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Abstract

Coplanarity is a relationship of a set of points that exist on a single plane.
Coplanarities can be easily observed in a scene with planer surfaces, and
these types of coplanarities have been widely used for 3D reconstructions
based on geometrical constraints. Other types of coplanarities that can be
observed from images are those observed as cross sections of planes and
scenes; for example, points lit by a line laser, or boundary points of a shadow
of a straight edge. Although these types of coplanarities have been implicitly
used in variations of light sectioning methods, they have not been used in
an unified manner with the former types. In this paper, we describe a new
3D reconstruction method based on coplanarities and other geometrical con-
straints. In particular, we make use of the above two types of coplanarities
in an unified manner. This enables us to reconstruct 3D scenes scanned us-
ing line lasers or shadows of straight edges observed by a partially-calibrated
single camera utilizing geometrical relationships between the planes in the
scenes and the planes of line lasers or the planes of shadow boundaries.

1 Introduction

If a set of points exist on a plane, they are said to be coplanar. For example, if a scene
includes a planer surface, points on the surface are coplanar. A scene composed of plane
structures has many coplanarities.

On the other hand, there are other types of coplanarities. In a 3D space, there exist an
infinite number of coplanarities that are not explicitly observed in ordinary situations, but
could be observed under specific conditions. For example, points lit by a line laser are
coplanar points. Another example is a set of points on a boundary of a cast-shadow of a
straight edge. These types of coplanarities are not visible until the lasers or the shadows
are cast on the scene. Let us call the former types of coplanarities asexplicit coplanarities
since they can be observed as visible surfaces of the scene, and let us call the latter types
asimplicit coplanarities.

Explicit coplanarities can be observed in scenes composed of planer surfaces, and
have been widely used as geometrical constraints for 3D reconstructions [11, 9, 1, 10, 7,
6].
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In vision researches, implicit coplanarities have been used in variations of light sec-
tioning methods. In most of these researches, the light planes are first calibrated using
some kind of calibration objects [3, 4, 5] and then the points on the laser planes are recon-
structed using triangulation. In these researches, implicit coplanarities were not treated as
geometrical constraints that can be solved by themselves to reconstruct 3D structures.

In this paper, we describe a new 3D reconstruction method based on coplanarities and
other geometrical constraints. In our method, we use both two types of coplanarities in
an unified way to reconstruct projective 3D information. This enables us to reconstruct
projective 3D scenes with curved surfaces by using implicit coplanarities obtained by
scanning the scenes with line lasers, or shadows of straight edges, observed by a partially-
calibrated single camera.

Although coplanarities play an important role for shape reconstruction, it is known
that the the geometrical constraints other than coplanarities (such as orthogonalities or
parallelisms) are needed to achieve Euclidean reconstructions of the scenes[11]. Because
of the unified treatment of both the implicit and explicit coplanarities, we can use geo-
metrical constraints between both types of planes without discriminating them to achieve
Euclidean reconstructions. This widens the applicabilities of our method. For example, a
scene with curved surfaces can be densely reconstructed either by scanning the scene with
a projector composed of two line lasers and utilizing geometrical constraints between the
line lasers, or by scanning the scene with a single line-laser projector and utilizing ge-
ometrical constraints found in the scene (such as orthogonalities of the surfaces of the
objects).

2 Related studies

Explicit coplanarities have been used in analysis of line drawings or 3D reconstructions
based on geometrical constraints [11, 9, 1, 10, 7, 6]. In those studies, only scenes with
planer surfaces are targeted, because they use only visible coplanarities and geometrical
constraints that exist for those planer surfaces.

In computer vision researches, implicit coplanarities have been used, although uncon-
sciously, in light sectioning methods. Recently, several researchers developed handheld
3D scanners based on light sectioning methods [3, 4, 5]. In these methods, the laser
planes are calibrated by using calibration objects such as fixed frames, markers, or known
planes, then the points on the laser (shadow) planes are reconstructed using triangula-
tions. Bouguetet al. proposed a method in which the scene is scanned by shadows of a
straight edge to reconstruct the scene [2]. Their technique requires calibration of camera
parameters, a light source position, and a reference plane. Implicit coplanarities in these
works are only planes for triangulations, and they should be calibrated first by using some
calibration objects(known frames, markers, or planes). In contrast to these methods, our
method does not require any special calibration objects.

3 Shape reconstruction from coplanarities

Reconstruction in the proposed method is realized by solving the simultaneous equa-
tions constructed from both the coplanarities and the metric constraints. As described
later, metric constraints are formulated with nonlinear equations, whereas coplanarity
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Figure 1:(a)An example configuration of the system. (b)Points of intersections.

constraints can be described by linear equations. Therefore, our method first solves linear
simultaneous equations achieving projective reconstruction, and upgrades the solution to
the Euclidean space.

3.1 Projective reconstruction

An example of our system consists of a camera and a line laser projector, as shown in
Figure1(a). The focal length of the camera may be unknown. The line laser beam from
the projector is reflected at the surfaces of the scene and detected by the camera. These
points are implicit-coplanar. A scanning process is performed by capturing a sequence
of images with the camera while moving the projector back and forth. Scanning can
also be performed by moving a cast shadow of a straight edge over the scene. Multiple
reflection curves are obtained from the image sequence since they move in the image with
the motion of the projector. The problem to be solved is the estimation of the positions
of the projected laser planes from the observed implicit coplanarities. By drawing all the
reflections in different frames in a image, those curves have intersections (Figure1(b)).
We can obtain geometrical constraints of coplanarities from these intersections since each
of those points exists on multiple planes.

Suppose a set ofN planes including both implicit and explicit planes. Letj-th plane
of the set beπ j . We express the planeπ j by the form

a jx+b jy+c jz+1 = 0 (1)

in the camera coordinates system.
Suppose a set of points such that each point of the set exists on intersections of multi-

ple planes. Let thei-th element of the set be represented asξi and exist on the intersection
of π j andπk. Let the coordinates(ui ,vi) be the location of the projection ofξi onto the
image plane. We represent the camera intrinsic parameter byα = p/ f , where f is the fo-
cal length andp is the size of the pixel. We definea∗j = αa j andb∗j = αb j . The direction
vector of the line of sight from the camera to the pointξi is (αui ,αvi ,−1). Thus,

a j(−αuizi)+b j(−αvizi)+c j(zi)+1 = 0, (2)

wherezi is thez-coordinate ofξi . By dividing the form byzi and using the substitutions
of ti = 1/zi , a∗j = αa j , andb∗j = αb j , we get

− (αui)a∗j − (αvi)b∗j +c j + ti = 0. (3)

Sinceξi is also onπk,
− (αui)a∗k − (αvi)b∗k +ck + ti = 0. (4)



From the forms (3) and (4), the following simultaneous equations with variablesa∗j ,b
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We defineL as theM ×3N coefficient matrix of the above simultaneous equations,
andx = (a∗0,b
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0,c0,a∗1,b

∗
1,c1, · · · ,a∗N−1,b

∗
N−1,cN−1)⊤ as the solution vector for all theM

intersections and theN planes. Then, the equations can be described by a matrix form as

Lx = 0. (6)

Simultaneous equations of forms (5) have trivial equations that satisfy

a∗j = a∗k,b
∗
j = b∗k,c j = ck,(i ̸= j). (7)

Let x1 be the solution ofa∗i = 1,b∗i = 0,ci = 0(i = 1,2, . . .), x2 be the solution ofa∗i =
0,b∗i = 1,ci = 0, andx3 be the solution ofa∗i = 0,b∗i = 0,ci = 1. Then, the above trivial
solutions form a linear space spanned by the bases ofx1,x2,x3, which we represent asT.

We describe a numerical solution of the simultaneous equations assuming the ob-
served coordinates(ui ,vi) on the image plane include errors. Since the equation (6) is
over-constrained, the equation generally cannot be fulfilled completely. First, we con-
sider then-dimensional linear spaceSn spanned by then eigenvectors ofL⊤L associated
with the n minimum eigenvalues. Then,Sn becomes the solution space ofx such that
maxx∈Sn |Lx |/|x| is the minimum with respect to all possiblen-dimensional linear spaces.

Even if coordinates ofui ,vi are perturbed by additive errors,x1,x2,x3 remain trivial so-
lutions that completely satisfies equations(5) within the precision of floating point calcu-
lations. Thus, normally, the 3D spaceS3 becomes equivalent with the space of trivial solu-
tionsT. For non-trivial solution, we can define a unit solutionxs = argminx∈T⊥(|Lx |/|x|)2,
whereT⊥ is the orthogonal complement space ofT. xs is the solution that minimizes
|Lx |/|x| and is orthogonal tox1,x2 andx3. SinceT andS3 are normally equal,xs can be
calculated as the eigenvector ofL⊤L associated with the 4-th minimum eigenvalue.

Thus, the general form of the non-trivial solutions are represented as

x = f1x1 + f2x2 + f3x3 + f4xs = Mf , (8)

where f1, f2, f3, f4 are free variables,f is a vector of( f1 f2 f3 f4)⊤, andM is a matrix
of (x1 x2 x3 xs). The four DOFs of the general solution basically correspond to the
DOFs of generalized projective bas-relief (GPBR) transformations described in the work
of Kriegmanet al. [8].

As far as we know, there are no previous studies that reconstruct 3D scenes by using
the linear equations from the 3-DOF implicit and explicit planes. Advantages of this
formulation are that the solution can be obtained stably, and the wide range of geometrical
constraints can be used as metric constraints.

3.2 Euclidean reconstruction using metric constraints

The solution obtained in the previous section has four DOFs fromf. In addition, if camera
parameters are unknown, additional DOFs should be resolved to achieve metric recon-
struction. To achieve this, constraints other than coplanarities should be used.

For many scenes, we can find geometrical constraints among explicit and implicit
planes. Examples of such information are explained here.
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Figure 2:Metric constraints of coplanarities in a scene:(a) Rectangular box with shadow
of straight bar.π0⊥π1 andπ0⊥π2 if λ⊥π0. π3⊥π4, π4⊥π5, π3⊥π5, andπ3 ∥ π0 if box B
is rectangular and onπ0. (b) A laser projector with two line lasers.

1. In figure2(a), the ground is planeπ0, and linear objectλ is standing vertically on
the ground. If the planes corresponding shadows ofλ areπ1 andπ2, π0⊥π1,π0⊥π2

can be derived fromλ⊥π0.

2. In the same figure, the sides of boxB areπ3,π4, andπ5. If boxB is rectangular,π3,π4,
andπ5 are orthogonal with each other. If boxB is on the ground,π3 is parallel to
π0.

3. Figure2(b) shows a line projector with two line lasers that are aligned by the right
angle. By scanning the scene with this type of projector, orthogonalities between
the implicit planes are automatically obtained.

Normally, metric constraints can be represented as nonlinear equations using the free
variable vectorf and the unknown intrinsic parameters. To solve these nonlinear equations
we use nonlinear optimization. The advantage of nonlinear optimization is that because
of the freedom in the definition of the objective function, we can easily deal with many
kinds of metric constraints.

To implement a stable nonlinear optimization, we propose a two step optimization.
The first step involves optimizing the objective function with respect to the free variable
vector f by using constant intrinsic parameters. The unknown intrinsic parameters are
fixed to appropriate initial values in this step. The second step involves optimizing the
objective function with respect to bothf and the unknown intrinsic parameters. In many
cases, the given information only allows us to reconstruct the scene up to scale. In this
case, we fix one of the elements off, and the optimization is conducted for the rest of the
variables.

The determination of the initial value off may be a problem. In the experiments
described in this study, the initial vectorfI is calculated from the initial plane parameter
xI by fI = M⊤xI . Sincex1,x2,x3 andxs (column vectors ofM ) are unit and orthogonal
with each other,Mf I = MM ⊤xI can be considered as the projection of thexI (the vector
of initial plane parameters) onto the solution space of the projective reconstruction (8)
such that the Euclidean distance betweenxI andMf I is minimum. Using this process,
we can obtain a set of plane parameters which fulfills the coplanarity conditions for an
arbitrary set of plane parameters.

For example, suppose that the orthogonality between the planesπs and πt is as-
sumed. We denote the unit normal vector of planeπs as a vector functionns(f,α) =
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Figure 3:Reconstruction of a CG-synthesized scene: (a) the input image, and (b)(c) the
reconstructed scene (the curves) with ground truth (the shaded surface).

N((as(f,α) bs(f,α) cs(f,α))⊤) whose parameters aref and the camera parameterα,
whereN() means an operation of normalization. Then, the orthogonality betweenπs

andπt can be expressed as

{(ns(f,α)}⊤{nt(f,α)} = 0. (9)

Another example of metric constraints is parallelism. Suppose that the planesπs and
πt are parallel. The parallelism can be expressed as

{(ns(f,α)}×{nt(f,α)} = 0. (10)

Other than the above objective functions, we can use any functions that are described
by the parameters of the points and planes and become minimum for the correct Euclidean
reconstruction.

3.3 Dense reconstruction from video

After Euclidean reconstruction of sparse points, a dense 3D shape can be reconstructed
by using all the captured frames. The actual process is as follows. First, we detect the
intersections between a reflected curve of an unknown implicit laser plane and the curves
of already reconstructed laser planes. Since the 3D positions of such intersections are
known, we can estimate the parameters of the unknown plane by fitting it to the intersec-
tion 3D points using principal components analysis (PCA). We iterate the process for all
frames and finally a dense 3D shape can be reconstructed.

4 Experiments

4.1 CG synthesized scene scanned by line lasers

We performed experiments on the reconstruction of 3D scenes with curved surfaces based
on the implicit coplanarities. In the experiments, the nonlinear equations obtained from
the metric constraints are solved using optimizations based on the Levenberg-Marquardt
method.

For the first experiment, we synthesized a test data by CG as shown in3(a), assuming
a laser projector composed of two line lasers, whose laser planes are configured to be
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Figure 4: Reconstruction of the real scene from implicit and explicit coplanarities: (a)
the target scene, (b) images used to extract the reflections of the line lasers, (c) extracted
reflections(red curves) and explicit coplanarities(blue lines), (d)(e) reconstructed scene of
line-lasers, and (f)(g) result of dense reconstruction .

perpendicular as shown in figure2(b). By using the orthogonalities between the laser
planes, the scene can be reconstructed without any metric constraints from the scene
itself. For this scene, the cross sections of the laser planes and the model were calculated
for various positions of the laser projector. The borders of the black and white patterns on
the scene represent the cross sections. The images are taken 20 times, and 40 laser planes
exist in the scene. The metric constraints are 20 orthogonalities between the planes. The
Euclidean reconstruction was performed assumingαu = αv,uc = vc = 0. Since the scaling
factor cannot be solved, we represented the solution using the average distance from the
camera to the points of the model as the unit length. Using this scale, the bounding box
of the ground truth points was−0.29≤ x≤ 0.25,−0.23≤ y≤ 0.31,−1.34≤ z≤−0.93.
Figure3(b),(c) show the solution (the curves) and the shaded ground truth model.αu was
estimated to be 7.467×102, whereas its true value is 7.464×102. The RMS of the error
was 4.822×10−5; therefore, the reconstruction was very accurate.

4.2 Real scene scanned by line lasers

To conduct experiments for a real object, we use a system consisting of a line laser pro-
jector and a video camera. A scanning process is performed by capturing a sequence
of images with a fixed camera and moving the line laser back and forth manually. The
reflections on the scene are observed as curves, and multiple curves are obtained from
the image sequence. Then, we select a few images and detect the cross sections of the
reflection curves. By using the points, we can reconstruct projective 3D shapes.

In the first experiment, we used a single line laser. We selected 20 images from a
captured image sequence and reconstructed the 3D shape. From the scene, orthogonalities
of the faces of the boxes are used as the metric constraints. Figures4(a)–(e) show the
inputs and results. We can clearly observe that the orthogonalities of the rectangular box
and the parallelisms of the edges are successfully reconstructed. Then, we conducted a
dense 3D reconstruction by using all the captured frames. Figures4(f) and (g) show the
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Figure 5:Reconstruction of the real scene from implicit coplanarities: (a) the target scene,
(b) images used to extract the reflections of the line lasers, (c) extracted reflections (red
curves) and cross sections where metric constraints are imposed(green points), (d)(e) re-
constructed line-lasers, and (f)(g) result of dense reconstruction .

recovered dense 3D points. We can confirm that a dense reconstruction with an arbitrary
shaped object was achieved.

Next, we built a special laser projecting device consisting of two line lasers that were
aligned precisely at 90◦ as shown in Figure2(b). In this case, no metric constraints were
required from the scene. We selected 23 images and reconstructed the 3D shape. We also
conducted a dense reconstruction. Figures5(a)–(g) show all the inputs and results. We
can see that an arbitrary shape is successfully reconstructed.

4.3 Real scene reconstruction from shadows of static objects

We conducted a shape reconstruction from images acquired by an outdoor fixed uncali-
brated camera. Images from the camera were captured periodically and a shape and the
focal length of the camera was reconstructed by the proposed technique from shadows in
the scene. Since the scene also contained many shadows generated by non-straight edges,
the automatic extraction of shadows based on background subtraction technique was dif-
ficult, and thus these noises were eliminated by human interactions. The figure6 (a)
shows the input frame, (b) shows the detected coplanar shadow curves, (c) shows all the
coplanar curves and their intersections, and (d) to (f) show the reconstruction result. The
proposed technique could correctly reconstruct the scene by using images from a fixed
camera.

4.4 Real scene reconstruction from active scan by cast shadows

Next, we conducted an indoor experiment on an actual scene by using a point light source.
A video camera was directed toward a target scene of an object of a ceramic jug shaped
like a cock and multiple boxes. The target scene was captured to obtain a series of images
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Figure 6: Reconstruction of outdoor scene: (a) input image, (b) a frame of the 3D seg-
mentation result, (c) implicit (green) and explicit (red) coplanar curves, (d) reconstructed
result of coplanar curves(red) and dense 3D points(shaded), and (e)(f) the textured recon-
structed scene.

while the light source and the bar for shadowing were being moved freely. From the
series of images, several images were selected and curves created by the shadow were
detected from the images. By using detected coplanar shadow curves, we performed the
3D reconstruction up to 4 DOFs. For the metric reconstruction, orthogonalities of faces
of the boxes were used.

Figures7 (a)-(f) show the capturing scenes and the reconstruction result. In this case,
since there were only small noises extracted because of indoor environment, shadow de-
tection based on background subtraction technique worked well and no human interac-
tion was required. The side orthogonalities of the rectangular box and the coplanarities of
points on each plane are well reproduced. Unlike 3D photography, the proposed technique
realizes reconstruction even if both the light source and the bar are moved freely.

5 Conclusion

In this paper, we propose a novel 3D reconstruction method that utilizes both the copla-
narities of points lit by line lasers or those on the boundaries of shadows of straight edges.
For obtaining a solution, we first obtain a projective reconstruction by solving the linear
equations that are derived from the coplanarity constraints. Then, to upgrade the projec-
tive solution to the Euclidean space, we solve the nonlinear equations formulated from
the metric constraints, using a nonlinear optimization method. We can use geometrical
constraints such as orthogonalities and parallelisms among both the real surfaces and the
laser (shadow) planes. By implementing the technique and conducting an experiment us-
ing simulated and real images, correct and dense shape reconstruction could be achieved.
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Figure 7:Reconstruction of an indoor real scene: (a)(b) the capturing scenes, (c)(d) the
reconstructed coplanar shadow curves (red) with dense reconstructed model(shaded), and
(e)(f) the textured reconstructed model.
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