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Abstract

Our aim is to develop a completely automated and reliable system to identify
morphological landmarks in digital images. The performance of the sys-
tem is aimed to replicate manual digitization with equivalent accuracy and
reliability, based upon a small number of training examples. The analysis
system is constructed from four stages; a feature based detection of fly wing
structure, correspondence matching based upon the pairwise geometric his-
togram (PGH) representation, global location of the wing using a Probabilis-
tic Hough Transform (PHT), and finally local correlation based refinement of
individual features. We evaluate this system and compare quantitative results
to manually digitized data.

1 Background

Morphological landmarks are points that can be located precisely and establish an un-
ambiguous one-to-one correspondence among all the specimens and are widely used in
shape analysis [1]. Points like the tip of the nose or the outer corner of the left eye are
possible landmark points of the human face. Analyses of shape investigate the arrange-
ment of landmark points relative to each other. A substantial body of statistical methods
is available for the analysis of configurations of landmark points [2].

This framework of shape analysis by landmarks is increasingly used in many biolog-
ical and medical applications and widely applied in many other fields. The configuration
of landmarks have helped identify the possible source of re-infesting specimens and en-
counter the epidemiologically challenging vectors of Chagas disease [3]. The potential
of using geometrical morphometric techniques as an invaluable tool for recognizing tax-
onomic data is being explored [4]. Other scientific applications include investigating the
study of size and shape to examine the effects of experimental treatments, genotype or
other factors directly in the anatomical aspect. The use of landmarks has been adapted to
specific biological contexts such as genetics [5, 6, 7]; geographic differentiation [8], and
the study of morphological integration [9, 10].

The process of identifying the landmarks is an important andlabour-intensive part of
any such analysis. Presently, this is usually done manually. Plugins for the ImageJ soft-
ware (for digitizing the standard sets of landmarks) on fly wings and mouse mandibles),
increases speed and reliability over a completely unaided process [11]. However, there is
still a requirement for an observer to manually identify each landmark point and therefore
this process can be time-consuming, and quite often, the research questions are dependant
on the duration of obtaining these data.
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Developing an automated system for locating landmarks in digital images ofDrosophila
wings is largely significant, as it is an excellent model for the study of genetics of develop-
ment and evolution of morphological form [12, 13]. They contain a wealth of interesting
biological information and its simple, flat, two dimensional structure enables convenient
handling. Therefore, automation has numerous advantages over a manual system, as
it will not only diminish the labour needed for shape analysis, but it also will elimi-
nate the source of error (mistakes made during digitizing and subtle differences between
observers). Furthermore, automatic extraction of features from images can potentially
change the way in which landmarks are chosen for morphometric studies. Whereas the
traditional approach requires landmarks to be chosen a priori, based on outside knowledge
of the study system, the approach using automated image analysis raises the possibility
to identify and extract features from the total informationcontained in the images that are
maximally informative in the context of a particular research project.

There have been previous attempts to automate the process oflandmark location on
theDrosophilawing [13]. This method is semi-automated where the operatorinitiates
the process by marking two landmark positions and the systemfits a series of spline
curves to the margin and the veins of the wing, and defines the landmarks as the intersec-
tions of the splines. The drawback of this system is that the landmarks are not always at
the exact location of the intersection of veins and the splines may not exactly match the
veins (because of the ”stiffness” of the spline interpolation) and the system has problems
identifying wings of species with highly melanized spots atthe intersections.

Another such system to locate the landmarks on digital images of bee wings is being
developed at the Paris National Museum of Natural History [14]. This system applies
the techniques of mathematical morphology and skeletonization to obtain the landmarks.
However, using these techniques are not guaranteed to be robust. The method also re-
quires human intervention in terms of loading the data and identifying the initial set of
points to start the process and the pre-processing step includes certain parameters that
have to be set by the operator.

Other similar automated systems include the Digital Automated Identification SYs-
tem (DAISY) which was developed whilst attempting a novel approach to identify insect
specimens from the images. Principal component auto-associative memories and train-
able classifiers are exploited to identify closely related parasitic wasps based on their
wing venation and pigmentation patterns [15]. This system has been designed to identify
several organismal groups in real time and it successfully classifies data into morphologi-
cally similar classes and proves to be a very useful and practical tool for taxonomic iden-
tification of various species. The internal algorithms are based upon the use of a pairwise
geometric histograms (PGH) representation,which is used to establish shape correspon-
dence.

2 Introduction

We present an automated system for the analysis of edge basedstructure for use in mor-
phometric studies. The current work takes a grey level imageof Drosophilawing as input
and extracts the coordinates of 15 landmarks (Figure 1). A typical shape analysis requires
several hundred images and identifying these landmarks is alaborious process. An au-
tomated method to extract these features can potentially improve the methodology with



which the landmarks are identified via improved standardization and accuracy.

Figure 1: 15 Landmark locations onDrosophilawing (Image courtesy: [11]).

The proposed method extracts the ridges (linear features such as wing veins) using
the knowledge of their known grey level profile and the noise characteristics of the im-
age. This approach has been shown to be statistically valid [16]. The ridges obtained
are approximated by line segments and the geometric relationships between them are
encoded in PGH, an approximation to the probabilistic density function for the geomet-
ric co-occurrences in the data [17]. Shape correspondence is determined by compar-
ing and matching the pairwise histograms of the scene and model data. A probabilistic
Hough transform (robust Likelihood) is used to determine the hypothesized landmark lo-
cation (Figure 2). Sub-pixel estimation of the landmark location is performed by template
matching, i.e., correlating a small region around the Houghestimated landmark location.

We show that a single training image with its landmark coordinates is enough to inde-
pendently estimate the landmarks of any individual within aparticular dataset. However,
the reliability and accuracy of the method can be further enhanced by using multiple
training images. Multiple estimates also offer the possibility of accuracy assessment, an
important aspect of any scientific study. The precision, repeatability and robustness of the
algorithm have been evaluated here as a pilot study. Although some predictions regarding
reliability can be made with a small sample, a further study will be carried out on a larger
sample to test the reliability of the system on scientific studies.

3 Methods

3.1 Data Acquisition

Data acquisition is carried out by mounting the fly wings in rows on a microscopic slide
and flattening with a coverslip. The digital images are obtained using an appropriate dig-
ital camera mounted on the microscope and attached to a computer. A calibration image
is generally obtained along with each of the dataset to standardize the difference in mag-
nifications between different dataset. The anatomical landmarks can be easily collected
in two dimensions from digital images and this approach is quite useful in evolutionary



research as the landmarks can be collected from non-model organisms or even fossils.
The X & Y co-ordinates of these landmarks are usually obtained by manually digitizing
the location of these co-ordinates appropriately based on their anatomical context. Spe-
cialized algorithms and plugins can be used to semi-automate the process and to enhance
the speed of the digitization.

3.2 Analysis

The analysis system is constructed from four stages; a feature-based detection of fly wing
structure, correspondence matching based upon the PGH representation, global location
of the wing using a Probabilistic Hough transform, and finally correlation based refine-
ment of individual features. We evaluate this system and compare quantitative results to
manually digitized data below.

3.2.1 Ridge Detection- An extension to Canny framework

The wing veins are extracted as ridge features, using a method which is a modification
of more conventional edge detectors. We locate these features using a matched filter ap-
proach, approximating the vein profile as a Difference of Gaussians. Local maxima in
response are then passed into a more conventional hysteresis threshold and linking sys-
tem, based upon the popular Canny [18] system, in order to extract connected structures.
This extracted edge map can be used to determine the precise location of landmarks. The
uniformity of noise in the feature enhancement stage guarantees that this process is inher-
ently stable. The ridge detector has been optimized for the task of locating landmarks by
analyzing the specific characteristics of noise and scale stability. The whole process can
be interpreted as a statistical null-hypothesis test for the presence of the defined feature
[19].

3.2.2 Pairwise Geometric Histograms

The extracted edge-map is approximated by line segments andthe geometric relationships
between each pair of line segments are encoded in the pairwise geometric histograms.
This is an approximation to the probabilistic density function,

Hi(θ ,d) = P(θi −θ j ,di j |ei) (1)

for the geometric co-occurences of an edgelej givenei as a function of relative angle
θi − θ j and perpendicular separationdi j . This is a well established method of shape repre-
sentation based on recording the distribution of pairwise geometric relationships between
local shape features which can support recognition and there is considerable robustness to
the loss of data due to fragmentation noise and occlusion [17]. The method is also known
to be complete, in that the original structure of the object can be reconstructed from the
set of histograms describing a shape. This representation is invariant for portions of the
same linear feature so that it can be constructed by considering a linearization of the edge
map. The importance of a pair of line segments defining the representative shape can be
encoded by entering the product of their lengths at the valueof the entry. The entry is
blurred along each axis to encode the uncertainty regardingthe true position and orienta-
tion of each line segment. The scale of binning and extent of blurring defines the extent
of allowable differences when matching similar shapes.



Shape recognition is done by identifying the correspondences between image and
object features. Shape representation comprises many geometric histograms, each repre-
senting a single model feature. The degree to which a linear edge feature in the test image
matches a particular model feature can be determined by comparing their histograms. The
degree of match between them is given by the Bhattacharrya measureBi j , which takes the
form of a dot product correlation of the histograms of linesHi andH j .

Bi j =
2π

∑
θ

dmax

∑
d

√

Hi(θ ,d)H j(θ ,d) (2)

This can be related, via theχ2 variable, to a maximum likelihood similarity metric and
can be derived as an approximation to Fisher’s Exact test as amethod for comparing two
distributions. The hypothesized matches can then be used asinput to pose an estimation
algorithm such as the generalized Hough transforms. Scale independent recognition can
be achieved by representing an object at a range of scales [20]. However, this property of
the PGH representation was not required in our study and therefore was not utilized.

3.2.3 Hough Transform

A probabilistic Hough Transform (robust maximum Likelihood), is used to make an esti-
mate of the global position and orientation of each wing. Entries in the 2D location his-
togram are made according to the localization covariance, propagated from the errors on
the constraint lines. This takes proper account of errors, resulting in improved robustness
and more accurate determination of model position, orientation and scale in comparison
to the more conventional form of this algorithm. The entriesin the Hough arrays are
constructed from pair of lines(n,m), i.e., a tuple transform. The equivalent probabilistic
form for the Hough transformH(x,y) used to find the position of a model in a scene is
given by the expression,

H(x,y) =
N

∑
n

N

∑
m

log(p(x,y|n)p(x,y|m)) =
N

∑
n

log(p(x,y|n))
N

∑
m

log(p(x,y|m)) (3)

so that the Hough entry can be considered as the square of the robust log Likelihood
L(x,y) for the localization of the object,

H(x,y) = L(x,y)2 = (
N

∑
n

log(p(x,y|n)))2 (4)

During array constructionHnm = log(p(x,y|n)p(x,y|m)) is estimated from a 2D
Gaussian distribution centered at the the position of the model hypothesized by them,nth
pair of scene line labels with variance propagated from the individual line location errors.
This tuple-based construction helps to remove background noise from the Hough array
and has some computational advantages. The variability of the line segmentation process
and the uniform error on the scale estimates are independentand are adjusted to give a
quantitative estimate of the hypothesized location of a pre-defined reference point from
pair of scene lines. Training from example data involves recording the perpendicular
distance,’d’ , from each model line to the reference point. Consequently,for each pair



of scene lines, extended lines at the appropriate perpendicular distance will intersect at
the hypothesized position of the reference. Error at the point of intersection can again be
estimated by standard error propagation.

Models can be located based on the positions, orientations and scales hypothesized
by scene line labels. However, the orientations and scales of the models are not de-
termined explicitly. This can be determined separately using 1-parameter Hough trans-
forms. For each model position determined, a 1-parameter orientation Hough transform
and 1-parameter scale Hough transform can be constructed from entries selected on the
basis of consistency between the scene lines and model position. The orientation is deter-
mined from the difference in orientation between the scene line and model line to which
it matched. Comparing the perpendicular distance from the scene line to the model posi-
tion to this same distance in the model itself would yield thescale. Peaks in these Hough
transforms would give the orientation and scale of the modelat that position in the scene.

(a) Flywing image with model over-
laid.

(b) Peak in the Hough transform.

Figure 2: Hough transform located 15th landmark.

3.2.4 Template Matching

The above Hough scheme computes an estimate of landmark position based upon global
wing shape. As we need to determine variations in shape for the morphometric study this
estimate needs to be refined based upon local image evidence.To obtain this estimate,
template matching is performed on the Difference of Gaussian image of the sceneD(I)
and model (example mark-up)D(M) data, over a small region around the Hough estimate
for the feature in the scene data. To save processing time during alignment, the scene
data is rotated to match the model data using the Hough estimate, which is assumed to
be sufficiently accurate for final location of the landmark. The use of the Difference of
Gaussian images eliminates any image illumination offset and the matching is performed
as a dot-product correlation in order to eliminate the effects of illumination scaling,

Lhxhy =
R

∑
x

R

∑
y

D(M(x,y))D(I(x+hx,y+hy))/

√

√

√

√

R

∑
x

R

∑
y

D(I(x+hx,y+hy))2 (5)

where,R is the region size. This is directly equivalent to performing a least squares
comparison of the image regions with one free grey level scale parameter. In this study,



the denominator is presumed to be constant to save time on thecomputationally expensive
calculations. The best possible match is identified and thatlocation is transformed back
onto the scene image. The least-squares difference betweenthe two scale image regions is
stored so that the best matching examples can be selected forfinal estimation of landmark
position (see below). This quality control feature not onlyallows a check on the adequacy
of the example mark-ups but also eliminates residual problems in alignment estimation,
such as poor rotation estimates.

4 Results

4.1 Precision of manual digitization

The precision of manual digitization by an expert is determined by determining the de-
viation (difference between the value of each attempt and the mean) of 10 repeats of
digitization of a single image. The outcome shows that it is within a range of +/- 1 pixel
(Figure: 3).
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Figure 3: Reproducibility of landmark location over 10 repeats-manual digitization.

4.2 Accuracy of the template matching relative to manual
digitization

To test the utility of the template matching stage, the feature (landmark 12) that was
significantly variant in comparison to other landmarks was taken. Figure 4(a) shows
the positions of the landmarks located by the Hough transform relative to the landmark
locations digitized manually. The Hough transform locatesmost of the landmarks within
a range of +/-20 pixels. This provides an estimate of the range that the correlation search
must operate over, and is used to define a ‘window size’parameter. During initial testing,
by ensuring that the window size is large enough, we can be certain that the landmarks
can be located reliably. The refinement by the template matching strategy is shown in
Figure 4(b) indicating the improvement in accuracy to be within a range of +/-6 pixels on
the X-axis and +/-3 pixels on the Y-axis.
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(a) Hough estimation vs actual location of land-
mark 12.
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(b) Template matching refinement vs actual lo-
cation of landmark 12.

Figure 4: Hough transform & template matching performance.

4.3 Accuracy of the automated system

The accuracy of the system is assessed using multiple reference images (multiple models).
The results show that the landmarks can be located more precisely in cases where the
model features are a good match to the scene data. However, itis quite unlikely that
the model chosen would be suitable for all the features to be estimated. Therefore, it is
important to choose a set of appropriate model features in the training data that can best
match with the given test dataset. This can be achieved by computing the degree of least-
squares match between the model and the test feature and taking an average of the best
matches available. Since, the precise location of certain features (eg., landmark 12 due
to its structural complexity) can be quite challenging in contrast to most other features,
the degree of least-squares match can also be applied as a quality control approach to
determine the adequacy of the selected training examples.
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(a) Avg of best 3 least squares match(5 refer-
ence images)
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(b) Avg of best 5 least squares match (11 ref-
erence images)

Figure 5: Best Least Squares Match.

The Figures 5(a) & 5(b) shows the system performance with an average of the best 3
of 5 reference images and best 5 of 11 reference images using the least squares match. It
can be seen that the accuracy of the system has improved with an increase in the number
of reference images. Most of the landmarks in the sample dataset have been located within
+/-3 pixels accuracy. It should be noted that the outliers are mainly contributed by one of



the test image which clearly indicates that the reference images used were not necessarily
a good match for feature location in that particular image. In such cases, increasing the
number of reference images would considerably improve the accuracy.

4.4 Robustness of the system

The robustness of the system was tested by locating landmarks in an image with addi-
tive noise of1̃0 times that of the original image. The system is robust in locating the
landmarks within +/-4 pixels accuracy and we can therefore be confident that the system
is quite stable to noise, well beyond the level normally present in this dataset. This is
presumably because of the large degree of smoothing appliedduring the feature detection
and correlation matching stages.

5 Discussion

This paper describes a system which can be trained from a few example images to auto-
matically estimate the location of key features in ‘veined’structures, such as insect wings.
The performance of the automated system can be compared to human performance in
terms of accuracy of landmark location. Although, the rangeof the system accuracy is
nearly twice that of the manual digitization, the accuracy of the system can be consider-
ably improved by using relevant models. The performance of the system is sufficiently
accurate to allow it to replace the time consuming process ofmanual digitization, which
is common to all morphometric studies.

The current system is capable of providing a set of 15 landmark locations on an image
of size 1280 x 1022 pixels in about 3 minutes on a SUN Sparc Ultra 5 workstation.
The time taken by a human to mark up one image using the standard mark-up tools is
about 40 seconds though maintaining this speed across a large dataset might be regarded
as unrealistic. We expect that the speed of the system can be optimized, however, the
question of trade off between the speed and precision may arise (as more reference images
may be needed to achieve the manual accuracy).

The pilot study can be scaled up with minor modifications and this automated method
would be used in a scientific study with a large dataset comprising of 1600 images of
different species ofDrosophila. This analysis should enable us to test other performance
aspects of the system, such as its reliability, and to evaluate any difficulties regarding the
practical use of this dataset. The generic nature of object recognition and feature location
incorporated in this automated system enables easy modification to locate features in a
variety of other organisms. The method is intrinsically robust to changes in shape and
based firmly on the statistical interpretation of data analysis. The system will be tested
for its efficiency in locating the landmarks even in a scenario where the features to be
located are quite complicated and beyond manual capabilities (eg. debris/bristles lying
across one of the feature would be a major hurdle for manual digitization). Such an
automated method will benefit major research groups in the morphometrics community
and will easily be transferable to research groups in other relevant field of study. The
automation of shape analysis has major potential advantages regarding standardization as
the landmarks can be located without any manual intervention and will make large scale
studies easily feasible [5, 8, 9]. The algorithms will be made available as an open source
package via our websitewww.tina-vision.net & www.flywings.org.uk.
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