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Abstract

We describe an approach for automated analysis of deformable objects which
extracts structure information from groups of images containing different ex-
amples of the object with a particular application to human imaging. The
proposed analysis framework simultaneously segments and registers a set of
images, incrementally constructing a model of the composition of the ob-
ject. By fitting an appropriate intensity distribution model to the image we
obtain a soft segmentation which allows us to explicitly model the construc-
tion of each pixel from constituent image segments, rather than its expected
intensity. This effectively decouples the model from the effects of the imag-
ing system and varying statistics in different examples. When estimating the
optimal deformation field for each example, the original image is compared
to a reconstruction, generated using the composition modeland its intensity
distribution parameters for each segment (i.e. an estimateof how the model
would appear given the imaging conditions for that image). In the paper
we describe the algorithm in detail and show results of applying it to two
sets of medical images of different anatomies taken with different imaging
modalities. We present quantitative results demonstrating that the proposed
algorithm is more powerful than current state of the art methods at extract-
ing structural information such as spatial correspondences across groups of
images with varying statistics.

1 Introduction

This paper proposes an automated approach for analysing, understanding and representing
deformable object structure in groups of images, with a particular application to medical
imaging and biometrics. The human body is an abundant sourceof objects that share a
common anatomical structure but exhibit an almost infinite number of shape and appear-
ance variations. Generally, given a set of images of different examples of an object with
a deformable structure, we would like to derive in an automated manner (without user
intervention) the following:

• a dense spatial and structural correspondence between the various examples (regis-
tration)
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• a consistent composition of the pixels in each example imageinto different con-
stituent parts of the structure (segmentation)

• a statistical representation of the variability of shape and appearance of the structure
across the set (modelling)

Furthermore, an explicit advantage would be if all of the above could be achieved
in an efficient and robust (converging) manner. There has already been considerable re-
search into techniques that aim to reach each of the listed goals independently. Non-rigid
image registration, and in particulargroupwise methods provide a method of deriving a
dense, spatial correspondence across sets of images [10, 1](for a review see [14]). Di-
rect segmentation of medical images, into different tissues for example, has also been
studied extensively with methods based on pixel intensity and more advanced deformable
structures [8, 13]. Finally, Statistical Shape and Appearance Models [4], are capable of
capturing and describing the appearance (shape and texture). variation of the modeled
structure.

A number of other works exploit the fact that a good estimate of any one aspect of
the structure, a correct segmentation, registration or a good model, can help derive more
reliable estimates of the other components. For instance combined segmentation and reg-
istration with active contours was considered in [12] to register single objects. Maximum
a posteriori segmentation using hidden Markov random fieldsand B-spline non-rigid reg-
istration was used for more general medical images [2]. Models of deformation have
been constructed from correspondences estimated by non-rigid registration [7, 9], but it
was also shown that it is possible to integrate modelling andregistration more tightly [5].

In this paper we describe an automated approach which combines simultaneous seg-
mentation, registration and modeling of structure in a single iterative framework to satisfy
the requirements laid out above. The method starts with a training set of images and in-
crementally constructs a model of the composition of each pixel in the common structure,
rather than its expected intensity. This decouples the model from details of the imaging
process and modality and allows us to deal with datasets exhibiting significant variation
in intensity. Extensive qualitative and quantitative results demonstrate that the proposed
algorithm is more powerful than current state of the art methods at extracting structural
information such as spatial correspondences across groupsof images with varying statis-
tics.

The method is described in detail in Section 2 while results of applying it to two sets
of medical images of different anatomies taken with different imaging modalities, digital
radiography (X-ray, DR) and magnetic resonance (MR), are provided in Section 3. Finally
we provide a discussion on the relative merits of the presented approach.

2 Method

An overview of the proposed approach is illustrated in Figure 1 showing example im-
ages from an application of the approach to MR images of the human brain. Generally,
a set ofN imagesTi, i = 1...N, (the training set) is assumed to contain a common struc-
ture that consists ofM distinct components whose content is defined according to some
composition modelF and whose intensities obey some specific distribution modelwith
parametersθi. Furthermore, for the entire set, a spatial correspondencewith a reference



Figure 1: Outline of the proposed structure analysis algorithm: dark arrows indicate the
progress of the algorithm, light arrows flow of data and the central box contains the struc-
tural information derived from the data set

(model) frame, and implicitly with each other, is assumed through a set of spatial de-
formation fields defined for each example in the training set,Wi(). Deformations are
initialised as identity transformations and true correspondencesWi() along with the in-
tensity distribution model parametersθi and the structure composition modelF are then
estimated incrementally across the set in an iterative procedure as follows:

1. Warp each training imageTi into the reference frame using the current estimate of
the deformation field.T ′

i = W−1
i (Ti).

2. Fit the intensity distribution model to each image and extract parameters (means,
SDs and weights) for each of theM components encoded inθi = {µi j,σi j,wik}), as
well as distributions due to mixtures of components.

3. Use the resulting distributions to estimate the most probable composition of each

pixel, and encode a set of fraction imagesF( j)
i , j = 1...M for each training example.

4. Combine the fraction images from all examples to construct a single composition
model for the common structure,{F̂(1)...F̂(M)}.

5. Synthesize a reconstruction of each training set imageSi using the current estimates
of intensity distribution parametersθi (µi j) and the current composition modelF̂

6. Update the current estimate ofWi to best registerSi ontoTi, minimising a suitable
similarity measure,Dim(Ti,Wi(Si)).

The stages listed above are repeated in an iterative procedure until the deformation
field optimisation and the composition model converge. The reference frame defining the
model shape is obtained as the mean of all individual shapes,represented throughWi. Ini-
tial identity deformation fields will contain a considerable misalignment of the examples



Figure 2: Piecewise affine deformation field: identity fieldson two X-ray images (left),
linear interpolation of a deformed shape (middle) and converged fields on corresponding
areas in three MR brain images

resulting in a fuzzy composition model. However, as the algorithm progresses and correct
correspondences become established both the composition model and the model shape
will converge to a true, crisp representation of the underlying structure.

Note that the described process involves no construction ofa shape model. Instead an
explicit statistical appearance model of the structure canbe constructed directly at the end
of the process from the convergedWi(), see [5].

2.1 Establishing Correspondence

Spatial correspondence between the examples is established by defining a deformation
field for each image in the training set that defines where eachpixel on the reference
structure is located on that image. This implicitly imposesa structural correspondence
that allows equivalent locations to be found across the examples. We adopt a piece-wise
affine deformation field represented as a tesselation (triangulation in 2D) of a set of control
points (vertices) in space, Figure 2. Deformation is controlled by displacement of the
control points, which can be both linear (e.g. affine) and highly non-linear (movements of
individual points). Inside the elements the field is interpolated linearly, Figure 2, which
lends efficiency and more importantly easy invertibility tothis formulation at a price of
limited spatial resolution and flexibility.

Deformation fields are initialised in 2D as a regular hexagonal mesh made up of equi-
lateral triangles, see Figure 2, which provides a regular element density around each con-
trol point as opposed to a square regular mesh. The fields are then optimised in discrete
stages that modify the locations of control points either ingroups or individually. The
details of the optimisation strategy are beyond the scope ofthis paper, but the general
approach is to start with linear transformations (e.g. affine), followed by coarse non-rigid
deformations, e.g. grid deformations [5] and progressively increase the resolution of the
deformations to finish by optimising the location of each control point independently.



2.2 Segmentation

A broad segmentation of the analysed structure is achieved in two stages. First an intensity
distribution model (IDM) is fit to the intensity histogram ofthe data in the reference frame
and then a most likely composition of each pixel in each example is derived using IDM
parameters. The IDM explains how the intensities in the image are related to the main
components of the structure to be analysed. In principle anytype of distribution model
can be used within this framework but it is likely that each type of data would optimally
obey a specific model. As the choice of the intensity model fora particular dataset is
not central to the structure of the proposed algorithm it is not considered in detail in this
paper. Instead we use relatively simple models that rely only on intensity and demonstrate
the convergence power of the approach.

In general we follow [8] in assuming that each pixel in the structure is either due to one
of M different components or a fractional mixture of at most two different ones. Further-
more, if we know the distributions of intensities for pure components, we can construct
the distribution for a particular fractional distributionby convolution. For example, in the
experiments using MR images we use a limited resolution IDM that assumes components
with Normal distributions,pi(g) = N(g : µi,σ2

i ) (consistent with white matter, grey mat-
ter and cerebro-spinal fluid/background tissue types). In this case it can be shown that
the distribution for a partial volume with fractionf of tissue typei and 1− f of type j is
given by

pi j(g| f ) = N(g : f µi +(1− f )µ j, f σ2
i +(1− f )σ2

j ). (1)

The distribution over all partial volumes containingi and j is given by

pi j(g) =
∫ f=1

f=0
pi j(g| f )p( f )d f =

∫ f=1

f=0
pi j(g| f )d f (2)

where we assume all values off in the range[0,1] are equally likely (p( f ) = 1). Making
the assumption that any pixel contains at most 2 different tissue types, we need only
considerM pure tissue classes with distributionspk(g), k = 1..M, andM(M−1)/2 partial
tissue classes (enumeratedpk(g),k = (M + 1)..Mt = M(M + 1)/2). Thus the measured
image intensity distribution,h(g), can be approximated as a weighted sum

p(g : θ) =
Mt

∑
i=1

wi pi(g) (3)

whereθ = {µi,σi,wk} (i = 1..M,k = 1..Mt).
We thus perform an optimisation to estimate the parametersθ which optimiseDp(p(g :

θ),h(g)), whereDp(p,q) is a suitable measure of divergence between distributions.Hav-
ing estimated the probability that a pixel with intensityg belongs to classk is given by
Pk(g) = wk pk(g)/(∑wk pk(g)) (see Figure 3) that pixel can then be classified as belonging
to class

kc = arg maxkPk(g). (4)

However, we are actually interested in the estimate of the fraction of each pure class
tissue (fi,i = 1..M), in the pixel, not the probability of each class. Ifkc ≤ M then the pixel
is a pure tissue, so we definefkc = 1 and fi 6=kc = 0. If kc > M then the pixel is classified



as a partial volume, containing two tissues, say of typei and typej. In this case we wish
to find the most likely value of the fractions for each tissue.We define

fi = arg maxf pi j( f |g)
= arg maxf pi j(g| f )p( f )/p(g)
= arg maxf pi j(g| f )

(5)

wherepi j(g| f ) is defined above in Equation 1. We then setf j = 1− fi and fk 6=i, j = 0.
Figure 3 shows an example of this, demonstrating that tissueprobabilities are not the
same as estimates of pure tissue fractions. Using this approach we computeM images,

{F(1)
i , ...F(M)

i }, recording the fraction of each tissue type at each pixel in the normalised
version of imagei (that projected into the reference frame).

2.3 Composition Model Construction

The composition model defines how much of each of the components is present at any
location within the structure that is being analysed. We train this model using theM
fractional images from each of theN images in our set.1 Though more detailed statis-
tical models (eg PCA based methods) are possible, in this preliminary study we simply
compute the mean of the fraction images,

{F̂(1)...F̂(M)} =
1
N ∑

i
{F(1)

i ...F(M)
i }. (6)

Further constraints could be imposed on the model, e.g. limit any pixel to have at most
two non-zero fractions. Although this would directly support convergence, particularly in
the early stages of the process when misalignments between different examples are still
considerable we found that even the simple mean was proving powerful enough to drive
the process to convergence.

2.4 Image Reconstruction

The training set is aligned by optimising a deformation fieldbetween eachTi and the
model (reference frame) embodied in a reconstruction,Si produced using the current com-
position model and the current estimate of the IDM parameters. Pure components exhibit-
ing Gaussian distributions are optimally represented by their mean (µi j) while fractional
pixels are represented by a sum of component means weighted by their fractions:

Si =
M

∑
j=1

µi jF̂
( j). (7)

For an example, see Figure 3. Essentially,Si is an estimate of how the model would
appear given the imaging conditions forTi. Ideally Si is a noise free version ofTi but in
practice it starts blurred due to misalignments and gets progressively sharper as alignment
across the set improves. Deformation parametersWi are optimised with respect to an
objective function measuring similarity betweenTi andSi in the training image frame -
Dim(Ti,W

−1
i (Si)).

1In practice, when working on imagei constructing the model fromN −1 other images tends to give more
generalisable models and lead to faster convergence.



Figure 3: Results of analysis of brain images: a.-c. composition model estimates for
the three tissue classes (components), d. and e. reconstructed images of two training set
examples (reference frame)

3 Results

We applied the proposed method to two sets of medical images of different anatomies
taken with different imaging modalities, a set of 28 X-ray digital radiography (DR) images
of the knee joint and of a set of 37 near equivalent 2D slices ofmagnetic resonance (MR)
images of the brain (Figure 3)2. For the X-ray images we adopted an absorption IDM
which has 2 classes (no radiation and full radiation) at extremes of the intensity range
represented as delta Diracs and all intensities in between are considered fractional. In
addition we used sum of absolute differences for both the image similarity,Dim(), and
Bhattacharya distance as the divergence between intensitydistributions,Dp().

Figure 3 a.-c. shows composition models for the three (tissue) components present in
the MR brain images processed by the proposed method. In the final estimates all three
classes are crisply delineated and in close agreement with the anatomical distribution of
white and gray matter (WM, GM) and CSF in the human brain. Structure reconstruction
imagesSi corresponding two different training set examples are shown in Figure 3 d.
and e. It can be seen that their intensity statistics have been reproduced faithfully by the
algorithm. In both cases, the composition model starts froma very fuzzy estimate and
becomes more accurate as the alignment across the training set examples is established.

Figure 4 shows the results of analysis on the knee X-rays. This is a difficult data
set containing projections of a structure with highly unconstrained pose, scale and image
statistics, see 4e. Groupwise intensity registration [5] fails to converge resulting in a mean
image 4b, very much like the mean of the non-aligned set 4a. The proposed approach
however converges and its mean 4c. clearly shows the main structures. Final absorption
(composition) model is shown alongside in 4d. Final deformation fields for three differ-
ent examples produced by the proposed algorithm are shown in4e. They demonstrate
its ability to deal with large variations in pose and intensities robustly and converge de-
spite the fact that some examples have diverged during affineregistration (final example).
These failures are caused by the generally sparse structureof these images failing to con-

2David Kennedy of the Center for Morphometric Analysis, Boston, provided the MR and Visaris d.o.o.
provided the DR imagery



Figure 4: Results of automated analysis of knee images: a. initial mean, b. mean derived
using groupwise intensity registration, c. mean derived using the proposed approach and
associated composition model for full radiation d., e. finaldeformation fields for three
different images using the proposed approach

strain a powerful global search such as affine registration and could be corrected using
relatively straightforward regularisation across the set.

Quantitative evaluation was performed on WM, GM and ventricle (CSF) labels man-
ually defined by experts on the MR brain data using a Tanimoto overlap based metric
proposed in [6] (no such ground truth was available for the knee images). The metric
measures fuzzy overlap of segmented regions between all pairs of registered images in
the set. Results for inverse volume normalised (TOIVol−All) [6] and mean of pairwise
overlaps for individual as well as all labels (TOLabel) are in Table 1. The proposed auto-
mated analysis framework (AAF) system was compared to i) pairwise registration where
each image in the set is registered to a common reference image selected either randomly
PW-random or one closest to the mean of the set PW-opt, ii) groupwise registration where
the set is registered to its progressively sharper intensity mean [5] (all using 24x24 point
piece-wise affine deformation field and sum of absolute differences objective function)
and iii) fluid flow registration (Fluid) [3], using a dense deformation field (defined at
each pixel), sum-squared difference objective function, viscosity coefficientsλ = 1 and
µ = 500, tolerance for convergence 1e-3, two levels of scale andtime step selected by
Brent minimization.

Table 1 shows that the proposed algorithm outperforms othersystems for all metrics
and labels. Figure 5a. shows these results graphically (TOall) including measurement er-
rorbars as well as final intensity means for the PW-opt, GW andthe proposed approaches
in comparison to the initial mean. Also shown on Figure 5a. asthe dashed line is
the TOAll = 0.717 level obtained for groupwise registration of label images, in a way
establishing an upper limit on the performance for the chosen registration approach (de-



Metric PW-rand PW-opt GW Fluid AAF
TOIVol−All 0.591 0.61 0.646 0.651 0.69
TOAll 0.603 0.616 0.652 0.635 0.693
TOWM 0.662 0.664 0.696 0.684 0.747
TOGM 0.551 0.537 0.59 0.578 0.633
TOVentricle 0.596 0.664 0.669 0.685 0.69

Table 1: Quantitative label overlap scores for registration results of various approaches
applied to the MR brain data (best score given in bold)

Figure 5: MR brain analysis resuts: a. Label overlap (TOAll) results for various ap-
proaches, b. initial (non-aligned) mean intensity of the images and c-e. final intensities
for the PW-opt, GW and proposed AAF approaches

formation field representation and optimisation scheme). The proposed method achieves
overlaps only 2% lower than this limit and much closer than any of the other methods
using the same registration approach (in comparison the equivalent reference value for
the tested fluid registration approach isTOAll = 0.672).

4 Discussion

We have demonstrated a powerful algorithm for automated analysis of deformable struc-
ture in groups of images. By constructing a model of structure composition, rather than
intensities, we decouple the model from details of the imaging process, and concentrate on
explicitly learning object structure. The system should becapable of registering images
from different modalities. In evaluations on two challenging datasets the proposed frame-
work outperforms other state-of-the-art approaches, despite relying on relatively simple
intensity models for segmentation and a relatively coarse deformation field representation.

Future work will include a full implementation to deal with full 3D structures (the
extension is natural) and exploring robust segmentation that includes spatial as well as
local gradient information. Further consideration will also be given to automating he
optimal choice of intensity models for a given dataset, using approaches such as MDL
[10, 11] as well as derivation of generic models capable of dealing with various types of
objects and image data.
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