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Abstract

Our aim is to develop a completely automated and reliableesy$o identify
morphological landmarks in digital images. The perfornmeant the sys-
tem is aimed to replicate manual digitization with equivélaccuracy and
reliability, based upon a small number of training exampl&€he analysis
system is constructed from four stages; a feature basedtibetef fly wing
structure, correspondence matching based upon the paigemsmetric his-
togram (PGH) representation, global location of the winiggia Probabilis-
tic Hough Transform (PHT), and finally local correlation dsefinement of
individual features. We evaluate this system and compaaatiiative results
to manually digitized data.

1 Background

Morphological landmarks are points that can be locatedigegcand establish an un-
ambiguous one-to-one correspondence among all the spexiamel are widely used in
shape analysis [1]. Points like the tip of the nose or theraraener of the left eye are
possible landmark points of the human face. Analyses ofesirastigate the arrange-
ment of landmark points relative to each other. A substhbtdy of statistical methods
is available for the analysis of configurations of landmaslags [2].

This framework of shape analysis by landmarks is incredsunged in many biolog-
ical and medical applications and widely applied in manyoffelds. The configuration
of landmarks have helped identify the possible source d@ffesting specimens and en-
counter the epidemiologically challenging vectors of Giedisease [3]. The potential
of using geometrical morphometric techniques as an intéu@ol for recognizing tax-
onomic data is being explored [4]. Other scientific applaa include investigating the
study of size and shape to examine the effects of experingataments, genotype or
other factors directly in the anatomical aspect. The usardinarks has been adapted to
specific biological contexts such as genetics [5, 6, 7]; gaguigic differentiation [8], and
the study of morphological integration [9, 10].

The process of identifying the landmarks is an importantlabdur-intensive part of
any such analysis. Presently, this is usually done manuRligins for the ImageJ soft-
ware (for digitizing the standard sets of landmarks) on flpggi and mouse mandibles),
increases speed and reliability over a completely unaidechss [11]. However, there is
still a requirement for an observer to manually identifylesndmark point and therefore
this process can be time-consuming, and quite often, tlearels questions are dependant
on the duration of obtaining these data.
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Developing an automated system for locating landmarkgjitalimages oDrosophila
wings is largely significant, as it is an excellent model fag study of genetics of develop-
ment and evolution of morphological form [12, 13]. They @inta wealth of interesting
biological information and its simple, flat, two dimensibstxucture enables convenient
handling. Therefore, automation has numerous advantaggsaomanual system, as
it will not only diminish the labour needed for shape anaydiut it also will elimi-
nate the source of error (mistakes made during digitizirdysarbtle differences between
observers). Furthermore, automatic extraction of featfn@m images can potentially
change the way in which landmarks are chosen for morphoersttrdies. Whereas the
traditional approach requires landmarks to be chosen & frased on outside knowledge
of the study system, the approach using automated imaggsnahises the possibility
to identify and extract features from the total informatémmtained in the images that are
maximally informative in the context of a particular resgaproject.

There have been previous attempts to automate the procéssdofiark location on
the Drosophilawing [13]. This method is semi-automated where the opeiatbates
the process by marking two landmark positions and the syéitsna series of spline
curves to the margin and the veins of the wing, and definesatitnharks as the intersec-
tions of the splines. The drawback of this system is thatahdrnarks are not always at
the exact location of the intersection of veins and the sglimay not exactly match the
veins (because of the "stiffness” of the spline interpolatiand the system has problems
identifying wings of species with highly melanized spotshet intersections.

Another such system to locate the landmarks on digital imag®ee wings is being
developed at the Paris National Museum of Natural Historg].[IThis system applies
the techniques of mathematical morphology and skelettiniz¢éo obtain the landmarks.
However, using these techniques are not guaranteed to hetrobhe method also re-
quires human intervention in terms of loading the data aedtiflying the initial set of
points to start the process and the pre-processing steydieslcertain parameters that
have to be set by the operator.

Other similar automated systems include the Digital Auttedddentification SYs-
tem (DAISY) which was developed whilst attempting a novedr@ach to identify insect
specimens from the images. Principal component auto-ggs@cmemories and train-
able classifiers are exploited to identify closely relatedagitic wasps based on their
wing venation and pigmentation patterns [15]. This systasbeen designed to identify
several organismal groups in real time and it successfidlstfies data into morphologi-
cally similar classes and proves to be a very useful andipedt¢bol for taxonomic iden-
tification of various species. The internal algorithms aasdad upon the use of a pairwise
geometric histograms (PGH) representation,which is usesstablish shape correspon-
dence.

2 Introduction

We present an automated system for the analysis of edge besetlire for use in mor-
phometric studies. The current work takes a grey level intdiggosophilawing as input
and extracts the coordinates of 15 landmarks (Figure 1) pk&y shape analysis requires
several hundred images and identifying these landmarkdabaious process. An au-
tomated method to extract these features can potentiafiyone the methodology with



which the landmarks are identified via improved standatitinaand accuracy.

Figure 1: 15 Landmark locations @rosophilawing (Image courtesy: [11]).

The proposed method extracts the ridges (linear featurds &s1 wing veins) using
the knowledge of their known grey level profile and the noisaracteristics of the im-
age. This approach has been shown to be statistically vdl@]. [The ridges obtained
are approximated by line segments and the geometric redtips between them are
encoded in PGH, an approximation to the probabilistic dgrianction for the geomet-
ric co-occurrences in the data [17]. Shape correspondendetermined by compar-
ing and matching the pairwise histograms of the scene ancehuada. A probabilistic
Hough transform (robust Likelihood) is used to determireehifipothesized landmark lo-
cation (Figure 2). Sub-pixel estimation of the landmarlalian is performed by template
matching, i.e., correlating a small region around the Hoegfimated landmark location.

We show that a single training image with its landmark cooatis is enough to inde-
pendently estimate the landmarks of any individual withpeaticular dataset. However,
the reliability and accuracy of the method can be furtheraeekd by using multiple
training images. Multiple estimates also offer the podigjbdf accuracy assessment, an
important aspect of any scientific study. The precisioneatability and robustness of the
algorithm have been evaluated here as a pilot study. Althsogne predictions regarding
reliability can be made with a small sample, a further studijbe carried out on a larger
sample to test the reliability of the system on scientificlsa.

3 Methods

3.1 Data Acquisition

Data acquisition is carried out by mounting the fly wings iwsamn a microscopic slide
and flattening with a coverslip. The digital images are otgdiusing an appropriate dig-
ital camera mounted on the microscope and attached to a dempucalibration image
is generally obtained along with each of the dataset to stalizk the difference in mag-
nifications between different dataset. The anatomicalrartts can be easily collected
in two dimensions from digital images and this approach isequseful in evolutionary



research as the landmarks can be collected from non-mogehisms or even fossils.
The X & Y co-ordinates of these landmarks are usually obthimemanually digitizing
the location of these co-ordinates appropriately basedhein anatomical context. Spe-
cialized algorithms and plugins can be used to semi-au®thatprocess and to enhance
the speed of the digitization.

3.2 Analysis

The analysis system is constructed from four stages; arfediased detection of fly wing
structure, correspondence matching based upon the PGekegpation, global location
of the wing using a Probabilistic Hough transform, and fipalbrrelation based refine-
ment of individual features. We evaluate this system andpazequantitative results to
manually digitized data below.

3.2.1 Ridge Detection- An extension to Canny framework

The wing veins are extracted as ridge features, using a methdich is a modification
of more conventional edge detectors. We locate these B=atiging a matched filter ap-
proach, approximating the vein profile as a Difference of §3&ns. Local maxima in
response are then passed into a more conventional hystéresshold and linking sys-
tem, based upon the popular Canny [18] system, in order taebdonnected structures.
This extracted edge map can be used to determine the preca®h of landmarks. The
uniformity of noise in the feature enhancement stage gueearhat this process is inher-
ently stable. The ridge detector has been optimized forable of locating landmarks by
analyzing the specific characteristics of noise and scatgligy. The whole process can
be interpreted as a statistical null-hypothesis test ferpgtesence of the defined feature
[19].

3.2.2 Pairwise Geometric Histograms

The extracted edge-map is approximated by line segmenthamg@ometric relationships
between each pair of line segments are encoded in the paigeismetric histograms.
This is an approximation to the probabilistic density fuoict

Hi(6,d) = P(6& — 6;.dij|e) 1)

for the geometric co-occurences of an edgediveng as a function of relative angle
6 — 6; and perpendicular separatidi. This is a well established method of shape repre-
sentation based on recording the distribution of pairwesgngetric relationships between
local shape features which can support recognition ané is@onsiderable robustness to
the loss of data due to fragmentation noise and occlusioh Thg method is also known
to be complete, in that the original structure of the objeat be reconstructed from the
set of histograms describing a shape. This representationariant for portions of the
same linear feature so that it can be constructed by comsigatinearization of the edge
map. The importance of a pair of line segments defining theesgmtative shape can be
encoded by entering the product of their lengths at the vafuitbe entry. The entry is
blurred along each axis to encode the uncertainty regatbatrue position and orienta-
tion of each line segment. The scale of binning and extentwfibhg defines the extent
of allowable differences when matching similar shapes.



Shape recognition is done by identifying the corresponderietween image and
object features. Shape representation comprises manysgeoimstograms, each repre-
senting a single model feature. The degree to which a lirsige éeature in the testimage
matches a particular model feature can be determined bya&anggheir histograms. The
degree of match between them is given by the Bhattacharrgaunes;;, which takes the
form of a dot product correlation of the histograms of likksandHj.

27T dmax
Bij = ;g i(6,d)H;(8,d) (2)

This can be related, via the? variable, to a maximum likelihood similarity metric and
can be derived as an approximation to Fisher’s Exact testeetlaod for comparing two
distributions. The hypothesized matches can then be usiepaisto pose an estimation
algorithm such as the generalized Hough transforms. Sedependent recognition can
be achieved by representing an object at a range of scalpd{@@ever, this property of
the PGH representation was not required in our study andfitrerwas not utilized.

3.2.3 Hough Transform

A probabilistic Hough Transform (robust maximum Likelitd)pis used to make an esti-
mate of the global position and orientation of each wing.riéatin the 2D location his-
togram are made according to the localization covarianopggated from the errors on
the constraint lines. This takes proper account of erressjlting in improved robustness
and more accurate determination of model position, ortemtand scale in comparison
to the more conventional form of this algorithm. The entiieshe Hough arrays are
constructed from pair of line&, m), i.e., a tuple transform. The equivalent probabilistic
form for the Hough transforril (x,y) used to find the position of a model in a scene is
given by the expression,

ZZIog p(x, y|n) p(x, y|m)) Zlog p(x,y|n)) Zlog p(x,yjm))  (3)

so that the Hough entry can be considered as the square aftibstiog Likelihood
L(x,y) for the localization of the object,

H(xy) = L(xy)? zlog p(X,yIn)) (4)

During array constructiotd,m = log(p(x,y|n)p(x,y|m)) is estimated from a 2D
Gaussian distribution centered at the the position of thdehloypothesized by tha, nth
pair of scene line labels with variance propagated fromrkdevidual line location errors.
This tuple-based construction helps to remove backgrowmskerfrom the Hough array
and has some computational advantages. The variabilityedfrie segmentation process
and the uniform error on the scale estimates are indepenadenare adjusted to give a
guantitative estimate of the hypothesized location of adakned reference point from
pair of scene lines. Training from example data involvesrding the perpendicular
distance,d’, from each model line to the reference point. Consequefatiyeach pair



of scene lines, extended lines at the appropriate perpealadidistance will intersect at
the hypothesized position of the reference. Error at thatgafiintersection can again be
estimated by standard error propagation.

Models can be located based on the positions, orientatiotiseales hypothesized
by scene line labels. However, the orientations and scdléiseomodels are not de-
termined explicitly. This can be determined separatelpgidi-parameter Hough trans-
forms. For each model position determined, a 1-parametentation Hough transform
and 1-parameter scale Hough transform can be constructeddntries selected on the
basis of consistency between the scene lines and moddabpmodihe orientation is deter-
mined from the difference in orientation between the scamednd model line to which
it matched. Comparing the perpendicular distance fromdbkaesline to the model posi-
tion to this same distance in the model itself would yieldgbale. Peaks in these Hough
transforms would give the orientation and scale of the mati#at position in the scene.

(a) Flywing image with model over-(b) Peak in the Hough transform.
laid.

Figure 2: Hough transform located 15th landmark.

3.2.4 Template Matching

The above Hough scheme computes an estimate of landmatlopdsased upon global
wing shape. As we need to determine variations in shape éantbrphometric study this
estimate needs to be refined based upon local image evidénaghtain this estimate,
template matching is performed on the Difference of Gaunssigge of the scenB(l)

and model (example mark-upM) data, over a small region around the Hough estimate
for the feature in the scene data. To save processing timegdalignment, the scene
data is rotated to match the model data using the Hough dstimwaich is assumed to
be sufficiently accurate for final location of the landmarlheTuse of the Difference of
Gaussian images eliminates any image illumination offedtthe matching is performed
as a dot-product correlation in order to eliminate the éffe€ illumination scaling,

Lo, = DM(x,y)D(I (x+hx,y+hy))/ D(I(x+hxy+hy))2  (5)

<M o
<M=
<M o
<M=

where, R is the region size. This is directly equivalent to perforgnin least squares
comparison of the image regions with one free grey levelsparameter. In this study,



the denominator is presumed to be constant to save time @othputationally expensive
calculations. The best possible match is identified andltuaition is transformed back
onto the scene image. The least-squares difference betthvetmo scale image regions is
stored so that the best matching examples can be selecti@biastimation of landmark
position (see below). This quality control feature not callpws a check on the adequacy
of the example mark-ups but also eliminates residual problie alignment estimation,
such as poor rotation estimates.

4 Results

4.1 Precision of manual digitization

The precision of manual digitization by an expert is deteedi by determining the de-
viation (difference between the value of each attempt aedntiean) of 10 repeats of
digitization of a single image. The outcome shows that itithiw a range of +/- 1 pixel
(Figure: 3).

Y—coordinate deviation (pixels)

T o 1
X~-coordinate deviation (pixels)

Figure 3: Reproducibility of landmark location over 10 rafeemanual digitization.

4.2 Accuracy of the template matching relative to manual
digitization
To test the utility of the template matching stage, the fem(landmark 12) that was
significantly variant in comparison to other landmarks waleeh. Figure 4(a) shows
the positions of the landmarks located by the Hough transf@lative to the landmark
locations digitized manually. The Hough transform locatesst of the landmarks within
a range of +/-20 pixels. This provides an estimate of theedhgt the correlation search
must operate over, and is used to define a ‘window size’paeani®uring initial testing,
by ensuring that the window size is large enough, we can Haindhat the landmarks
can be located reliably. The refinement by the template nregctrategy is shown in
Figure 4(b) indicating the improvement in accuracy to béinia range of +/-6 pixels on
the X-axis and +/-3 pixels on the Y-axis.
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(a) Hough estimation vs actual location of lar{}) Template matching refinement vs actual lo-
mark 12. cation of landmark 12.

Figure 4: Hough transform & template matching performance.

4.3 Accuracy of the automated system

The accuracy of the system is assessed using multiple nefeimages (multiple models).
The results show that the landmarks can be located moresphgén cases where the
model features are a good match to the scene data. Howevemuite unlikely that
the model chosen would be suitable for all the features toshimated. Therefore, it is
important to choose a set of appropriate model featureseitr#tining data that can best
match with the given test dataset. This can be achieved byeting the degree of least-
squares match between the model and the test feature and &akiaverage of the best
matches available. Since, the precise location of certatufes (eg., landmark 12 due
to its structural complexity) can be quite challenging imizast to most other features,
the degree of least-squares match can also be applied adity quatrol approach to
determine the adequacy of the selected training examples.

v
Y co-ordinate accuracy (pixels)

2 [} 2 4 s 3 s s 4 2 0 2 4
X co-ordinate accuracy (pixels) X co—ordinate accuracy (pixels)

(a) Avg of best 3 least squares match(5 refb)- Avg of best 5 least squares match (11 ref-
ence images) erence images)

Figure 5: Best Least Squares Match.

The Figures 5(a) & 5(b) shows the system performance wittvarege of the best 3
of 5 reference images and best 5 of 11 reference images Umngast squares match. It
can be seen that the accuracy of the system has improvedmiticiase in the number
of reference images. Most of the landmarks in the samplesdtitimve been located within
+/-3 pixels accuracy. It should be noted that the outlieesnaainly contributed by one of



the test image which clearly indicates that the refereneges used were not necessarily
a good match for feature location in that particular imagesuch cases, increasing the
number of reference images would considerably improve ¢toaracy.

4.4 Robustness of the system

The robustness of the system was tested by locating landnrakn image with addi-
tive noise of10 times that of the original image. The system is robust aafing the
landmarks within +/-4 pixels accuracy and we can thereferednfident that the system
is quite stable to noise, well beyond the level normally pnesn this dataset. This is
presumably because of the large degree of smoothing apghliéay the feature detection
and correlation matching stages.

5 Discussion

This paper describes a system which can be trained from aXamp@e images to auto-
matically estimate the location of key features in ‘veingtiuctures, such as insect wings.
The performance of the automated system can be compareditarhperformance in
terms of accuracy of landmark location. Although, the raofjthe system accuracy is
nearly twice that of the manual digitization, the accuratthe system can be consider-
ably improved by using relevant models. The performancéefsystem is sufficiently
accurate to allow it to replace the time consuming processasfual digitization, which
is common to all morphometric studies.

The current system is capable of providing a set of 15 lankfpaations on an image
of size 1280 x 1022 pixels in about 3 minutes on a SUN Sparaltworkstation.
The time taken by a human to mark up one image using the sthmaanrk-up tools is
about 40 seconds though maintaining this speed acrosseadatgset might be regarded
as unrealistic. We expect that the speed of the system captbrized, however, the
guestion of trade off between the speed and precision msg @$ more reference images
may be needed to achieve the manual accuracy).

The pilot study can be scaled up with minor modifications d&mnsldutomated method
would be used in a scientific study with a large dataset caimgriof 1600 images of
different species obrosophila This analysis should enable us to test other performance
aspects of the system, such as its reliability, and to etalaray difficulties regarding the
practical use of this dataset. The generic nature of obgettgnition and feature location
incorporated in this automated system enables easy mdiifida locate features in a
variety of other organisms. The method is intrinsicallyusbto changes in shape and
based firmly on the statistical interpretation of data asialyThe system will be tested
for its efficiency in locating the landmarks even in a scemarhere the features to be
located are quite complicated and beyond manual capabilfgg. debris/bristles lying
across one of the feature would be a major hurdle for manugtizdition). Such an
automated method will benefit major research groups in theohmmmetrics community
and will easily be transferable to research groups in oteklvant field of study. The
automation of shape analysis has major potential advastagarding standardization as
the landmarks can be located without any manual interverastim will make large scale
studies easily feasible [5, 8, 9]. The algorithms will be magtailable as an open source
package via our websiteww.tina-vision.net & www.flywings.org.uk
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