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Abstract

We describe algorithms for active segmentation (AS) of the first frame,
and subsequent, adaptive object tracking through succeeding frames, in a
video sequence. Object boundaries that include different known colours are
segmented against complex backgrounds; it is not necessaryfor the object to
be homogeneous. As the object moves, we develop a tracking algorithm that
adaptively changes the colour space model (CSM) according to measures of
similarity between object and background. We employ a kernel weighted by
the normalized Chamfer distance transform, that changes shape according to
a level set definition, to correspond to changes in the perceived 2D contour
as the object rotates or deforms. This improves target representation and
localisation. Experiments conducted on various syntheticand real colour
images illustrate the segmentation and tracking capability and versatility of
the algorithm in comparison with results using previously published methods.

1 Introduction

In this paper, we address the problem of segmentation and tracking of human subjects
through video sequences, in which the subject is defined by anenclosing contour and a
colour distribution within that contour, and the background may be static (fixed camera)
or moving (panning camera) and defined by another colour distribution. In general, the
colours within the foreground and background may change dueto a different viewpoint or
change of illumination. The work is founded on earlier work on mean-shift [5], level-set
[2][7] and combined [3]methods to segment images and track deformable shapes in video
sequences. In summary, there are three improvements over previous work.

The first process is segmentation on the first frame of the sequence to define the shape
to be tracked. This uses an active segmentation (AS) algorithm based on level set meth-
ods and a multi-phase colour model. However, we have defined ageneral variational
formulation which combines the Minkowski distanceL2 andL3 of each channel and their
homogenous regions in the index, as a change to the previous CVV model [1]. This
method finds whole object boundaries that include differentknown colours, even in very
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complex background situations, and shows improvement in synthetic data, in which the
additive noise is non-Gaussian and asymmetric, and on real image data.

Second, we have developed an adaptive object tracking algorithm that combines AS
and a mean shift tracking. The tracking algorithm has two phases. Assuming a current
shape in a frame of index,i, then the mean shift algorithm can be used to find the most
likely position of that same shape in framei + 1. Then, the AS algorithm deforms the
contour to find a contour that better fits the data in the same(i +1)th frame. The approach
is adaptive, in that it allows both deformation of the contour, and a change of the colour
space model (CSM), the latter building on the work by Collins et al. [4] throughout the
processing of a video. However, we sort the differentCSMs using the Bhattacharyya co-
efficient which is an approximate measurement of the amount of overlap between the two
distributions of foreground and background, instead of using the variance ratio measure
of the distribution of likelihood values.

The third modification, when we obtain the boundary of a tracked object, is to use
a kernel weighted by the normalized chamfer distance transform to improve the accu-
racy of target representation and localization. This replaces the more usual Epanech-
nikov kernel[6]. Comparative experiments show that our approach is more successful in
tracking the object through video sequences, as both foreground and background colour
distributions are better matched to the separated regions within the data.

2 Segmentation by Level Sets

2.1 Description of the Model

The basic idea in active contour segmentation is to evolve a curve, subject to con-
straints, in order to detect objects in the image. “Let Ω be a bounded open subset of
R2, with ∂Ω the boundary. LetI be a given image
such thatI : Ω −→ R. Let C(s) : [0, 1]−→ R2 be
a piecewise parameterized C1 curve” [1]. We make
the following assumptions: 1)I is composed by a
maximum ofM regionsΩi ; 2) the interface between
the regions∂Ω is regular. Our method also includes
the minimization of an energy based function to per-
form segmentation. Describing image segmenta-
tion by a variational model increases the flexibility
of the representation, allowing the future employ-
ment of additional features, such as shape knowl-
edge, texture, motion vectors, etc. As implemented
here, we assume a-priori knowledge of the colours

Figure 1: An image with N channels and a
set of M different colours.

of the object to be isolated. Given aN-channel imageI(I1, · · · , IN), and a set of differ-
ent colours/intensitiesc = (c1,c2, · · · ,cM). Then,ci ,(i = 1, · · · ,M) are vectors of length
N. The components of the foreground and background colours ofthe kth channel are
ck

f g = (cf
k1, · · · ,c

f
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bg = (cb

k1, · · · ,cb
kRb

) , Rf +Rb = M . Figure 1 gives an illustra-

tion. We choose an energy formulation with the following form:

E(C) = µ · length(C)+λfg ·
∫ ∫

Ωfg

Ff g(I(x,y),cfg)dxdy+λbg ·
∫ ∫

Ωbg

Fbg(I(x,y),cbg)dxdy (1)



whereC is the boundary curve ofΩ f g (shaded in Fig.1).Ω f g = cf
k1 ∪ ·· · ∪ cf

kRf
is the

foreground (object) which is insideC, and the complement ofΩbg = cb
k1∪·· ·∪cb

kRb
is the

background which is outsideC. Then, according to the bin-by-bin dissimilarity measure-
ment - Minkowski distance [9], we use the mean ofL2 (the standard deviation) andL3

(the third root of the skewness) in each channel to get the expressions:
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whereci = average(Ip(x,y)) inside theith region. µ , λ f g , λbg andwf ,b
i (i = 1, · · · ,N)

are nonnegative weights for the regularizing term and the fitting term, respectively. This
model is robust to symmetric and asymmetric noise (e.g. Gaussian and Gamma distributed
noise). The optimal partition is obtained by minimizing theenergyE(C). “The key idea
is to evolve the boundary C to the boundary of the object from some initialization in
direction of the negative energy gradient under the constraints from the image.”[7]

2.2 Level Set Formulation of the Model

For the level set formulation of the variational active contour model, we replace the un-
known variableC by the unknown variableφ , and follow [10], using the Heaviside func-
tion H, and the one-dimensional Dirac measureδ0 defined respectively by

H(z) =

{

1 , i f z≥ 0
0 , i f z < 0

δ0 =
d
dz

H(z) (4)

We express the terms in the energyE in the following way:

E(C) =
∫ ∫

Ω
(µ ·δ0(φ(x,y)) |∇φ(x,y)|+λ f g ·Ff gH(φ(x,y))+λbg ·Fbg(1−H(φ(x,y))))dxdy (5)

In order to compute the associated Euler-Lagrange equationfor the unknown function
φ , our numerical simulations involve slightly regularized version ofH andδ0 , denoted
here byHε and δε , as ε −→ 0. In this paper, we approximate the regularization of
Heaviside by the complementary error function (erfc).

Hε (z) =
1
2

er f c

(

−
√

πz
ε

)

δε (z) = H ′
ε =

e
−

(√
πz
ε

)2

ε
(6)

This is very similar to the procedure used by [1][2] and [10],but it has a bigger
support interval,(−∞,+∞). Minimizing E(C) with respect toφ yields the following
Euler-Lagrange equation forφ , parameterizing the descent direction by time,t > 0. The
equation inφ(t,x,y) (with φ(0,x,y) = φ0(x,y) defining the initial contour) is:

∂φ
∂ t

= δε (φ)

[

µ ·∇•
(

∇φ
|∇φ |

)

−λ f gFf g +λbgFbg

]

(7)

in Ω , and with the boundary conditionδε (φ)
|∇φ |

∂φ
∂~n = 0 onΩ , where~n denotes the normal at

the boundary ofΩ . Actually, ∇φ
|∇φ | is the unit (outward) normal, and the divergence of the

normal∇•
(

∇φ
|∇φ |

)

is the mean curvature of theφ .



2.3 Numerical Implementation

To solve this evolution problem, we use the level set method proposed by Osher [8]. We
define an implicit function forφ using a signed distance. This function is positive on the
exterior, negative on the interior, and zero on the boundary. Meanwhile, an extra condition
of |φ | = 1 should be satisfied.φ does not have to be a signed distance function; for
example a Euclidean distance transform or Chamfer distancetransform could be chosen
as a level set functionφ . However, a signed distance function will increase the stability
and quality of the evolution (especially if a vector field-based force and a force in normal
direction are combined). This is because the signed distance is the path of steepest descent
for the function. In order to improve numerical efficiency, we use a discrete form of the
Hamilton-Jacobi (HJ) equation with high order ENO (Essentially Nonoscillatory) and
WENO (Weighted ENO) accuracy and a Local Lax-Friedrichs (LLF) scheme. We also
calculate the upwind derivative by using second order ENO scheme.

When working with level sets and Dirac delta functions,φ will no longer be a distance
function (i.e.|φ | = 1). φ can become irregular after some period of time. A standard pro-
cedure is to reinitialize the signed distance function to its zero-level curve. This prevents
the level set function from becoming too flat, and can be seen as a rescaling and regular-
ization. The reinitialization procedure is made by the following evolution equation:

{

ψt = sign(φ(t))(1−|∇ψ|)
ψ(0,•) = φ(t,•) (8)

whereφ(t,•) is the solutionφ at timet. Then the newφ(t,•) will be ψ , such thatψ is
obtained at the steady state of (8). The solution of (8) will have the same zero-level set as
φ(t,•) and away from this set,|∇ψ| will converge to 1 [2].
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Figure 2: (a). Original synthetic image. (b). Gamma distributed noise. (c) and (d) show
the results of iteration 40 and the final results by AS and CVV methods respectively; the
noisy image is on the left, the associated piecewise-constant approximation on the right.



In all our numerical experiments, we generally choose the parameters:λ f g = λbg = 1,

wf
q = wb

q = 1. We use the approximationsHε andδε of the Heaviside and Dirac delta
functions (ε = ∆x = ∆y), in order to automatically detect interior contours, and to insure
the computation of a global minimizer. Only the length parameterµ , which has a scaling
role, is not the same in all experiments. If we have to detect all or as many objects as pos-
sible and of any size, thenµ should be smaller. Otherwise,µ should be larger. To test the
effect of theL3 Minkowski distance in the energy function, we first add asymmetric noise
(i.e. a Gamma distribution) to a synthetic image. Fig.2(a) shows the original synthetic
image, (b) shows the noise distribution, (c) shows the results of the AS method, and (d)
the CVV method. This shows the improvement of the AS over the CVV method if the
noise is additive and asymmetric. In Fig.3, each method is applied to a real image with a
coloured, striped texture. This shows that the AS can obtainthe complete contour, but the
CVV has breaks in the expected segmentation. AS only needs 87iterations to converge
to the optimal solution, but the CVV method takes 202 iterations.

Figure 3: The comparison of the AS and CVV methods using a realimage. The top
figures are the results of iterations 60 and 87 by the AS method. The bottom figures are
the results of iterations 60 and 202 by the CVV method. The original image is on the left
and the associated piecewise-constant approximation is onthe right.

We can also compare the accuracy of the AS method with that of the CVV method by
calculating the energy of every evolution. Though energy formulation of the AS is dif-
ferent to that of CVV, and the initial value
is different, we can compare the energy
after normalization, because they should
converge to the same global minimization,
that is, in f (E(C)). For a perfect image
and contours,in f (Ff g) = in f (Fbg) = 0, so
in f (E(C)) = µ · length(C). The compari-
son is shown in Figure 4. AS/CVV (Three
colours) means we consider the three over-
lapping circles in Figure 2(a) as a sin-
gle object and use the AS/CVV method.
AS/CVV (one or two colours) has similar

Figure 4: Comparisons of the energy evolution.

meaning. The experimental results show that the AS method only needs a small num-
ber of iterations to reach the minimum energy value. For example, for the object with
three colours, the initial energy of the AS is bigger than that of CVV. After 25 iterations,



AS obtains a minimum, but the CVV method requires 150 iterations to obtain its final
minimum.

3 Adaptive Object Tracking

3.1 Outline of the Adaptive Tracking Algorithm

The adaptive tracking algorithm is expressed as pseudocode,

• Define the internal and external rectangles covering the object centroid at y0 in the first image.

• Sort CSMs by similarity distance criterion (Eq.10).

• Choose preferredCSM.

• Get active contour andφ of the tracked object by AS method.

• Repeat
Input the image i (initial value i = 1).
Obtain the set of foreground and background pixels byφ .
Sort and choose preferredCSM.
Get the sets of constant colours by clustering using mean-shift segmentation.
Compute NCDT kernel using Chamfer distance transform.
Form model histogram,q, in the preferred colour space.
Fetch the next framei +1.

Compute candidate histogramp(y0) in the preferred CSMs using NCDT-kernel
Find the optimum location y1 of candidate using mean shift tracking algorithm.
Get the motion vector.

Translate the contours.
Update φ by AS method.
i = i +1.

• Until end of input sequence

3.2 Selection of the Best Colour Space Model

In tracking an object through a colour image sequence, we shall assume that we can
represent it by use of a discrete distribution of samples from a region in colour space,
initially localised by a kernel whose centre defines the current position. Hence, we want
to find the maximum in the distribution of a function,ρ , that measures the similarity
between the weighted colour distributions as a function of position (shift) in thecandidate
image with respect to a previous model image. If we have two sets of parameters for
the respective densitiesp(x) andq(x), the Bhattacharyya coefficient is an approximate
measurement of the amount of overlap, defined by [6]:

ρ(y) = ρ[p(y),q] =
m

∑
u=1

√

pu(y)qu (9)

The distance between two distributions can be defined as

d(y) =
√

1−ρ(y) (10)

Clearly the distanced(y) lies between zero and unity, and obeys the triangle inequality.
In a discrete space,xi , i = 1,2, · · · ,n are the pixel locations of the model, centred at a
spatial location0, which is defined as the position of the window in the preceding frame



that we want to track. A functionb : R2 → 1,2, · · · ,n associates to the pixel at location
xi the indexb(xi) of the histogram bin corresponding to the value of that pixel. Hence a
normalized histogram of the region of interest can be formed(usingqu as an example)

qu =
1
n

n

∑
i=1

δ [b(xi)−u], u = 1,2, · · · ,m (11)

whereδ is the Kronecker delta function. Tracking success or failure depends primarily on
how distinguishable an object is from its surroundings. If the object is very distinctive, it
is easy to track. Otherwise it is hard to track. Normally, thefeatures that best distinguish
between foreground and background are the best features fortracking. The choice of
feature space will need to be continuously re-evaluated over time to adapt to changing
appearances of the tracked object and its background. To select the best colour space
model (CSM), we sort the differentCSMs using the Bhattacharyya coefficient which is
an approximate measurement of the amount of overlap betweenthe two distributions of
foreground and background. For the first frame, we use a “centre-surround” approach
to sample pixels from object and background. A rectangular set of pixels covering the
object is chosen to represent the object pixels, while a larger surrounding ring of pixels
of the rectangle is chosen to represent the background. For an internal rectangle of size
h×w pixels, the outer margin of width(

√
2− 1)

√
hw/2 pixels forms the background

sample. The foreground and background have the same number of pixels if h = w. In all
subsequent frames, it is the contour defined by the level set function,φ , that defines the
foreground for the adaptive model, so that no background is included. We use the distance
criterion (10) to measure the similarity between the two histograms of the internal and
external regions. The best colour space is selected by finding theCSM with maximum
distance value. Each potential feature set typically has dozens of tunable parameters and
therefore the full number of potential features that could be used for tracking is enormous.
We construct 16 single frameCSMs from 5 different colour spaces (R.G.B, L.a.b, H.S.V,
Y.I.Q/Y.Cb.Cr, C.M.Y.K). All the values of pixels are normalized to 0 to 255, yielding
feature histograms with 16 or 256 bins.

Fig.5(a) shows a sample image with concentric boxes delineating the object and back-
ground. The similarity distances between foreground and background of eachCSMare
shown in Fig.5(b) and the set of all 16 candidate images afterrank-ordering the feature ac-
cording to the criterion (10) are shown in Fig. 5(c). The image with the most discrimina-
tive feature (best for tracking) is at the upper left. The image with the least discriminative
feature (worst for tracking) is at the lower right.

3.3 Using a Kernel Based on the Normalized Chamfer Distance
Transform

A radially symmetric kernelK can be described by a 1D profile rather than a 2D (or
higher order) image. The most popular choice forK is the optimal Epanechnikov kernel
that has a uniform derivative ofG = 1 which is also computationally simple. However,
in tracking an object through a video sequence and applying the mean shift algorithm to
move the position of the target window, the bounds of the domain R2 are altered on each
successive application of the algorithm. There is no reasonto suppose that the target has
radial symmetry, and even if an elliptical kernel is used, i.e. there is variable bandwidth,
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Figure 5: (a). A sample image with concentric boxes delineating the object and back-
ground. (b). The similarity distance of eachCSM. (c). Rank-ordered 16 images. (d). AS
segmentation result. (e). 3D NCDT kernel

the background area that is being sampled for the colour distribution will change. If the
background is uniform this will not affect the colourpdf, and hence the gradient ascent
will be exact. However, if it is not uniform, but varies markedly and in a worst case
has similar properties to the target, as we shall see in the next section, then multiple
modes will be formed in thepdf and the mean shift is no longer exact. Therefore, we
use the normalised Chamfer distance transform (NCDT) rather than the true Euclidean
distance, as it is an efficient approximation. The NCDT kernel better represents the colour
distribution of the tracked target, yet retains the more reliable centre weighting of the
radially symmetric kernels. This transform is applied to the target area, separated from
the background by AS methods described in Section 2.3. Figures 5(d) and (e) show
the AS segmentation and the NCDT kernel of Figure 5(a). We aimto show that this
weighting increases the accuracy and robustness of representation of thepdf’s as the
target moves, since it excludes peripheral pixels that occur within a radially symmetric
window applied to successive frames. We are investigating the performance of the NCDT



transform to define the regions of interest and weight the colour densities in the video
images. We assess whether the anticipated gain in excludingbackground pixels from the
density estimates and weighting more substantially those more reliable pixels towards the
centre of the tracked object will outweigh the possibility of forming false modes because
of the shape of the NCDT. However, radially symmetric kernels may also produce false
modes due to badly defined densities.

Figure 6 illustrates that the tracking algorithm can cope with dynamic deformation
of the shapes and the changing positions of the targets in thevarious sequences, even
when the camera pans so that both the foreground and background move in the camera
coordinate system (Fig. 6(a)). All of these illustrations are from much longer sequences,
included as supplementary material, typically more than a hundred frames. Fig.6(b) and
(c) show that the tracking algorithm is very robust to clutter, and crossing objects. The car
is occluded by a square object which has the same colour as thecar in the third sample
picture in (b), two people cross in the third sample picture in (c), yet the algorithm adapts
the contour to track the non-occluded portion of the woman, then re-grows the contour as
she re-emerges from behind the man. In each of the sequences,the rectangle in the first
image defines the initial region, in which the object to be tracked is segmented. In Figure
6(c), we have also compared the use of the NCDT and Epanechnikov kernel, but in the
latter case the tracker latches on the crossing individual.

Figure 6: Tracking video objects and dynamics of deformation. The video sequences are
supplied as supplementary material.

4 Conclusions

We have developed segmentation and tracking algorithms using a generalized active con-
tour model. The object of interest can have a mixture of colours, but these are known
before segmentation. For segmentation, the position of theinitial curve can be anywhere
in the image, and need not necessarily surround the object tobe detected. However, if the



initial estimate is far from the true contour, it takes a longtime to converge to the optimal
solution. The segmentation is similar to the earlier CVV algorithm, but uses a slightly
different cost function that deals better with noise that isasymmetric, and converges more
quickly on sample image data. The adaptive object-trackingis a hybrid algorithm, com-
bining level set methods with the mean shift tracking algorithm. Mean shift defines the
translation in the next frame to accelerate the level set definition of the tracked contour.
The algorithm is also improved by a Chamfer distance transform (NCDT kernel) and
sorted CSMs to better detect and track objects. Several experiments have demonstrated
the ability of the model to detect and track an object in moviesequences.
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