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Abstract

Real-time road sign recognition has been of great interest for many years.
This problem is often addressed in a two-stage procedure involving detection
and classification. In this paper a novel approach to sign representation and
classification is proposed. In many previous studies focus was put on de-
riving a set of discriminative features from a large amount of training data
using global feature selection techniques e.g. Principal Component Analysis
or AdaBoost. In our method we have chosen a simple yet robust image repre-
sentation built on top of the Colour Distance Transform (CDT). Based on this
representation, we introduce a feature selection algorithm which captures a
variable-size set of local image regions ensuring maximum dissimilarity be-
tween each individual sign and all other signs. Experiments have shown that
the discriminative local features extracted from the template sign images en-
able minimum-distance classification with error rate not exceeding 7%.

1 Introduction
Recognition of traffic signs has been a challenge problem for many years and is an im-
portant task for the intelligent vehicles. Although the first work in this area can be traced
back to the late 1960’s, only in the 1990’s, when the problems of intelligent navigation
and driver’s safety attracted worldwide attention, significant advances were made. Nev-
ertheless, there is still an apparent gap between what human and machine can do, making
the attentive driver an irreplaceable guarantor of safety in the traffic environment.

Road signs have unique properties distinguishing them from the multitude of other
outdoor objects. These properties were benefited from in numerous attempts to build
an efficient detection and recognition system. In the majority of published work a two-
stage sequential approach was adopted, aiming at locating the regions of interest first,
and subsequently passing them to the classifier [1, 2, 3]. To detect possible sign can-
didates traditionally colour information is extracted [1, 2], followed by the geometrical
edge [1, 4] or corner analysis [2]. Alternative approaches utilise distance transform [5] or
neural networks [6]. In several studies the geometrical tracking aspect was given consid-
eration [1, 6, 7]. However, reliable prediction of the geometrical properties of signs from
a moving vehicle is complex in general as the vehicle’s manoeuvres are enforced by the
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actual traffic situation and therefore cannot be apriori known. To overcome this problem,
the above approaches impose simplified motion model, e.g. assuming constant velocity.
In the classification stage a pixel-based approach is often adopted and the class of the
detected sign is determined by the cross-correlation template matching [1] or neural net-
work [2]. Feature-based approach is used for instance in [3]. More recently, Bahlmann
et al. [9] adopted the ideas of Viola and Jones [8] to detect traffic signs based on the
colour-sensitive Haar wavelet features and AdaBoost framework. In the classification
stage, assuming Gaussian class distribution and the independence of consecutive frame
observations, Bayes classifier is used to fuse the individual observations over time. Only
6% error rate is reported using this method. Paclı́k et al. [10] introduced a different strat-
egy built upon the claim that a candidate sign can be represented as a set of similarities to
the stored prototype images. For each class similarity assessment is made with respect to
a different set of local regions refined in the training process.

In this work we have developed a two-stage road sign detection and classification sys-
tem. Figure 1 shows an example frame from video input with a road sign detected and
recognised. More specifically, our detector is a form of well-constrained circle/regular
polygon detector introduced in [4], augmented with the appropriate colour pre-filtering.
In the classification stage, motivated by [10], we introduce a novel feature selection al-
gorithm built on top of the Colour Distance Transform (CDT) image representation. We
show that although our algorithm generates sign descriptors of variable dimensionality,
individual classification scores can be made directly comparable due to the global

Figure 1: Screenshot from our traffic sign recog-
nition system in action.

selection criterion used. In conse-
quence the proposed method seems
to be a more natural way of discrim-
ination among signs, as not the same
amount of information is necessary to
tell different classes apart. The rest
of this paper is organised as follows:
In section 2 traffic sign detection and
tracking are briefly described. Sec-
tions 3 and 4 discuss the main con-
tributions of this work, discrimina-
tive feature selection and sign clas-
sification. Section 5 presents experi-
mental results on the real traffic video
sequences. Finally, conclusions are
drawn in section 6.

2 Sign Detection and Tracking
Our road sign detector is triggered every fixed number of frames to capture new candidates
emerging in the scene. It makes use of the apriori knowledge about the model signs,
uniquely identified by their general shape, colour and contained ideogram. Based on the
first two properties four sign categories coinciding with the well-known semantic families
are identified: instruction (blue circular), prohibitive (red circular), cautionary (yellow
triangular), and informative (blue square) signs. As we believe the shape and boundary
colour of a sign are sufficient visual cues to locate the candidates reliably, the proposed



detector operates on the colour gradient and edge maps of the original video frames.
Furthermore, it uses a generalisation of Hough Transform introduced in [4], which is
motivated by the fact that the targeted objects are all instances of equiangular polygons,
including circles that can be though of as such polygons with the infinite number of sides.

Original regular polygon transform is augmented with the appropriate image pre-
processing intended to enhance edges of specific colour. For each RGB pixel~x = [xR,xG,xB]
and s = xR +xG +xB a simple colour enhancement is provided by a set of transformations:

fR(~x) = max(0,min((xR− xG)/s,(xR− xB)/s))
fB(~x) = max(0,min((xB− xR)/s,(xB− xG)/s))
fY (~x) = max(0,min((xR− xB)/s,(xG− xB)/s))

. (1)

Transforms defined in (1) effectively extract the red, blue, and yellow image fragments.
In the resulting images colour-specific edge maps are extracted by a simple filter which
for a given pixel picks the highest difference among the pairs of neighbouring pixels that
could be used to form a straight line through the middle pixel being tested. Obtained
values are further thresholded and only in the resulting edge pixels values of directional
and magnitude gradient are calculated. This technique is adequate to our problem as
it enables a quick extraction of edges and avoids expensive computation of the whole
gradient magnitude map which, with the exception of the sparse edge pixels, is of no use
to the shape detector. For a given pair of gradient and edge images associated with colour
c, appropriate instances of the Loy & Barnes’s detector are run to yield a set of possible
sign shapes. For instance, for a “blue pair” a circular shape detector is triggered to search
for the blue instruction signs, e.g. “turn left” or “turn right”, and a square detector is
run to detect potential square information signs, e.g. “pedestrian crossing” or “parking
place”. As each found candidate has known shape and border colour c, detector serves
as a pre-classifier reducing the number of possible templates to analyse in the later stage
to the ones contained in either category. When signs are in the cluttered background, a
number of false candidates may be produced. To address this issue, an additional step is
taken to verify the presence of colours appropriate for the just found category.

Once a candidate sign is detected, it is unnecessary to seek it in the consecutive frames
in every possible location. Assuming motion with constant velocity along the optical
axis of the camera, we have employed a Kalman filter [11] to track a sign detected in a
previous frame of an input video. The state of the tracker is defined by (x,y,s), where x,
y are coordinates of the sign’s centre in the image, and s is the scale factor to the standard
sign templates. In the current implementation we use the mean and variance estimates
from the Kalman filter to locate the centre and the size of the local search region in the
next video frame. Therefore, computation has been significantly reduced compared to the
exhaustive search over the whole image.

3 Image Representation and Feature Selection
Selecting an optimal feature set for a large number of template images is a non-trivial
task. We have experimented with several techniques such as Principal Component Analy-
sis and AdaBoost. Aiming at retrieving the global variance of a whole data set, PCA is
not capable of capturing features critical to the individual templates. AdaBoost on the
other hand, although generating efficient classifiers, is not entirely convincing in terms of
the fixed cardinality of the feature set being extracted. Clearly, certain signs are very dis-



tinctive and analysis of only a few small regions suffice to distinguish them even among
tens of others. Meanwhile, there are groups of very similar signs that look tightly clus-
tered, even in a highly multidimensional feature space. This complex nature of similarity
between templates raises a question whether there is sufficient justification for classifying
the signs based on the same set of features.

Motivated by [10], we propose here an algorithm that relaxes the above limitation by
extracting for each model sign a limited number of local image regions in which it looks
possibly the most different from all other templates residing in the same category. The
same discriminative regions are further used to compare a video frame image with the
templates and make a reliable on-line classification. Below we first outline the process
of converting the raw bitmap images into a more suitable discrete-colour representation.
Second, we introduce the notion of local image region and dissimilarity. Finally, the
implementation of the discriminative region selection algorithm is discussed.

3.1 Colour Discretisation
Detected sign images come as rectangular regions containing the target object and, de-
pending on its shape, also background fragments, as depicted in Fig. 2. In order to
prepare the candidate for classification, the image is first scaled to a common size, typ-
ically 60× 60 pixels. Undesirable background regions are then masked out using the
information about the object’s shape and orientation provided by the detector [4]. It is
important to note that the full colour spectrum is far more than necessary to identify the
object, as the signs contain only up to four distinctive colours per category. Therefore,
the candidate images are finally subject to on-line colour discretisation according to the
category-specific colour models learned off-line from a set of training images as follows.

For each category of signs a number of frames are picked randomly from the real video
sequences depicting the respective signs. Then, the Expectation Maximisation algorithm
[12] is employed to estimate an optimal Gaussian Mixture model for each colour specific
to this category. The procedure is restarted several times for the increasing number of
randomly initialised Gaussian components to refine the estimation. The best model in
terms of the mean data likelihood is selected. To speed up the on-line segmentation, off-
line learned models are used by a Bayes classifier to assign the appropriate colour to each
possible RGB triple, yielding a look-up table with 2553 entries for each category. Sample
results of the on-line colour discretisation are illustrated in Fig. 2.

Figure 2: Sample images obtained by sign detector before (above) and after (below) back-
ground masking and colour discretisation; 2 bits suffice to encode colours in each image.

Along with the observed candidate sign images also the model images are discretised.
However, as they already contain ideal colours, discretisation merely aims here at collaps-
ing the physical 24-bit bitmap representation to the 2-bit image with the specific colour
indices encoded. A set of thresholds is applied to the templates in Hue-Saturation-Value
space to complete this task. Furthermore, for each discrete colour present in the resulting



images a separate distance transform [13] is computed, giving output similar to this shown
in Fig. 3. In DT computation pixels of a given colour are simply treated as feature pixels
and all the remaining ones as non-feature pixels. (3,4) Chamfer metric [14] is used to ap-
proximate Euclidean distance between the feature pixels. To emphasise a strong relation
to colour, we call this variant of DT a Colour Distance Transform (CDT).

(a) (b) (c) (d)

Figure 3: Colour Distance Transform images: original discrete colour image (a), black
CDT (b), white CDT (c), red CDT (d); darker regions denote shorter distance.

3.2 Discriminative Local Regions
The space of local regions is obtained by covering the template image with a regular grid.
Within each region rk dissimilarity between the images I and J can be calculated using the
discrete-colour image of I and CDT images of J by averaging the pixel-wise distances:

drk(I,J) =
1
m

m

∑
t=1

dCDT (I(pt),J(pt)) , (2)

where for each of m pixels pt contained in the region, distance dCDT (I(pt),J(pt)) is picked
from the appropriate CDT image of J, depending on the colour of this pixel in I. Let us
also denote by dS(I,J) and dS,W(I,J) a normal and weighted average local dissimilarities
between the images I and J computed over regions rk ∈ S (weighted by wk ∈W):

dS(I,J) =
1
M

M

∑
k=1

drk(I,J) , (3)

dS,W(I,J) =
∑M

k=1 wkdrk(I,J)

∑M
k=1 wk

. (4)

Obviously, as CDT images for the model signs are pre-computed, any on-line local-region
comparisons between the observed and template images can run extremely fast.

3.3 Region Selection Algorithm
Assuming pre-determined category of signs C = {Ti : i = 1, . . . ,N} and a candidate image
x j, our goal is to determine the class of x j by maximising posterior:

p(Ti|x j,θi) =
p(x j|Ti,θi)p(Ti)

∑N
i=1 p(x j|Ti,θi)

. (5)

Our objection to using a uniform feature space for classification makes us envisage differ-
ent model parameters θi = (Ii,Wi) for each template Ti. Ii denotes an indexing variable
determining the set Si of regions to be used and Wi is a vector of relevance corresponding
to the regions rk ∈ Si selected by Ii. In order to learn the best model parameters θ ∗i , the
following objective function is maximised:

O(θi) = ∑
j 6=i

dSi(Tj,Ti) . (6)



In other words, the regions best characterising a given sign are obtained through maximi-
sation of the sum of local dissimilarities between this sign’s template and all the remaining
signs’ templates. In presence of model images only, each term dSi(Tj,Ti) as a function of
the number of discriminative regions is necessarily monotonically decreasing. As a result,
typically there would be just a few good regions maximising (6). In practice, such sign
descriptors are unlikely to work well for the noisy video frames where more support in
terms of the number of image patches to match is required to make a reliable discrimina-
tion. Our objective function, as described in the algorithm 1, is hence iteratively degraded
up to the specified breakpoint, yielding a representation which is richer and thus more
trustworthy in a real-data scenario.

Algorithm 1 Discriminative local region selection algorithm
input: sign category C = {Tj : j = 1, . . . ,N}, target template index i, region pool R =

{rk : k = 1, . . . ,M}, dissimilarity threshold td
output: target set Fi of regions with associated weights

1: initialise an array of region weights W = {wk : wk = 0,k = 1, . . . ,M}
2: for each template Tj ∈C, j 6= i do
3: find region r j,1 such that dr j,1(Tj,Ti) = maxk drk(Tj,Ti)
4: initialise ordered region list Fj = [(r j,1,w j,1)], where w j,1 = 1
5: initialise remaining feature pool Pj = R\{r j,1} and region counter l = 1
6: while not STOP do
7: increment region counter l = l +1
8: for each region rk ∈ Pj do
9: construct a region list Sk = Fj + rk

10: pick region r j,l maximising dSk(Tj,Ti)
11: set weight of the found region to w j,l = dr j,l (Tj,Ti)/dr j,1(Tj,Ti)
12: end for
13: add pair (r j,l ,w j,l) to the selected region list Fj = Fj +(r j,l ,w j,l)
14: update the remaining region pool Pj = Pj \{r j,l}
15: if dFj(Tj,Ti) < tddr j,1(Tj,Ti) then
16: STOP = true
17: end if
18: end while
19: for each region rk such that (rk,wk, j) ∈ Fj do
20: update found region weights wk = wk +wk, j
21: end for
22: end for
23: build target region set Fi = {(rk,wk) : wk > 0}

Similarly to Paclı́k et al. [10], in the model training stage we have adopted elements
of a sequential forward search strategy, a greedy technique from the family of floating
search methods [15]. However, both approaches differ significantly in the two main as-
pects. First, we think that learning the signs from the real-life images is counter-intuitive
as the publicly available templates characterise respective classes fully. Second, we be-
lieve that the possible within-class appearance variability may well be accounted for by
a robust distance metric, as the one introduced in (2-4), instead of being learned. Our
implementation then picks a given template sign and compares it to each of the remaining
templates. In each of such comparisons the algorithm loops until the appropriate number



of local regions are found. It should be noted that at a given step of the loop the most dis-
similar region is fixed and removed from the pool of available regions. Moreover, at the
k-th step the distance between the considered image and the image being compared to is
measured with respect to the joint set comprised of the new k-th region and all previously
found regions. At the end of the loop an ordered list of regions is produced, sorted by
their decreasing discriminative power. Each pairwise region set build-up is controlled by
a global threshold, td , specifying the minimum allowed dissimilarity between any pair of
templates being compared as a percentage of the maximum possible dissimilarity, i.e. the
one for just a single most discriminative region. Such a definition of STOP criterion en-
sures that the same amount of dissimilarity between any pair of templates is incorporated
in the model. This in turn allows us to treat different sign classes as directly compara-
ble, irrespective of their actual representation. The final set for each class is constructed
by merging the pair-specific subsets which is reflected in the region weights carrying the
information on how often and with what contribution each particular region was selected.

For each sign the above algorithm yields a set of its most unique regions. It should
be noted that in the final step, depending on the actual dissimilarity threshold specified,
certain number of regions will be found completely unused, and hence discarded. An
example of our feature selector’s output is depicted in Fig. 4. Obtained discriminative re-
gion maps clearly show that different signs are best distinguishable in different fragments
of the contained pictogram. It can also be seen that although the same value of global
parameter td was used, different numbers of meaningful regions remained.

Figure 4: Sample triangular template images (above), and discriminative regions obtained
for parameter td = 0.7 (below); brighter regions correspond to the higher dissimilarity.

4 Temporal Classifier Design
A road sign classifier distinguishes between the sign classes contained in a category
pre-determined in the detection stage, based on the discriminative feature representation
unique for each particular sign. For simplicity two assumptions are made: 1) the dis-
similarity between each sign and all other same-category signs is Gaussian-distributed in
each local region and independent of the dissimilarities in all other regions characterising
this sign, and 2) class priors P(Ti) are equal. In such a case Maximum Likelihood the-
ory allows us to relate the maximisation of likelihood p(x j|Ti,θi) to the minimisation of
weighted distance dSi,Wi(x j,Ti). Therefore, for a known category C = {Ti : i = 1, . . . ,N},
and observed candidate xt at time t, the winning class L(xt) is determined from (5):

L(xt) = argmax
i

p(x j|Ti,θi) = argmin
i

dSi,Wi(xt ,Ti) , (7)

where Si and Wi contain the regions and their weights learned in the training stage.
When a series of observations from a video sequence is available, it is reasonable to

integrate the classification results through the whole sequence over time, instead of per-



forming individual classifications. Hence, at a given time point t our temporal integration
scheme attempts to incorporate all the observations made since the sign was for the first
time detected until t. Denoting observation relevance by q(t) and assuming independence
of the observations from consecutive frames, the classifier’s decision is determined by:

L(Xt) = argmin
i

t

∑
k=1

q(t)dSi,Wi(xk,Ti) . (8)

We have observed that the signs detected in the early frames are inaccurate and contain
blended pictograms due to the low resolution. Also as colours tend to be paler when seen
from the distance, previously discussed colour discretisation exposes severe limitations,
unless performed for later frames depicting candidate sign already grown in size. To
address this problem, we adopt the exponential observation weighting scheme from [9] in
which relevance q(t) of observation xt depends on the candidate’s age (and thus size):

q(t) = bt0−t , (9)

where b ∈ (0,1] and t0 is the time point when the sign is for the last time seen.

5 Experiments
To evaluate our traffic sign recognition system, experiments were performed on the real
data collected on Polish roads. Sample video sequences were acquired from a moving car
with a DV camcorder mounted in front of the windscreen, and subsequently divided into
short clips for off-line testing. Video content depicts the total of 144 signs and includes
urban, countryside, and motorway scenes in natural daytime lightning, with numerous
signs appearing in shade and in cluttered background. Table 1 illustrates obtained results.

td RC (55) BC (25) YT (42) BS (13) overall (135)
detected – 85.2% 100.0% 98.3% 89.7% 93.8%

0.97 95.7% 93.9% 86.4% 85.7% 92.0%
recognised 0.9 95.7% 97.0% 91.5% 91.4% 93.3%

0.5 95.7% 90.9% 84.7% 82.9% 87.3%
best 95.7% 97.0% 91.5% 91.4% 93.3%

Table 1: Recognition performance for different values of dissimilarity threshold td and
temporal weight base b = 0.8; the number of classes in each category: red circles (RC),
blue circles (BC), yellow triangles (YT), and blue squares (BS) is given in parentheses
and the best classification rate is highlighted.

As seen in Tab. 1, obtained real-time classification error rate does not exceed 7%,
making our method comparable to the recently published ones [9, 10]. However, it should
be noted that our template database contains significantly more signs than in any of the
previous studies. Direct comparison with the respective algorithms is not possible as
neither the test data nor the details of its acquisition are made available. Repetitions of the
experiment for different values of dissimilarity threshold revealed that for each category
of signs the optimal classifier’s performance is achieved for a close to maximum value
of this threshold. The following observation is vital at this point. The optimal threshold
for each category must strike a balance between the two: maximising template signs’



separability and the reliability of the obtained dissimilarity information in the real-data
context. Very high threshold values lead to the separation of a very few good regions for
a particular model sign, however such sparse information may not be sufficiently stable to
classify correctly a possibly distorted, blurred, or occluded object in a video frame. Very
low threshold values on the other hand introduce information redundancy by allowing
image regions that contribute little to the uniqueness of a given sign. In a resulting feature
space signs simply look more similar to one another and are hence more difficult to tell
apart at an additional cost of more intense computation.

In terms of detection, most of failures were caused by the insufficient contrast between
a sign’s boundary and the background, especially for pale-coloured and shady signs. In a
few cases this low contrast was caused by the poor quality of the physical target objects
rather than their temporarily confusing appearance. Single detection errors emerged when
two signs were mounted closely on one pole. In this particular situation candidate objects
may be confused with each other, as the local search region of one candidate always
contains at least part of its neighbour. Detection proved to be the computationally most
expensive part of the system, however processing speed of the entire algorithm including
classification is 10-20 fps on a standard PC, depending on the actual difficulty of the scene.

After closer investigation we have observed that approximately one in three classi-
fication errors resulted from confusion between nearly identical classes, e.g. pedestrian
crossing and bicycle crossing. Differences between such signs were found difficult to cap-
ture, resulting sometimes in the correct template receiving the second best score. Colour
segmentation appeared to be resilient to variations of illumination, leading directly to
failure in only a few cases when the signs were located in a very shady area or were
themselves of poor quality. This can be a proof of usefulness of Gaussian Mixture colour
modelling. Remaining failures can be attributed to the limitations of the detector. Al-
though the smooth distance metric neutralises the inaccurate detection effects to a large
extent, it is of little help in certain situations, typically in two:

1. Some signs’ ideograms consist of edges that may actually be easier to detect than
the boundary. This may cause detected shape to appear clipped.

2. Signs very close to the camera being distorted in perspective projection usually
receive sufficient score in the detector’s accumulator space. These signs are yet still
detected as regular shapes, resulting in the inaccurate shape estimation.

As indicated in the previous section, delimitation of sign’s contour and subsequent
colour discretisation in the early video frames are usually less accurate. Extensive exper-
iments have shown that frequently the correct decision is developed by the classifier from
just a few last frames where the sign’s shape and colours are the most unambiguously de-
tected. This fact provides a good justification for our exponential observation weighting
used to promote the most recent measurements. Apparently, the classification accuracy
with weighting enabled is by 10-20 % higher, depending on the weight base b used.

6 Conclusions
In this paper we have introduced a novel image representation and discriminative feature
selection method for road sign recognition where a large number of classes are involved.
It was shown that on top of a Colour Distance Transform (CDT) representation highly
discriminative sign descriptors can be extracted based on the principle of dissimilarity
maximisation. With these descriptors available, a conventional classifier can compete



with the state-of-the-art sign recognition systems, processing the input video sequences
in close to real time. In comparison to the previous studies, our method seems attractive
in three aspects. First, feature selection is performed directly on the publicly available
template sign images. Second, each template is treated on an individual basis which is
reflected in the number, position, and importance of the local image regions extracted in
order to achieve a desired level of dissimilarity from the remaining templates. Finally, by
using CDT we have shown that the proposed description of signs can be extended from
model images to the real video frames as the resulting distance measure is made smoother
and thus more resistant to various types of noise typically affecting the video content.
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