse contrast.
In order to test the performance, we have genegakeskts of synthetic scene shoeprint images,
and then conducted a few of experiments on shadprage retrieval.

The experimental results indicate that, considetirgcost of a signature, PTS is a good
choice for minor degradations. However, for thel =@ ne images, which are of very bad
quality, the proposed signature of LIF based onMuelified Harris-Laplace detector and the
enhanced SIFT descriptor is no doubt the best eHfoicarchiving them.

Further issues to be investigated include: (i)hfertreduce the dimensions of a local feature
descriptor; (ii) a fast and accurate matching stratis necessary for a large shoeprint image
database. The current matching based on the nemigétbour and threholding is fast but not
accurate enough, while a more accurate matchingtegly based on RANSAC is time-
consuming; (iii) there is continuing scope for madvanced local feature detectors and
descriptors.
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Figure 3 Performance evaluations of four signatures (EDF5,APSD, and LIF) in terms of cumulative

matching score on six degraded image dataset. RA&B is the worst case, i.e. the order of the image
the dataset is randomly allocated.

00
gﬂ"ggé’%%é
ngnélg i
s

d=0.3347 d=0.3348

i J
L8

&
o gl
v, Y
Ay:%)ﬁ
LN 2

PRLE 2 TS
A¥
A
L AV AT .

@
%
DD

¥
— = N ‘\

<8 T
r¢8,
PN

RN

‘4
»

4
%
1

Y:
)

o) = -

d:0.0061d:6.0066 d=0.0100 d=0.0107 d=0.0120
Figure 4 Examples of shoeprint image retrieval. In each,rdve most left image is a noisy query
shoeprint from dComplex, and the rest of the rowhis top ranked shoeprint images in dClean. The

distance is shown under each retrieved image, haddd squares denote the corresponding patterns
contained in the query images.

Methods EDH PTS PSD LIF

Signature size 72 120 24,099 19,131
Table 1 the signature size of four techniques.
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