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Abstract

This paper addresses the problem of automatically eliminating unwanted
colour variation between similar image pairs. We propose a feature-based
registration method to align colour histograms without any spatial process-
ing of the image content or assumptions about the scene contents. We use the
method for the colour transfer problem. The features are histogram maxima
that persist through the scale space, so they are robust to large changes in the
sizes of objects in the scene. The algorithm seeks the best matches between
features and aligns the histograms via a polynomial warp. We construct a set
of image pairs that exhibit variation in object scale and lighting and use it to
show that the method produces better colour space alignments than simple
alignments of histogram moments.

1 Introduction
A common problem in computer vision is that different sensors acquire different colour
responses to an imaged object. This problem occurs because physical factors during the
imaging process introduce a variation that differs for each sensor; in addition, it is practi-
cally impossible to image an object under perfectly constant lighting conditions at differ-
ent spatial positions within an imaging environment [3][4][10]. This variation degrades
the performance of colour computer vision processes such as object tracking [4]; in ad-
dition, the involved nature of calibration routines means that the calibration step is often
ignored.

The colour transfer approach offers the potential for automatic alignment of similar
colour spaces without manual intervention to perform the calibration. The goal of colour
transfer methods is to make the image regions for the same object the same colour; in
this paper, we seek to achieve this by aligning the corresponding dense regions of the
histograms (clusters). We are only concerned with the situation when the images contain
the same or at least highly similar objects. Existing colour transfer methods assume that
scale changes between corresponding clusters are small; however, a significant change in
object scale is common when the camera moves or when tracking between multiple cam-
eras. We seek to develop a scale invariant cluster alignment algorithm and we pose colour
transfer as a two-frame registration problem where our goal is to align the corresponding
clusters in two colour histograms in the presence of lighting, automatic camera setting
and object scale variation.
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Registering colour histogram data presents unique challenges; corresponding clusters
may change in shape and size, tear apart or merge in complex and uncharacterised ways
under changes in lighting, camera variation and pose. The main contribution of this pa-
per is to introduce a new method for automatically aligning histograms, that is robust to
changes of scale of scene objects. The method matches scale invariant histogram features
and aligns them using polynomial warps of the colour space.

2 Background
The term colour transfer was introduced to describe the process of aligning the colour
histograms of a source and target image [8]. We distinguish colour transfer from the sim-
ilar problems of colour consistency and colour constancy as follows: Colour consistency
methods align colour histograms using correspondences established between objects of
known reflectance such as calibration charts. Colour constancy methods estimate the light
source and transform the colour histogram of an individual image to a standard reference
frame using physical and/or statistical assumptions about the scene. Colour transfer on
the other hand does not require objects of known reflectance in the scene and it computes
an alignment using the histograms from both images.

The need to correct for sensor response and lighting variation occurs in a wide vari-
ety of settings such as 3D reconstruction [3], robotics [10] and special effects processing
[8]. At the highest level, colour calibration methods divide into within camera and be-
tween camera calibrations. Within camera calibrations remove response variations that
occur between different pixels in the same camera due to physical effects such as vi-
gnetting. These approaches involve prior physical models and manual calibration steps.
Between camera calibrations align the response curves of different cameras. Five broad
classes of between camera calibration methods exist in the literature, these are: chart
based calibrations [3], calibrations using spatial overlap [9], disjoint view calibrations us-
ing non-parametric methods [7], disjoint view calibrations using parametric models [4]
and calibrations using training images [10].

Polynomial transformations have been shown [3] highly effective in aligning colour
histograms. However, no existing method can automatically establish the necessary corre-
spondences to apply these transformations without colour calibration charts in the scenes.
Our method overcomes this problem through a scale-invariant feature detection step that
operates on the colour histograms. In addition, our approach involves no knowledge of
the layout of objects in the scene and makes no parametric assumptions about the form of
the colour data or the number of clusters that are present. FBHR has been developed us-
ing the RGB colour space. However, it contains no specific assumptions about the RGB
space. We take this approach so the method can be applied to other colour spaces and
applications in the future.

3 Method
The method we propose registers a source RGB histogram with a target RGB histogram.
Registering the colour histograms of images computes a colour transformation that aligns
the colours of a source image with those in a target image. Here, we only consider the
case where the two images contain the same set of N single-coloured objects. Each colour
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Figure 1: Example steps in the FBHR algorithm in the green channel when processing
the BLSS image pair. 1(a) shows the scale space maxima for the green channel histogram
of the source image (2(f)), 1(b) shows the corresponding scale space maxima for the
green channel histogram of the target image (2(h)). (Circular dots indicate maxima, scale
increases vertically and the intensity scale shows histogram density.) 1(c) shows a view
of the detected features and the correspondences between the source histogram (solid line
on bottom) and the target histogram (dashed line on top). 1(d) shows the warped source
histogram and the target.
Histograms are plotted as lines joining the tops of the histogram bins, the transformed
histogram is no longer smooth as it contains zero bins after being stretched by the multi-
plicative component of the transform.

histogram contains a number of dense regions that correspond to objects of interest. We
seek the transform that aligns the clusters that correspond to the same object. The method
is designed to handle multiple clusters of potentially different size, no explicit assumption
is made about the shape of the distributions or the number of clusters present. We only
assume that the source and target images are of the same set of objects.

3.1 Aligning Histogram Moments
Aligning histogram moments is an obvious candidate method for aligning colour dis-
tributions. Here, we outline three different moment transformations between a source
histogram S and a target histogram T. We compute an independent transformation in
each dimension, we write the distribution in the ith channel as Si and for the target dis-
tribution as Ti : 1) Additive alignment of the 1st moment: a scalar shift is computed
for each channel wi = E(Ti)−E(Si), where E is the mean operator; each scalar source
data point si is transformed to wi + si. 2) Multiplicative alignment of the 1st moment: a
scalar gain is computed from each channel ri = E(Ti)/E(Si) and each source data point



is transformed to risi. 3) Linear alignment of the 1st and second moment: the first and
second moments can be aligned by a gain γi and a shift ωi in each channel. γi is computed
from the source histogram variance V (Si) and target histogram variance V (Ti) such that
γi = V (Ti)/V (Si). ωi is computed as ωi = E(Ti)− γiE(Si), each source data point si is
transformed to ωi + γisi.

3.2 Feature based histogram registration algorithm
In this section we outline the feature based histogram registration algorithm (FBHR).
The steps to compute a colour transformation from a source image to a target image
using FBHR are: 1) Compute one dimensional histograms in each channel for both the
source and target images. 2) Compute the scale space of each histogram and extract
salient features. 3) Reject obvious outlying features. 4) Match the remaining features.
5) Compute the coefficients of polynomial transformations to align matching features in
each channel. 6) Transform the source image. 7) Test for failure in each channel by
comparing the transformed and target histogram. 8) If FBHR fails, revert to a moment
based transformation.

The following subsections elaborate on these steps and explain the rationale for taking
this approach.

3.2.1 Scale Space features

We aim to match significant maxima in the colour histograms. Colour histogram data is
commonly noisy and we avoid false feature generation using scale space smoothing. We
track maxima that persist over a scale space. Analysis of the scale space in this way has
been termed deep structure analysis [5] . The scale space of a function h can be computed
by convolving h with Gaussian kernels G(.;σ) of various widths σ . We detect all local
maxima at each scale and remove the maxima that persist over less than T scales. We
search from low levels of σ upwards. A feature persists between adjacent scales if its
position is in adjacent histogram bins at the two scales; feature persistence is affected
by histogram bin width and the values of σ . Figure 1 illustrates these features for one
example image pair and their subsequent processing.

3.2.2 Rejecting outlier features and Matching

Oversaturation is a very common feature in digital images and leads to spikes at the ends
of the histograms in question; we reject these features by thresholding out features less
than δ away from the end of the range. Maxima found in histogram bins below a noise
floor level γ are rejected as they are unlikely to be reliable.

The matching step seeks a match between the detected source and target histogram
feature points. We do this with the following steps: 1) Generate all matches between
the source and target points for this number of matches. If there are the same number
of source and target points we attempt to match them all, if either set is smaller we seek
to match all the points in the smaller set. 2) Reject matches that do not preserve rank
ordering. In 1D this means that for a set of matched points, both points in each match
must be either less than or greater than all other matched pairs. This prevents folding in
the transformation. 3) Pick the match with the minimum global Euclidean cost between
points.



3.2.3 Point alignment transforms

The matching step outputs Mi corresponding points (si j, ti j), j = 1, ...,Mi, in each channel
i = 1, ...,N. We seek the transformation fi in each channel that minimizes

Mi

∑
j=1

∣∣ fi(si j)− ti j
∣∣, (1)

where |.| is the L2 norm. We use an order d polynomial mapping for fi so that

fi(si j) = α0i +
d

∑
k=1

αkisi j
k. (2)

Each corresponding pair provides a linear constraint on the αki. We write them all as a
matrix equation
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Writing this as AiCi = Di, we solve for Ci: Ci = A†
i Di, where A†

i is the pseudo-inverse
of Ai. This is repeated for each channel.

3.2.4 Failure test

The added flexibility of the polynomial transformation makes them sensitive to mis-
matches and means that histograms can be poorly aligned when the correspondence step
has not returned the correct result. We perform a coarse level of failure testing between
the transformed histogram and target histogram in each colour channel. However, when
the procedure fails, it tends to fail catastrophically, which is easy to detect. We compute
the histograms for the transformed and target data less than δ away from the end of the
range, this rejects over saturated regions which cause outlier effects. Then we compute the

Bhattachayya coefficient Bi =
P
∑

b=1

√
rbtb in each channel, where b indexes the transformed

histogram bins rb and the target histogram bins tb. If Bi is less than a failure threshold F
then FBHR has failed in this channel.

4 Experiments and Results

The experiments test the hypothesis that the feature based histogram registration method
in section 3.2 transforms the colours of the source image histogram so that they are better
aligned with the target histogram than when using alignment of either the 1st, or 1st
and 2nd histogram moments (as in section 3.1). We investigate the failure points of the
algorithm and simple strategies for mitigating these failures. The test images divide into
three sets: 1) images of three distinctly coloured pieces of paper on a desk, 2) images
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Figure 2: Source and target images from the three datasets, examples of transformed
source images and masked regions. Image 2(a) is of paper strips under florescent light-
ing, 2(b) is taken under similar conditions but with a desk lamp turned on to cause a slight
change in colours. Image 2(c) shows rearranged strips with the desk lamp on. Trans-
formed source images are shown for a 1st moment shift 2(d) and FBHR1 2(e) when using
source image 2(a) and target image 2(c) (SLSS). Image 2(f) shows the book at large scale
in shadow and 2(g) shows it in sunlight, 2(h) shows the book at small scale in sunlight.
Transformed images are shown for a 1st moment shift 2(i) and FBHR1 2(j) using source
image 2(f) and target image 2(h) (BLSS). Image 2(k) shows the stuffed animals at large
scale in the shade, 2(l) shows them in direct sunlight and 2(m) shows them at small scale
and in sunlight. Transformed images are shown for a 1st moment 2(n), FBHR1 2(o) and
FBHR1 shift fail 2(p) when using source image 2(k) and target image 2(l) (AL). Image
2(q), shows masked regions for 2(a), mask 2(r) shows the regions for 2(f) and 2(s) shows
the mask for 2(k); white polygons indicate the regions of interest, black regions are ig-
nored in the mask. For each mask, polygons corresponding to different colour regions of
interest can be identified separately.



Table 1: Descriptions of image pairs used and short hand notation to refer to them. (Where
possible, we reference the source (Src) and target (Tgt) images in Figure 2.

Code Image pair description
SL Paper strips under lighting change at same scale. (Src: 2(a), Tgt: 2(b))

SLS Paper strips under lighting change and moderate scale change.
SLSS Paper strips under light change and large scale change. (Src: 2(a), Tgt: 2(c))

BL Book under lighting change at same scale. (Src: 2(f), Tgt: 2(g))
BS Book under the same lighting with moderate scale change.

BLS Book under lighting change and moderate scale change.
BLSS Book under lighting change and large scale change. (Src: 2(f), Tgt: 2(h))

BLSSS Book under lighting change and very large scale change
AL Stuffed animals under a lighting change (Src: 2(k), Tgt: 2(l))
AL2 Stuffed animals occupying small percentage of image under a lighting change

ALSL Stuffed animals under a lighting change and scale change

of a book and 3) images of stuffed toys. The image sets are constructed to pick source
and target images that exhibit either scale, lighting or both scale and lighting changes. In
the images of stuffed animals, shadows are a significant source of variation that make the
alignment task more difficult. Figure 2 illustrates the types of images present in the image
sets and the associated hand marked masks used in the evaluation of the colour transfer
results. Table 1 describes the source and target image pairs and introduces a shorthand
used to refer to image pairs from this point onwards.

We compare the alignment of moments to the FBHR method using polynomials of
order 1, 2 and 3. The scale space was generated over T scales with σn = e0.1(n−1),
n = 1, · · · ,T . The exponential increase in kernel scale ensures that blurring occurs more
slowly at lower scales which prevents premature breakages in the feature paths that we are
tracking. In all cases, we set the over-saturation threshold δ to 3, the noise-floor threshold
γ to 0.001, T to 15 and the Bhattachayya failure threshold F to 0.7. The histogram bin
width is 1 in all cases.

After alignment, we compute a metric that compares the colours of L corresponding
regions marked by hand polygons in all images. The paper strip set is marked up into
three regions, the book and stuffed animals each have four marked up regions; examples
of marked up regions are given in figures 2(q), 2(r) and 2(s). The metric is the total
average Mahalanobis distance between the corresponding regions in the transformed and
target images. We denote the RGB pixels extracted from the nth masked region of the
transformed image as a 3 column matrix Qn and from the target image as a 3 column
matrix Wn where each row in both Qn and Wn corresponds to a RGB pixel extracted
from the masked region associated with the image, we compute the Mahalanobis distance
in each direction as

φn =
√

(E(Qn)−E(Wn))−1CQnE(Qn)−E(Wn) (4)

and
βn =

√
(E(Wn)−E(Qn))−1CWnE(Wn)−E(Qn), (5)

where E(Qn) and E(Wn) are the mean RGB colours of Qn and Wn; CQn and CWn are the
covariance of Qn and Wn respectively. For each pair of corresponding regions we find the



Figure 3: Total average Mahalanobis distances for different image pairs aligned using
alignment of moments and FBHR1 and FBHR1 with different failure strategies. FBHR1
shift first applies FBHR1 and then applied a shift alignment of the 1st moment in any
channel that fails. FBHR1 applied a gain shift of the 1st moment in any channel that fails.

average of these distances

Jn =
φn +βn

2
, (6)

and the overall metric is the sum of the averages of φn and βn,
L
∑

n=1
Jn. The metric pro-

vides us with an overall measure of how closely the corresponding colour clusters are
aligned, the measure is chosen over standard overlap measures such as the Bhattachayya
coefficient as all clusters do not necessarily overlap after alignment. Overlap measures
are dominated by largest overlapping clusters; however, we are interested in how well
all the different colours in the scene are aligned. This metric is sensitive to separations
between the means of corresponding clusters, but is potentially insensitive to orientation
differences between clusters with closely aligned means. Manual inspection suggests that
such configurations rarely arise, but we remain wary of this limitation.

Figure 3 summarises the result of applying the different moment alignment strate-
gies and FBHR with two different failure strategies on all different datasets. The FBHR
Shift and Gain fail transforms first attempt to apply FBHR in each channel, if a failure
is detected they revert to alignment using a shift or gain alignment of the first moments
respectively. We see that for the datasets SL,SLS,SLSS,BS,BLS,BL and BLSS no FBHR
channel failure occurs and FBHR outperforms alignment using moments. On the BLSSS
example the channel failure methods improve over FBHR1 as a channel has failed, this
strategy also outperforms aligning moments. For the stuffed animal image pairs, AL and
AL2 show worse alignment scores under all transformations and ALSL shows slight im-
provement when aligning moments. On these images the significant shadowing effects
cause cluster variation that cannot be resolved by examining the individual R,G and B
histograms alone. FBHR failure modes cause the standard FBHR algorithm to degrade in
performance more gracefully. However, only the BLSSS pair shows an improvement over



Figure 4: Comparison of moment alignment and FBHR for 1st, 2nd and 3rd order warps
for image pair examples that did not detect FBHR failure in any channel.

moment alignment when using this strategy. This tells us that a practical strategy when
FBHR failure has been detected is to align the 1st moments of all channels using a shift or
gain; applying moment alignment transformations to individual channels on failure does
not provide a significant overall improvement.

A further question is how the performance of FBHR compares with polynomial trans-
formations of order 1, 2 and 3. Figure 4 examines FBHR 1, 2 and 3 for the example
datasets that did not cause FBHR failure in a channel, we see that FBHR1 outperforms
alignment of moments across all examples. Either FBHR1 or FBHR2 are found to per-
form best. Order 3 fails catastrophically for the strips data set because the histograms have
too few features to fit an order 3 polynomial. The book images provide enough features,
but the regularizing effect of the lower-order transformations proves advantageous. Order
2 provides little improvement over order 1 so we recommend order 1 by Occam’s razor.

The method cannot automatically select the best transform which must be done em-
pirically. However, FBHR 1 has proven robust across a wide range of examples. Note that
alignment of the 1st and 2nd moment and FBHR 1 are both linear transformations so re-
sults are directly comparable. The fact that FBHR1 produces better alignments validates
the feature based registration approach over moment alignment.

5 Conclusions and further work
We have introduced a new algorithm capable of aligning colour histograms that are noisy
and include variation due to lighting, scale and small shadow changes (as seen in the
book dataset). We have tested the algorithm for aligning a range of colour histograms ob-
tained from pairs of images with systematically introduced variation of lighting, scale and
shadowing. The experiments align the 1D individual R, G and B distributions of source
and target distributions and have shown quantitative improvements in the 3D RGB colour
histogram alignment over the simple methods of aligning moments. We have shown the
merits of a feature-based histogram registration approach for aligning multi-modal data



and how to deal with its limitations.
One potential improvement would compute features directly from the 3D histograms

rather than the 1D histograms of each colour channel. However, peak detection in 3D is
more difficult than in 1D. We also plan to test the algorithm on more complicated scenes
and evaluate the performance of standard registration methods such as ICP; RANSAC
will be explored as an outlier rejection method. An increased number of colours in the
scene will increase the complexity of the matching, we plan to reformulate the matching
procedure as a bi-partite matching problem that penalises folding correspondences. The
Hungarian algorithm [1] is a candidate method for solving the matching problem in O(n3)
time. We have concentrated on the two-frame histogram registration problem, but plan
to extend the method to allow multiple-frame histogram registration; methods to align
multiple 3D data scans [2] may provide insight into the best way to do this. Finally,
we intend to evaluate whether recently introduced methods for histogram comparison
across overlapping and non overlapping clusters such as [6] improve the experimental
evaluation.
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