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Abstract

In this paper, we propose an approach to obtain super-resolved image and
super-resolved depth map using photometric cue. The images are captured
using different light source positions which are assumed to be known. The
surface of the object is assumed to be Lambertian. We model the high res-
olution structure (surface gradients) as a Markov Random Field (MRF) and
use graph cuts with discontinuity preservation to get a high resolution depth
map. We then reconstruct the high resolution intensity map for each light
source position using the high resolution surface gradients. Results of ex-
perimentation on synthetic and real data are presented. The advantage of the
proposed approach is that its time complexity is much less as compared to
the super-resolution approaches that use global optimization techniques such
as simulated annealing. Also, since we are using photometric cue, there is no
need of registration as is required in motion based approaches.

1 Introduction

Many existing vision applications require high spatial resolution images to take better
decisions. Since the resolution of an image is dependent on the device which is used
to acquire the image, it is difficult to use very high resolution sensors as they are often
expensive. Hence, there is a need to develop efficient methods to obtain better quality
high resolution images given the low resolution observations. Also, 3-D shape recovery
of a scene is used extensively for applications such as object tracking and recognition.
Super-resolution is the process of obtaining a high resolution image from several low
resolution images of the same scene. Most researchers use motion cue to increase the
resolution of an image. Although the 3-D structure of the scene being imaged is inherently
available from the disparity map, the motion cue being a 2-D feature matching technique
does not consider the 3-D structure. Hence, techniques to obtain high resolution images
which preserve the structure are required [2]. This motivates us to look into the use of
photometric cue in order to estimate the shape of the object and the high resolution image.

For practical vision applications, high resolution depth and intensity map estimation
methods which are computationally efficient are required. However, since the problem is
ill-posed, many researchers use regularization based approaches in order to obtain better
estimates. Now, if the cost used for obtaining the solution is non-convex (discontinuity
preserving cost), then optimization techniques such as simulated annealing are used to
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obtain the global minima, which makes these methods very time consuming. For instance,
if we consider an assembly line where an object has to be moved from one place to another
(industrial inspection), the requirement is to be able to calculate depth fast enough so that
the assembly line functions smoothly. Here the requirement is the speed and not very
high accuracy. In such situations near global optimization methods such as graph cuts are
useful.

In [8] the authors show the estimation of super-resolved image and depth map using
photometric cue. They model the surface gradients and albedo as the Markov Random
Field’s (MRF) and use line fields for discontinuity preservation. They also use additional
constraints for optimization. Since they use simulated annealing for minimization, the
approach is computationally very taxing.

In this paper, we solve the problem of simultaneous estimation of the super-resolved
depth map and intensity map using photometric cue. We use graph cuts for optimization
which is much faster as compared to simulated annealing minimization approach even
when a discontinuity preserving cost function is used. Our results show that the per-
formance (both perceptually and quantitatively) of graph cuts based approach for super-
resolution is better than general interpolation techniques. The results also show that our
super-resolution approach takes much less time as compared to the approach using simu-
lated annealing.

2 Previous Work

The idea of super-resolution was first proposed by Tsai and Huang [12]. In literature,
many researchers have proposed approaches for super-resolution that use motion as a
cue. In [4], Ur and Gross use the Papoulis-Brown generalized sampling theorem to ob-
tain a high resolution image from several low resolution spatially shifted images. A set
theoretic approach to the super-resolution restoration that is based on iterative back pro-
jection method adapted from computer-aided tomography was proposed in [6]. Here, the
output image is initialized and the temporary results are projected to the measurements
(by simulation). The temporary results are updated according to the simulation error. A
regularized constrained total least squares based approach to obtain high resolution image
was proposed in [7]. Cheeseman et al. [9] use a Bayesian method for reconstructing a
super-resolved surface model by combining the information from a set of given images.
They find the “emmitance” of the surface which is a combination of albedo, illumination
conditions and ground slope for landsat images. In [14], the authors consider graph cuts
optimization for super-resolution using motion cue. The high resolution image is modeled
as MRF and graph cuts is used for optimization to get the super-resolved image.

Researchers have also explored the possibility of super-resolving the intensity map of
the scene as well as the depth map. The authors in [5] formulate the problem of super-
resolution depth reconstruction as that of expectation maximization and use a probabilis-
tic approach using MRF modeling. In [3], Shekarforoush et al. use MRFs to model the
images to obtain high resolution depth and albedo from a sequence of displaced low reso-
lution observations. The effect of sampling a scene at a higher rate is acquired by having
sub-pixel displacements.

In [13], graph cuts minimization technique has been used for estimation of the surface
normals using photometric stereo. They use the ratio of two images, in order to cancel



out the albedo in the image irradiance equation, and get the initial estimates of the surface
normal which are required to define the energy functions. Graph cuts is then used for
optimization. Tan et al. proposed a technique in [10] for enhancing the resolution for
photometric stereo. Their method first uses the generalized reflectance model to recover
the distribution of surface normals inside each pixel, from which they infer sub-pixel
surface geometry on a surface by spatially arranging the normals among pixels at a higher
resolution.

3 High Resolution using Photometric Stereo

If a Lambertian surface is assumed, the image irradiance equation relating the surface
gradients and image intensity can be written as,

El (x,y) = R(pl (x,y),ql (x,y)) = ρl (x,y)n̂l (x,y).ŝ (1)

where pl (x,y),ql (x,y) are the surface gradients in(x,y) directions respectively. Here
ρl (x,y) represents the albedo, which is nothing but the fraction of light reflected from the
surface at the point(x,y) and its value lies between 0 and 1. ˆnl (x,y) denotes the surface

normal given by (−pl (x,y),−ql (x,y),1)√
pl (x,y)2+ql (x,y)2+1

andR(pl (x,y),ql (x,y)) is the reflectance map,El (x,y)

is the image irradiance (or intensity) at point(x,y) in the image. ˆs= (−ps,−qs,1)√
p2

s+q2
s+1

is a unit

vector in the direction of the light source. Here, the subscriptl denotes low resolution.
It has been shown in [2] that generalized interpolation can be used with photometric

stereo to obtain high resolution. The high resolution image can be reconstructed using
the interpolated values of the surface gradients and albedo using Eq.(1). This technique
is called generalized interpolation. The advantage of using photometric cue for obtaining
high resolution observations is that since there is no relative motion between the scene
and the camera, the need for image registration with sub-pixel accuracy is eliminated.

In this paper we use graph cuts optimization which considers the spatial dependency
with discontinuity preservation. Our algorithm converges much faster than simulated an-
nealing and hence can be applied in a practical scenario. It may be noted here that we
do not optimize for albedo assuming that it is a smooth field and a simple interpolation
method can be used to interpolate albedo, while combining high resolution surface gradi-
ents and albedo to get high resolution intensity image.

4 Proposed Approach for Super-resolution using Graph
Cuts

Typically, in any reconstruction based super-resolution technique, the available informa-
tion from a number of low resolution observations is used together to get a single super-
resolved image. First, a forward model is defined to establish the low resolution image
formation process which is then used to establish a relation between the desired high res-
olution image and the given low resolution images. On the basis of this relationship the
high resolution image is then obtained using an inversion process. The inversion process
being ill-posed, requires the use of regularization and a suitable optimization approach
such as the one proposed here can be used to minimize the derived cost function to obtain



better estimates. It is shown in [8] that it is indeed possible to obtain super-resolution
using low resolution observations captured at different source positions.

4.1 Image Formation Model

Let Elm be the vector containing the intensity values of themth low resolution image of
sizeM×N arranged in lexicographical order and of sizeMN×1, where,m= 1. . .K. K
is the number of available images. Similarly, let ˆn andρ be the vectors that represent
thehigh resolutionsurface normal andhigh resolutionalbedo arranged lexicographically.
Now, if D is the decimation matrix which represents the aliasing due to under sampling,
the low resolution image formation model can be expressed as,

Elm = DHρ(n̂.ŝm)+wm (2)

Here, ŝm represents the light source position for themth image. wm is the independent
and identically distributed (i.i.d) Gaussian distributed noise vector with varianceσ2

w. H
represents the blurring matrix. In our implementation, we assumeH as an identity matrix
and we do not consider blurred observations. We choose the decimation matrix as the
average of the corresponding pixels of the high resolution image as given in [11].

4.2 Cost Function Formation

Regularization is a popular method for solving computer vision problems which are ill-
posed. The approach consists of minimizing a cost function which is a sum of two terms
i.e. data fitting term and regularization term [1]. In order to form the regularization term,
we model the surface gradients (p andq) as MRFs. With the image formation model
expressed in Eq. (2), it is quite simple to write the cost function to be minimized for
estimating the high resolution entities as,

ε =
K

∑
m=1

||Elm−Dρ(n̂.ŝm)||2 +
MN−1

∑
a=0

[λpmin(|pa− pb|,Tp)+λqmin(|qa−qb|,Tq)] (3)

The first term in the cost function is called the data cost that measures the deviation from
the observed data, caused by assigning a particular label (here surface gradients in thex
andy directions) to a pixel. The other two terms are discontinuity preserving MRF priors
for two neighboring pixelsa andb. Here, pa andqa represent the labels assigned to a
pixel a. p andq are labels of the surface gradients in thex andy directions respectively.
Tp andTq are thresholds that are used for discontinuity preservation.

The data cost [first term of Eq. (3)] at pixela1 of the high resolution image is given
as follows,

Data(a1) =
K

∑
m=1

(Elm([
a1

r
])− 1

r2 (F(a1)+ . . .+F(ar2))2 (4)

where[.] represents the integer value. The functionF(a1) represents the termρ(a1)(n̂(a1).ŝm)
for a particular pixela1. F(a1),F(a2) . . . ,F(ar2) are the pixel intensities of ther2 pixels,
(a1,a2, . . . ,ar2) of the high resolution image related to one pixel of the low resolution im-
age according to the matrixD. For instance, if the up-sampling factor is 2, the pixel(0,0)
of the low resolution is related to the pixel locations(0,0), (0,1), (1,0) and(1,1) of the



high resolution image. Hence, the data cost for the pixel(0,0) (and also for pixels(0,1),
(1,0) and(1,1)) of the high resolution entity to be estimated is,

Data(0,0) =
K

∑
m=1

(Elm(0,0)− 1
4
(F(0,0)+F(0,1)+F(1,0)+F(1,1)))2 (5)

In order to use the graph cuts formulation for optimization the cost function should
be regular. Applications of graph cuts generally use the data term that is a function of a
single pixel [15]. Thus, in order to apply the graph cuts formulation we use valid mathe-
matical approximations. It can be observed from the cost function that image intensities
of several pixels of the high resolution image are related to the image intensity of a sin-
gle pixel in the low resolution image in the data cost. So, we treat the remainingr2−1
terms (F(a2),F(a3), . . . ,F(ar2)) as constant for a particular optimization step. Then the
modified data term can be written as follows,

Data(a1) =
K

∑
m=1

(Elm([
a1

r
])− 1

r2 (F(a1)+C))2 (6)

whereC = F(a2)+ . . .+F(ar2).
So, the modified total cost function at a pixela can be expressed as,

ε =
MN−1

∑
a=0

[
K

∑
m=1

(Elm([
a
r
])− 1

r2 (F(a)+C))2+λp.min(|pa−pb|,Tp))+λq.min(|qa−qb|,Tq)]

(7)
whereb is a neighboring pixel ofa. The constantC represents the sum of the remaining
r2−1 terms, which are treated as constant for a particular optimization step.

We now optimize for the surface gradients,p andq using the graph cuts optimiza-
tion. While optimizing forp field we considerq field as constant and vice versa. Both
these fields are optimized one after another in each cycle until convergence is reached.
The initial values for the high resolutionp, q and ρ are obtained by interpolating the
low resolutionp, q andρ fields (obtained using photometric stereo) by using a simple
interpolation technique.

5 Choice of the Label Set

Graph cuts optimization requires a discrete label set. Most of the proposed methods that
use graph cuts for optimization use integer labels. In our case, we use discrete floating
point labels. Given the initial values of the surface gradientsp andq, the range in which
these fields lie is roughly known. Now based on the frequency distribution (histogram) of
these labels it is possible to non-uniformly quantize the entire range of continuous values
to get a discrete label set. The non-uniform quantization is done to assign maximum
number of labels (discrete and integer) to that sub-range which has a higher probability.
The number of labels, in this case, is directly related to the precision. As the chosen
number of labels is increased, more accurate results may be obtained with a slight increase
in computational complexity.



(a) (b) (c)

Figure 1: (a) Synthetically generated low resolution Vase image with light source position
(0,0,1) (b) Up-sampled image reconstructed using bi-cubic interpolation ofp, q andρ

fields (c) Super-resolved Vase image using proposed approach

6 Experimental Results

In this section we present some of the results of our experiments. In order to test the
performance of our algorithm, we first show results on a synthetic image Vase and then
on a real image of a soft toy Jodu. We use the graph cuts library provided by Kolmogorov
[18], [16], [17] with expansion algorithm for implementation.

First we consider the synthetic image Vase. Ten images of Vase of size 64×64 were
generated using a computer program where each image is produced using a different light
source position. These images are the given low resolution images. Now, in order to use
graph cuts for optimization we need to use a fixed set of labels for each of the entities
p and q. We observed that the initial values ofp for the Vase image lie in the range
(−0.4,0.6) and that ofq lie in the range(−0.2,0.4). Hence, depending on the frequency
distributions of the respective entities, we use 338 labels forp and 307 labels forq. The
regularization parametersλp andλq for p andq respectively were manually adjusted to
0.01 and 0.01. The value ofT of the truncated linear prior [See Eq. (3)] was chosen to be
0.8 for bothp andq fields.

Fig. 1(a) shows the observed low resolution Vase image with light source position
(0,0,1) and of size 64× 64. The Fig. 1(b-c) shows the images of size 128× 128, re-
constructed using bi-cubic interpolation ofp, q andρ fields and super-resolved image
using the proposed method respectively. Although perceptually the images (b) and (c)
look similar, the mean square error (MSE) comparison (discussed later) shows that graph
cuts based approach is indeed better. Fig. 2(a) shows the high resolution ground truth for
depth of Vase image. The Fig. 2(b-c) shows the up-sampled depth reconstructed using bi-
cubic interpolation ofp andq fields and super-resolved depth using the proposed method
respectively. Perceptually the depth map obtained by using bi-cubic interpolation looks
better than that obtained using the proposed method. However, by fine tuning the regu-
larization parameterλx and the thresholdTx, wherex = p,q, it is possible to get better
results.

Next we consider a real object Jodu. Eight images of Jodu were captured with differ-
ent light source positions. We consider the actual observed Jodu images of size 234×234
as the desired high resolution images. These images are decimated to obtain low resolu-
tion images of size 117×117, which now become the given low resolution observations.



(a) (b) (c)

Figure 2: Depth map for Vase Image (a) Ground Truth (b) Up-sampled depth recon-
structed using bi-cubic interpolation ofp, q and ρ fields (c) Super-resolved using the
proposed approach

(a) (b) (c)

Figure 3: (a) Observed image with light source position(0.8389,0.7193,1) (b) Up-
sampled image reconstructed using bi-cubic interpolation ofp, q andρ fields (c) Super-
resolved Jodu image using proposed approach

For the Jodu image, we observed that the initial values ofp lie in the range(−1,1) and
that ofq lie in the range(−0.6,0.6). Hence, depending on the frequency distributions of
the respective entities, we use 440 labels forp and 420 labels forq. The regularization pa-
rametersλp andλq for p andq respectively were manually adjusted to 0.008 and 0.0259.
The value ofT of the truncated linear prior [See Eq. (3)] was chosen to be 0.175 for both
p andq fields.

Fig. 3(a) shows one of the observed low resolution Jodu image of size 117× 117.
Fig. 3(b) shows the high resolution images of size 234×234 reconstructed from the bi-
cubic interpolation of thep, q and ρ fields for the same light source positions. The
super-resolved images using the proposed approach is shown in Fig. 3(c). Although visu-
ally there is not much difference in the super-resolved images reconstructed using graph
cuts and bi-cubic interpolation, our quantitative analysis (discussed later) shows that the
images reconstructed using graph cuts are indeed superior. The depth maps reconstructed
using bi-cubic interpolation ofp, q andρ and that obtained using the proposed approach
for the Jodu image are shown in Fig. 4(a-b). It may be noted here that we do not have
the true depth map for comparison since the laser scanner does not work well with ob-
jects with discontinuities. One can observe from the Fig. 4(b) that discontinuities in depth



(a) (b)

Figure 4: Depth map for Jodu Image (a) Up-sampled depth reconstructed using bi-cubic
interpolationp, q andρ fields (b) Super-resolved using the proposed method

are much better revealed as compared to Fig. 4(a) that was reconstructed using bi-cubic
interpolation.

For quantitative comparison, we use mean square error (MSE) as a figure of merit.
Table 1 shows the MSE comparison for the super-resolved image and the depth map (for
both Vase and Jodu images) and the case when interpolated values of the surface gradients
and albedo are used for reconstruction of the up-sampled depth and intensity map. Al-
though, not much difference can be seen in the high resolution images reconstructed using
the two methods, the MSE values clearly show that the high resolution images obtained
using our graph cuts based approach are much better than those obtained using bi-cubic
interpolation. Due to the use of edge preserving smoothness term, the reconstructed im-
age using graph cuts minimization is closer to the actual high resolution images. The
high resolution depth obtained for the Vase image using our approach shows a superior
MSE performance as compared to bi-cubic interpolation. It may be mentioned here that
we do not have the actual depth map for Jodu, we use the depth map obtained using the
actual observed 234×234 images with photometric stereo as the reference depth map for
calculating MSE. Since the reference depth map is not the actual depth map (with edges
properly defined), the MSE performance when depth is obtained using the proposed ap-
proach is poorer when compared to depth obtained using bi-cubic interpolation.

We now discuss the time complexity of our algorithm. The graph cuts based super-
resolution approach takes around 5−7 minutes for convergence (on a 1.33 GHz processor
for 234×234 image size) while it takes hours for convergence when simulated annealing
with edge preservation is used [8]. In [8] the authors mention that the time for conver-
gence using simulated annealing is of the order of hours. Our approach, on the other
hand, takes few minutes. It may be mentioned that although we are not using the other
constraints used in [8] while optimization since the time required for simulated annealing
is much larger as the cost is computed by changing the label of a single pixel in each
move. On the other hand, in graph cuts the labels of a number of pixels get changed
together in each move. One can thus observe the kind of complexity reduction that has
been achieved through the graph cuts based formulation for super-resolution. Hence, our
approach performs much better when compared to computationally expensive optimiza-
tion methods. It may also be mentioned here that in [8] the discontinuity preservation
prior terms consisted of edge preserving line fields. However, we use a truncated absolute
distance for edge preservation. Hence, we do not compare our results with the simulated



Table 1: MSE comparison for the high resolution Vase and Jodu images and depth map
obtained using bi-cubic interpolation and our super-resolution approach with an upsam-
pling factor of 2 with different source positions. The (DEPTH) row in the table gives the
MSE for the depth field.

Source position MSE
for Vase Image Bi-cubic Graph cuts

Interpolation
(0, 0, 1) 86.03 14.82

(DEPTH)* 6.71 1.68
For Jodu Image

(0.8389, 0.7193, 1) 240.13 43.55
(-0.1763, -0.5596, 1) 544.01 51.00

(DEPTH) 9.57 68.79

* Only the center portion of the Vase is used for MSE calculation.

annealing based super-resolution method proposed in [8].

7 Conclusion

In this paper, we used graph cuts optimization for obtaining a super-resolved depth map
and intensity map using photometric cue. The surface gradients were modeled as separate
MRFs. We used a smoothness prior with discontinuity preservation. The results show that
the super-resolved image and depth obtained using our approach reveal edges better than
the up-sampled depth and images obtained using general interpolation techniques. The
quantitative measure (MSE) also shows that the graph cuts based super-resolution scheme
is superior than these methods. Also, our approach takes a few minutes for convergence
which is very much less than the super-resolution scheme that uses simulated annealing
for optimization [8] (takes hours for convergence). It can be seen from the results that our
graph cuts based super-resolution approach provides a time-effective method for super-
resolution which is very much required in a practical scenario.
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