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Abstract

We describe algorithms for active segmentation (AS) of tra frame,
and subsequent, adaptive object tracking through suaugddimes, in a
video sequence. Object boundaries that include differeatvk colours are
segmented against complex backgrounds; it is not necef&sahe object to
be homogeneous. As the object moves, we develop a tracldgogthim that
adaptively changes the colour space mo@SK) according to measures of
similarity between object and background. We employ a Kemegyhted by
the normalized Chamfer distance transform, that changgseséccording to
a level set definition, to correspond to changes in the pexde€2D contour
as the object rotates or deforms. This improves target septation and
localisation. Experiments conducted on various synthatid real colour
images illustrate the segmentation and tracking capglaiid versatility of
the algorithm in comparison with results using previouslplgshed methods.

1 Introduction

In this paper, we address the problem of segmentation aokitigaof human subjects
through video sequences, in which the subject is defined nalosing contour and a
colour distribution within that contour, and the backgrdumay be static (fixed camera)
or moving (panning camera) and defined by another colourildigion. In general, the
colours within the foreground and background may changealadalifferent viewpoint or
change of illumination. The work is founded on earlier workroean-shift [5], level-set
[2][7] and combined [3]methods to segment images and tratdrchable shapes in video
sequences. In summary, there are three improvements @igops work.

The first process is segmentation on the first frame of theesemguto define the shape
to be tracked. This uses an active segmentation (AS) afgoiitased on level set meth-
ods and a multi-phase colour model. However, we have defingeharal variational
formulation which combines the Minkowski distaniceandL; of each channel and their
homogenous regions in the index, as a change to the previgisnmibdel [1]. This
method finds whole object boundaries that include diffekeimivn colours, even in very
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complex background situations, and shows improvementrithgyic data, in which the
additive noise is non-Gaussian and asymmetric, and onmegje data.

Second, we have developed an adaptive object trackingitigothat combines AS
and a mean shift tracking. The tracking algorithm has twospha Assuming a current
shape in a frame of index, then the mean shift algorithm can be used to find the most
likely position of that same shape in frame 1. Then, the AS algorithm deforms the
contour to find a contour that better fits the data in the s@md)™" frame. The approach
is adaptive, in that it allows both deformation of the comf@nd a change of the colour
space model@SM), the latter building on the work by Collins et al. [4] thrcumut the
processing of a video. However, we sort the differ@8iVks using the Bhattacharyya co-
efficient which is an approximate measurement of the amdumtarlap between the two
distributions of foreground and background, instead ofigishe variance ratio measure
of the distribution of likelihood values.

The third modification, when we obtain the boundary of a teackbject, is to use
a kernel weighted by the normalized chamfer distance toamsto improve the accu-
racy of target representation and localization. This mgdathe more usual Epanech-
nikov kernel[6]. Comparative experiments show that ourrapph is more successful in
tracking the object through video sequences, as both fowegrand background colour
distributions are better matched to the separated regighswhe data.

2 Segmentation by Level Sets

2.1 Description of the Model

The basic idea in active contour segmentation is to evolverae¢ subject to con-
straints, in order to detect objects in the imagéet‘Q be a bounded open subset of
R?, with dQ the boundary. Let be a given imageChannenm
such thatl : Q — R. Let C(s) : [0, 1] — R? be '
a piecewise parameterized Curve' [1]. We make
the following assumptions: 1I)is composed by &
maximum ofM regionsQ;; 2) the interface betweeichannel (1)
the region®)Q is regular. Our method also include
the minimization of an energy based function to p:
form segmentation. Describing image segmer
tion by a variational model increases the flexibilichannei & (1)
of the representation, allowing the future emplc
ment of additional features, such as shape knc :
edge, texture, motion vectors, etc. As implementaglre 1. An image with N channels and a
here, we assume a-priori knowledge of the colo&gtof M different colours.
of the object to be isolated. GivenNxchannel image(l4,---,In), and a set of differ-
ent colours/intensities = (c1,Cp,--+,¢m). Then,c, (i =1,---,M) are vectors of length
N. The components of the foreground and background colouthek™ channel are

Sfg = (G- g, ) @Ay = (.-, g ) + Ri+Rp = M. Figure 1 gives an illustra-

tion. We choose an energy formulation with the followingnfor

E(C) = p-1ength(C) + g [ [ Frgl1(x.y).cig)exdly Ang- [ Fogll (k). cog)cly (1)



whereC is the boundary curve dR¢g (shaded in Fig.1).Q¢g = C|£1 U--- UC;ERf is the

foreground (object) which is inside, and the complement @,q = ctk’l U---u CERD is the
background which is outside. Then, according to the bin-by-bin dissimilarity measure-
ment - Minkowski distance [9], we use the meanLef(the standard deviation) ard
(the third root of the skewness) in each channel to get theesgjons:

3 Ry N

Fra(lxy).crg) = 3 ( I'If% 3 (valla(xy) — il )" (2)
r=2 g= p=
S 1 c b 1/r\1/R

Fog(l (%), Cbg) = 22( Hl(N zl(\/\}&\lp(x,y)—cpq\r)) M/ 3)
r=2 g= p=

wherec; = averagély(x,y)) inside theit" region. i, Asq , Apg andwif’b(i =1---,N)
are nonnegative weights for the regularizing term and ttiaditerm, respectively. This
model is robust to symmetric and asymmetric noise (e.g. Samand Gamma distributed
noise). The optimal partition is obtained by minimizing #reergyE(C). “The key idea
is to evolve the boundary C to the boundary of the object fromesinitialization in
direction of the negative energy gradient under the comstsafrom the imagé[7]

2.2 Level Set Formulation of the Model

For the level set formulation of the variational active eamtmodel, we replace the un-
known variableC by the unknown variable , and follow [10], using the Heaviside func-
tion H, and the one-dimensional Dirac measdgelefined respectively by
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We express the terms in the enefgyn the following way:

EC) = [ (k- &(@(x)) [00(x)| + Arg-FigH(9x.¥)) + Aog- Fog(1— H(@(x¥))))dxdy (5)

In order to compute the associated Euler-Lagrange equiatidhe unknown function
@ , our numerical simulations involve slightly regularizegrsion ofH andd, , denoted
here byH, andd; , as€¢ — 0. In this paper, we approximate the regularization of
Heaviside by the complementary error function (erfc).

ei(@)z
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He(2) = %erfc(—@) % (2) =H{ = (6)

This is very similar to the procedure used by [1][2] and [1B)it it has a bigger
support interval,(—o, 40). Minimizing E(C) with respect tog yields the following
Euler-Lagrange equation f@, parameterizing the descent direction by titne,0. The
equation ing(t,x,y) (with ¢(0,x,y) = @(x,y) defining the initial contour) is:

Jde Ue
20 &l [-De (155 ) ~ Mo+ Augfg @

in Q , and with the boundary conditi (q‘;‘) ’;—‘g =00nQ, wheren denotes the normal at

the boundary of2 . Actually, E—zl is the unit (outward) normal, and the divergence of the

normalll e (E—%) is the mean curvature of thg



2.3 Numerical Implementation

To solve this evolution problem, we use the level set methoggsed by Osher [8]. We
define an implicit function forp using a signed distance. This function is positive on the
exterior, negative on the interior, and zero on the bounddseanwhile, an extra condition
of |¢| = 1 should be satisfiedg does not have to be a signed distance function; for
example a Euclidean distance transform or Chamfer dista&ansform could be chosen
as a level set functiop. However, a signed distance function will increase theiktyb
and quality of the evolution (especially if a vector fieldskd force and a force in normal
direction are combined). This is because the signed distiarihe path of steepest descent
for the function. In order to improve numerical efficiencye wse a discrete form of the
Hamilton-Jacobi (HJ) equation with high order ENO (EssadiytiNonoscillatory) and
WENO (Weighted ENO) accuracy and a Local Lax-Friedrichs (LkEheme. We also
calculate the upwind derivative by using second order EN@@se.

When working with level sets and Dirac delta functiogsyill no longer be a distance
function (i.e.|@| = 1). ¢ can become irregular after some period of time. A standard pr
cedure is to reinitialize the signed distance functionda#ro-level curve. This prevents
the level set function from becoming too flat, and can be ssenrascaling and regular-
ization. The reinitialization procedure is made by thedwaiing evolution equation:

{ W = sign(e(t))(1—|0yl) 8)
ll/(o,.) = (D(LO)

whereq(t, o) is the solutionp at timet. Then the newp(t,e) will be ¢, such thatp is
obtained at the steady state of (8). The solution of (8) valldithe same zero-level set as
@(t,e) and away from this seflJy| will converge to 1 [2].
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Figure 2: (a). Original synthetic image. (b). Gamma distiétdl noise. (c) and (d) show
the results of iteration 40 and the final results by AS and C\thuads respectively; the
noisy image is on the left, the associated piecewise-conatgproximation on the right.



In all our numerical experiments, we generally choose thamaters:Atg = Apg = 1,

wé = vvg = 1. We use the approximatio$: and d, of the Heaviside and Dirac delta

functions € = Ax = Ay), in order to automatically detect interior contours, amihsure
the computation of a global minimizer. Only the length pagganu , which has a scaling
role, is not the same in all experiments. If we have to detéot as many objects as pos-
sible and of any size, them should be smaller. Otherwisg,should be larger. To test the
effect of theL3 Minkowski distance in the energy function, we first add asyatrin noise
(i.e. a Gamma distribution) to a synthetic image. Fig.2tevss the original synthetic
image, (b) shows the noise distribution, (c) shows the tesilthe AS method, and (d)
the CVV method. This shows the improvement of the AS over th&/ @nethod if the
noise is additive and asymmetric. In Fig.3, each methodpieghto a real image with a
coloured, striped texture. This shows that the AS can olt&irromplete contour, but the
CVV has breaks in the expected segmentation. AS only needsr@fions to converge
to the optimal solution, but the CVV method takes 202 iteradi

Figure 3: The comparison of the AS and CVV methods using aimafie. The top
figures are the results of iterations 60 and 87 by the AS metfibd bottom figures are
the results of iterations 60 and 202 by the CVV method. Thgirmed image is on the left
and the associated piecewise-constant approximationtissoright.

We can also compare the accuracy of the AS method with thaedEVV method by
calculating the energy of every evolution. Though energynfdation of the AS is dif-
ferent to that of CVV, and the initial valuc

is different, we can compare the ener | - AS (Three colours) |
after normalization, because they shot X St i
e . 0.1 —
converge to the same global minimizatio \\ CVV (Three colours)
. . . 2 0.08 - CVV (Two colour)
that is, inf(E(C)). For a perfect image ¥ N + CVV (One colours)
= 0.06

and contoursinf (Ftg) = inf(Fy,y) = 0, so

oo [

inf(E(C)) = u-lengthC). The compari- D Saaass===c==azaen
son is shown in Figure 4. AS/CVV (Thre "” T SSrraaanares
colours) means we considerthethree ov - ° | 4 5 ; o 1 15 1s 17 10 21 25 25 27 2
lapping circles in Figure 2(a) as a sit Lieation

gle ObjECt and use the AS/CVV method. Figure 4: Comparisons of the energy evolution
AS/CVV (one or two colours) has similar ' '
meaning. The experimental results show that the AS methbdreeds a small num-
ber of iterations to reach the minimum energy value. For gtanfor the object with
three colours, the initial energy of the AS is bigger thart tfe&CVV. After 25 iterations,



AS obtains a minimum, but the CVV method requires 150 iteretito obtain its final
minimum.

3 Adaptive Object Tracking
3.1 Outline of the Adaptive Tracking Algorithm

The adaptive tracking algorithm is expressed as pseudpcode
e Define the internal and external rectangles covering the olgict centroid at yO in the first image.
e Sort CSMs by similarity distance criterion (Eq.10).
e Choose preferredCSM.
e Get active contour and ¢ of the tracked object by AS method.

Repeat
Input the imagei (initial value i = 1).
Obtain the set of foreground and background pixels by .
Sort and choose preferredCSM.
Get the sets of constant colours by clustering using mean-ghsegmentation.
Compute NCDT kernel using Chamfer distance transform.
Form model histogram, g, in the preferred colour space.
Fetch the next framei + 1.
Compute candidate histogramp(yp) in the preferred CSMs using NCDT-kernel
Find the optimum location y; of candidate using mean shift tracking algorithm.
Get the motion vector.
Translate the contours.
Update ¢ by AS method.
i=i+1.
e Until end of input sequence

3.2 Selection of the Best Colour Space Model

In tracking an object through a colour image sequence, wi aksume that we can
represent it by use of a discrete distribution of samplemfeoregion in colour space,
initially localised by a kernel whose centre defines theenirposition. Hence, we want
to find the maximum in the distribution of a functiop, that measures the similarity
between the weighted colour distributions as a functiorosffon (shift) in thecandidate
image with respect to a previous model image. If we have twe gkEparameters for
the respective densitig¥x) andq(x), the Bhattacharyya coefficient is an approximate
measurement of the amount of overlap, defined by [6]:

p(y) = plp(y),q = i vV Pu(Y)Qu 9)

The distance between two distributions can be defined as

d(y) = v1-p(y) (10)
Clearly the distancd(y) lies between zero and unity, and obeys the triangle inetyuali

In a discrete spaceq,i = 1,2,---,n are the pixel locations of the model, centred at a
spatial locatiorD, which is defined as the position of the window in the precgdiame



that we want to track. A functiob: R> — 1,2, ---,n associates to the pixel at location
x; the indexb(x;) of the histogram bin corresponding to the value of that pik&#nce a
normalized histogram of the region of interest can be forfusthgqy as an example)

l n
N @

whered is the Kronecker delta function. Tracking success or faitlepends primarily on
how distinguishable an object is from its surroundingshé& object is very distinctive, it
is easy to track. Otherwise it is hard to track. Normally, fibetures that best distinguish
between foreground and background are the best featurdsafiking. The choice of
feature space will need to be continuously re-evaluated twee to adapt to changing
appearances of the tracked object and its background. €otgble best colour space
model CSM), we sort the differenCSMs using the Bhattacharyya coefficient which is
an approximate measurement of the amount of overlap bettheemvo distributions of
foreground and background. For the first frame, we use a feenutrround” approach
to sample pixels from object and background. A rectangugtios pixels covering the
object is chosen to represent the object pixels, while aefasgrrounding ring of pixels
of the rectangle is chosen to represent the background. rFmternal rectangle of size
h x w pixels, the outer margin of widtk/2 — 1)v/hw/2 pixels forms the background
sample. The foreground and background have the same nurnbieets if h=w. In all
subsequent frames, it is the contour defined by the leveusetibn, ¢, that defines the
foreground for the adaptive model, so that no backgrounmttisded. We use the distance
criterion (10) to measure the similarity between the twddgsams of the internal and
external regions. The best colour space is selected by §riieCSM with maximum
distance value. Each potential feature set typically hag® of tunable parameters and
therefore the full number of potential features that coddibed for tracking is enormous.
We construct 16 single fram@SMs from 5 different colour spaces (R.G.B, L.a.b, H.S.V,
Y.1.Q/Y.Cb.Cr, C.M.Y.K). All the values of pixels are noriied to 0 to 255, yielding
feature histograms with 16 or 256 bins.

Fig.5(a) shows a sample image with concentric boxes deilirgethe object and back-
ground. The similarity distances between foreground armttdraund of eactCSM are
shown in Fig.5(b) and the set of all 16 candidate images &fté-ordering the feature ac-
cording to the criterion (10) are shown in Fig. 5(c). The imagth the most discrimina-
tive feature (best for tracking) is at the upper left. Thegeavith the least discriminative
feature (worst for tracking) is at the lower right.

3.3 Using a Kernel Based on the Normalized Chamfer Distance
Transform

A radially symmetric kerneK can be described by a 1D profile rather than a 2D (or
higher order) image. The most popular choiceKoais the optimal Epanechnikov kernel
that has a uniform derivative @& = 1 which is also computationally simple. However,
in tracking an object through a video sequence and applyiegrtean shift algorithm to
move the position of the target window, the bounds of the dorR4 are altered on each
successive application of the algorithm. There is no reéssuppose that the target has
radial symmetry, and even if an elliptical kernel is usegl, there is variable bandwidth,
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Figure 5: (a). A sample image with concentric boxes delingathe object and back-
ground. (b). The similarity distance of ea€i$M (c). Rank-ordered 16 images. (d). AS
segmentation result. (€). 3D NCDT kernel

the background area that is being sampled for the colouilgliton will change. If the
background is uniform this will not affect the colopdf, and hence the gradient ascent
will be exact. However, if it is not uniform, but varies madkg and in a worst case
has similar properties to the target, as we shall see in tike geetion, then multiple
modes will be formed in th@df and the mean shift is no longer exact. Therefore, we
use the normalised Chamfer distance transform (NCDT) rdtten the true Euclidean
distance, as it is an efficient approximation. The NCDT kEoe&er represents the colour
distribution of the tracked target, yet retains the moréabd centre weighting of the
radially symmetric kernels. This transform is applied te thrget area, separated from
the background by AS methods described in Section 2.3. €$g6(d) and (e) show
the AS segmentation and the NCDT kernel of Figure 5(a). We tairshow that this
weighting increases the accuracy and robustness of repatiem of thepdf's as the
target moves, since it excludes peripheral pixels that oedthin a radially symmetric
window applied to successive frames. We are investigatiagperformance of the NCDT



transform to define the regions of interest and weight thewodlensities in the video

images. We assess whether the anticipated gain in exclbdickground pixels from the

density estimates and weighting more substantially thase meliable pixels towards the
centre of the tracked object will outweigh the possibilifyfarming false modes because
of the shape of the NCDT. However, radially symmetric kesmahy also produce false
modes due to badly defined densities.

Figure 6 illustrates that the tracking algorithm can copthwlynamic deformation
of the shapes and the changing positions of the targets inatieus sequences, even
when the camera pans so that both the foreground and bacidyroave in the camera
coordinate system (Fig. 6(a)). All of these illustratiome tom much longer sequences,
included as supplementary material, typically more thanradhed frames. Fig.6(b) and
(c) show that the tracking algorithm is very robust to clytéad crossing objects. The car
is occluded by a square object which has the same colour asthia the third sample
picture in (b), two people cross in the third sample pictaré), yet the algorithm adapts
the contour to track the non-occluded portion of the womiaen tre-grows the contour as
she re-emerges from behind the man. In each of the sequéheagctangle in the first
image defines the initial region, in which the object to bekeal is segmented. In Figure
6(c), we have also compared the use of the NCDT and Epanexhkétnel, but in the
latter case the tracker latches on the crossing individual.

Figure 6: Tracking video objects and dynamics of defornmatithe video sequences are
supplied as supplementary material.

4 Conclusions

We have developed segmentation and tracking algorithnmg @sgeneralized active con-
tour model. The object of interest can have a mixture of aalpbut these are known
before segmentation. For segmentation, the position afiitial curve can be anywhere
in the image, and need not necessarily surround the objbet detected. However, if the



initial estimate is far from the true contour, it takes a ldimge to converge to the optimal
solution. The segmentation is similar to the earlier CVVoaithm, but uses a slightly
different cost function that deals better with noise thatsgmmetric, and converges more
quickly on sample image data. The adaptive object-tracld@raghybrid algorithm, com-
bining level set methods with the mean shift tracking aldpon. Mean shift defines the
translation in the next frame to accelerate the level senidiefn of the tracked contour.
The algorithm is also improved by a Chamfer distance transfgNCDT kernel) and
sorted CSMs to better detect and track objects. Severaliexpets have demonstrated
the ability of the model to detect and track an object in m@éguences.

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

(9]

[10]

T. Chan, B.Y. Sandberg, and L. Vese. Active contours authedges for vector-
valued images. Journal of Visual Communication and Image Representation
11(2):130-141, 2000.

T.F. Chan and L.A. Vese. Active contours without edgéSEE Trans. on Image
Processing10(2):266—277, 2001.

J.S. Chang, E.Y. Kim, K. Jung, and H.j. Kim. Object traesiusing mean shift and
active contours. IrProceedings of the 18th Int. Conf. on Innovations in Applied
Artificial Intelligence pages 26-35, Bari, June 2005.

R.T. Collins, Y. Liu, and M. Leordeanu. Online selectiohdiscriminative tracking
features.IEEE Trans. on Pattern Analysis and Machine IntelligerZg(10):1631—
1643, 2005.

D. Comaniciu and P. Meer. Mean shift: A robust approachaa feature space
analysis. IEEE Trans. on Pattern Analysis and Machine Intelligen24(5):603—
619, 2002.

D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based oljacking. IEEE Trans.
on Pattern Analysis and Machine Intelligen@s(5):564-577, 2003.

D. Cremers, M. Rousson, and R. Deriche. A review of stiag$ approaches to
level set segmentation: integrating color, texture, motad shapelnternational
Journal of Computer Visiqrv2(2):195-215, 2007.

R. Osher, S.and Fedkiw. Level Set Methods and Dynamic Implicit Surfaces
Springer, 2003.

Y. Rubner, C. Tomasi, and L.J. Guibas. The earth movestadce as a metric for
image retrievallnternational Journal of Computer VisipA0(2):99-121, 2000.

H.K. Zhao, T. Chan, B. Merriman, and S. Osher. A variasiblevel set approach to
multiphase motionJournal of Computational Physic$27(1):179-195, 1996.



