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Abstract

We describe an approach for automated analysis of defoenodigcts which
extracts structure information from groups of images daoing different ex-
amples of the object with a particular application to humaaging. The
proposed analysis framework simultaneously segmentsegisters a set of
images, incrementally constructing a model of the comjsiof the ob-
ject. By fitting an appropriate intensity distribution mbdke the image we
obtain a soft segmentation which allows us to explicitly miatie construc-
tion of each pixel from constituent image segments, rathen its expected
intensity. This effectively decouples the model from thieets of the imag-
ing system and varying statistics in different examples. l\ésimating the
optimal deformation field for each example, the original gmas compared
to a reconstruction, generated using the composition menttkits intensity
distribution parameters for each segment (i.e. an estiofdtew the model
would appear given the imaging conditions for that image).the paper
we describe the algorithm in detail and show results of dpglyt to two
sets of medical images of different anatomies taken witfeiht imaging
modalities. We present quantitative results demonstydtiat the proposed
algorithm is more powerful than current state of the art méthat extract-
ing structural information such as spatial correspondemoeoss groups of
images with varying statistics.

1 Introduction

This paper proposes an automated approach for analysidgrstanding and representing
deformable object structure in groups of images, with ai@agr application to medical
imaging and biometrics. The human body is an abundant sadrabjects that share a
common anatomical structure but exhibit an almost infinitenher of shape and appear-
ance variations. Generally, given a set of images of diffeexamples of an object with
a deformable structure, we would like to derive in an aut@mahanner (without user
intervention) the following:

e adense spatial and structural correspondence betweearibasrexamples (regis-
tration)
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e a consistent composition of the pixels in each example iniaigedifferent con-
stituent parts of the structure (segmentation)

e astatistical representation of the variability of shape @ppearance of the structure
across the set (modelling)

Furthermore, an explicit advantage would be if all of thevaboould be achieved
in an efficient and robust (converging) manner. There hasadir been considerable re-
search into techniques that aim to reach each of the listals gudependently. Non-rigid
image registration, and in particulgroupwise methods provide a method of deriving a
dense, spatial correspondence across sets of images [[Or &]review see [14]). Di-
rect segmentation of medical images, into different tissioe example, has also been
studied extensively with methods based on pixel intensityraore advanced deformable
structures [8, 13]. Finally, Statistical Shape and AppeegaViodels [4], are capable of
capturing and describing the appearance (shape and fexttagation of the modeled
structure.

A number of other works exploit the fact that a good estimdtany one aspect of
the structure, a correct segmentation, registration oroa gaodel, can help derive more
reliable estimates of the other components. For instanediteed segmentation and reg-
istration with active contours was considered in [12] tdstsy single objects. Maximum
a posteriori segmentation using hidden Markov random figtasB-spline non-rigid reg-
istration was used for more general medical images [2]. Nsodédeformation have
been constructed from correspondences estimated by giohreigistration [7, 9], but it
was also shown that it is possible to integrate modellingragitration more tightly [5].

In this paper we describe an automated approach which cesmbkimultaneous seg-
mentation, registration and modeling of structure in algiitgrative framework to satisfy
the requirements laid out above. The method starts withisirigaset of images and in-
crementally constructs a model of the composition of eaxél jm the common structure,
rather than its expected intensity. This decouples the hfogla details of the imaging
process and modality and allows us to deal with datasetbitixigj significant variation
in intensity. Extensive qualitative and quantitative tesdemonstrate that the proposed
algorithm is more powerful than current state of the art rmdshat extracting structural
information such as spatial correspondences across gobupsiges with varying statis-
tics.

The method is described in detail in Section 2 while resulegpplying it to two sets
of medical images of different anatomies taken with difféienaging modalities, digital
radiography (X-ray, DR) and magnetic resonance (MR), aseiged in Section 3. Finally
we provide a discussion on the relative merits of the preskapproach.

2 Method

An overview of the proposed approach is illustrated in Feglirshowing example im-
ages from an application of the approach to MR images of timeamubrain. Generally,

a set ofN imagesT;, i = 1...N, (the training set) is assumed to contain a common struc-
ture that consists dfl distinct components whose content is defined accordingrteeso
composition modeF and whose intensities obey some specific distribution matél
parameter®;,. Furthermore, for the entire set, a spatial correspondetitbea reference
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Figure 1: Outline of the proposed structure analysis aflgori dark arrows indicate the
progress of the algorithm, light arrows flow of data and th&tieé box contains the struc-
tural information derived from the data set

(model) frame, and implicitly with each other, is assumedbdigh a set of spatial de-
formation fields defined for each example in the training ¥éf). Deformations are
initialised as identity transformations and true corresfencedM () along with the in-
tensity distribution model parametefisand the structure composition modelare then
estimated incrementally across the set in an iterativegqoloie as follows:

1.

Warp each training imagg into the reference frame using the current estimate of
the deformation fieldT, = W (T;).

. Fit the intensity distribution model to each image andaottparameters (means,

SDs and weights) for each of thé& components encoded &= {1, 6ij, Wik }), as
well as distributions due to mixtures of components.

. Use the resulting distributions to estimate the most glotdo composition of each

pixel, and encode a set of fraction imagéé), j = 1...M for each training example.

. Combine the fraction images from all examples to constgingle composition

model for the common structurés .. FM)},

. Synthesize a reconstruction of each training set insagsing the current estimates

of intensity distribution parametefs (uij) and the current composition model

. Update the current estimate\&f to best registe onto T;, minimising a suitable

similarity measureDim(Ti, W (S)).

The stages listed above are repeated in an iterative proeeaitil the deformation
field optimisation and the composition model converge. HBference frame defining the
model shape is obtained as the mean of all individual shappesented throughy. Ini-
tial identity deformation fields will contain a consideralshisalignment of the examples
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Figure 2: Piecewise affine deformation field: identity fietdstwo X-ray images (left),
linear interpolation of a deformed shape (middle) and cayee fields on corresponding
areas in three MR brain images

resulting in a fuzzy composition model. However, as the @lgm progresses and correct
correspondences become established both the compositidalrand the model shape
will converge to a true, crisp representation of the undeglytructure.

Note that the described process involves no constructiarsbhpe model. Instead an
explicit statistical appearance model of the structurebmaconstructed directly at the end
of the process from the converg@él), see [5].

2.1 Establishing Correspondence

Spatial correspondence between the examples is establishdefining a deformation
field for each image in the training set that defines where @aat on the reference
structure is located on that image. This implicitly imposestructural correspondence
that allows equivalent locations to be found across the gkesn We adopt a piece-wise
affine deformation field represented as a tesselation ¢uiation in 2D) of a set of control
points (vertices) in space, Figure 2. Deformation is cdlgdoby displacement of the
control points, which can be both linear (e.g. affine) andhlyigon-linear (movements of
individual points). Inside the elements the field is intdaped linearly, Figure 2, which
lends efficiency and more importantly easy invertibilitythds formulation at a price of
limited spatial resolution and flexibility.

Deformation fields are initialised in 2D as a regular hexajomesh made up of equi-
lateral triangles, see Figure 2, which provides a regukemeht density around each con-
trol point as opposed to a square regular mesh. The fieldheneoptimised in discrete
stages that modify the locations of control points eithegiioups or individually. The
details of the optimisation strategy are beyond the scopisfpaper, but the general
approach is to start with linear transformations (e.g. affifollowed by coarse non-rigid
deformations, e.g. grid deformations [5] and progresgiirgdrease the resolution of the
deformations to finish by optimising the location of eachtocolrpoint independently.



2.2 Segmentation

A broad segmentation of the analysed structure is achiev®ebistages. First an intensity
distribution model (IDM) is fit to the intensity histogramthie data in the reference frame
and then a most likely composition of each pixel in each exangpderived using IDM
parameters. The IDM explains how the intensities in the ienaig related to the main
components of the structure to be analysed. In principletgog of distribution model
can be used within this framework but it is likely that eacpeyf data would optimally
obey a specific model. As the choice of the intensity modelaf@articular dataset is
not central to the structure of the proposed algorithm itisaonsidered in detail in this
paper. Instead we use relatively simple models that rely oniintensity and demonstrate
the convergence power of the approach.

In general we follow [8] in assuming that each pixel in theistare is either due to one
of M different components or a fractional mixture of at most tviféedent ones. Further-
more, if we know the distributions of intensities for purarg@onents, we can construct
the distribution for a particular fractional distributitwy convolution. For example, in the
experiments using MR images we use a limited resolution IBM &ssumes components
with Normal distributionspi(g) = N(g: 1, 6?) (consistent with white matter, grey mat-
ter and cerebro-spinal fluid/background tissue types).his ¢ase it can be shown that
the distribution for a partial volume with fractiohof tissue type and 1— f of type j is
given by

pij(91f) = N(g: fpi+(1— f)py, foP + (1 f)o?). (1)
The distribution over all partial volumes containingnd j is given by

f=1 f=1
Pi(@ = [ pilnp(Hdf = [ “pi(glnaf @

where we assume all values bin the rangd0, 1] are equally likely p(f) = 1). Making
the assumption that any pixel contains at most 2 differessiug types, we need only
consideM pure tissue classes with distributiopgg), k= 1..M, andM(M — 1) /2 partial
tissue classes (enumeratpdg) .k = (M + 1)..M; = M(M +1)/2). Thus the measured
image intensity distributiorh(g), can be approximated as a weighted sum

Mt
mgeka;mm@) (3)

wheref = { i, g;,wi} (i = 1..M k= 1..My).
We thus perform an optimisation to estimate the parameétessich optimiseD ,(p(g:
8),h(9)), whereDy(p,q) is a suitable measure of divergence between distributidag-
ing estimated the probability that a pixel with intensifypelongs to clask is given by
R(9) =wipk(9)/ (3 Wikpk(9)) (see Figure 3) that pixel can then be classified as belonging
to class
ke = arg maxP(g). 4)

However, we are actually interested in the estimate of taetifsn of each pure class
tissue f;,i = 1..M), in the pixel, not the probability of each classk¢f< M then the pixel
is a pure tissue, so we defirig = 1 andfi_, = 0. If ke > M then the pixel is classified



as a partial volume, containing two tissues, say of fyaed typej. In this case we wish
to find the most likely value of the fractions for each tisse define

fi = argmaxpi(f|g)
arg max pij(g|f)p(f)/p(9) (5)
arg max pij(g|f)

wherep;j(g|f) is defined above in Equation 1. We then $gt= 1 — f; and fi. j = 0.
Figure 3 shows an example of this, demonstrating that tipsabkabilities are not the
same as estimates of pure tissue fractions. Using this appnee computé! images,
{Fi<1), ...Fi(M)}, recording the fraction of each tissue type at each pixehénrtormalised
version of image (that projected into the reference frame).

2.3 Composition Model Construction

The composition model defines how much of each of the comgsriepresent at any
location within the structure that is being analysed. Wentthis model using thévi
fractional images from each of tié images in our set’ Though more detailed statis-
tical models (eg PCA based methods) are possible, in thisnary study we simply
compute the mean of the fraction images,

(EO_EM) = 5 (R R0, ©)

Further constraints could be imposed on the model, e.gt &inyi pixel to have at most
two non-zero fractions. Although this would directly suppmnvergence, particularly in
the early stages of the process when misalignments betwieredt examples are still
considerable we found that even the simple mean was prowwgnbul enough to drive
the process to convergence.

2.4 Image Reconstruction

The training set is aligned by optimising a deformation fibktween eacf; and the
model (reference frame) embodied in a reconstrucoproduced using the current com-
position model and the current estimate of the IDM paramset@ure components exhibit-
ing Gaussian distributions are optimally represented by thean (1) while fractional
pixels are represented by a sum of component means weightbéib fractions:

M Al
§=Y uiFY. (7)
=1

For an example, see Figure 3. Essentiaflyjs an estimate of how the model would
appear given the imaging conditions f§r Ideally S is a noise free version & but in
practice it starts blurred due to misalignments and getgrpesively sharper as alignment
across the set improves. Deformation paramatérare optimised with respect to an
objective function measuring similarity betwe&nand S in the training image frame -
Din(T, W 4(S)).

1in practice, when working on imageconstructing the model fromN — 1 other images tends to give more
generalisable models and lead to faster convergence.
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Figure 3: Results of analysis of brain images: a.-c. contippsimodel estimates for
the three tissue classes (components), d. and e. recdsestiotages of two training set
examples (reference frame)

3 Realts

We applied the proposed method to two sets of medical imafd#ferent anatomies
taken with different imaging modalities, a set of 28 X-ragithil radiography (DR) images
of the knee joint and of a set of 37 near equivalent 2D slicasaxjnetic resonance (MR)
images of the brain (Figure 3) For the X-ray images we adopted an absorption IDM
which has 2 classes (no radiation and full radiation) ateamérs of the intensity range
represented as delta Diracs and all intensities in betweeicansidered fractional. In
addition we used sum of absolute differences for both theyersmilarity, Dim(), and
Bhattacharya distance as the divergence between intefisitibutions,Dp().

Figure 3 a.-c. shows composition models for the three @ssamponents present in
the MR brain images processed by the proposed method. Inniddesktimates all three
classes are crisply delineated and in close agreement ldthrtatomical distribution of
white and gray matter (WM, GM) and CSF in the human brain. Strnecreconstruction
imagesS corresponding two different training set examples are showFigure 3 d.
and e. It can be seen that their intensity statistics have tegroduced faithfully by the
algorithm. In both cases, the composition model starts feomery fuzzy estimate and
becomes more accurate as the alignment across the tragtiegamples is established.

Figure 4 shows the results of analysis on the knee X-rayss iBha difficult data
set containing projections of a structure with highly unstoained pose, scale and image
statistics, see 4e. Groupwise intensity registrationdb$to converge resulting in a mean
image 4b, very much like the mean of the non-aligned set 4a. prbposed approach
however converges and its mean 4c. clearly shows the maictstes. Final absorption
(composition) model is shown alongside in 4d. Final defdromefields for three differ-
ent examples produced by the proposed algorithm are showteinThey demonstrate
its ability to deal with large variations in pose and int¢iesi robustly and converge de-
spite the fact that some examples have diverged during affgistration (final example).
These failures are caused by the generally sparse strudttivese images failing to con-

2David Kennedy of the Center for Morphometric Analysis, Bostprovided the MR and Visaris d.o0.0.
provided the DR imagery



Figure 4: Results of automated analysis of knee imagesital imean, b. mean derived
using groupwise intensity registration, c. mean derivadgithe proposed approach and
associated composition model for full radiation d., e. fideformation fields for three
different images using the proposed approach

strain a powerful global search such as affine registratt@hcaould be corrected using
relatively straightforward regularisation across the set

Quantitative evaluation was performed on WM, GM and verdr(€SF) labels man-
ually defined by experts on the MR brain data using a Tanimotylap based metric
proposed in [6] (no such ground truth was available for theekimages). The metric
measures fuzzy overlap of segmented regions between &l plaregistered images in
the set. Results for inverse volume normalis@®y, ) [6] and mean of pairwise
overlaps for individual as well as all labelEQ_apg ) are in Table 1. The proposed auto-
mated analysis framework (AAF) system was compared to iwpse registration where
each image in the set is registered to a common referencesisgdgcted either randomly
PW-random or one closest to the mean of the set PW-opt, ijpyrise registration where
the set is registered to its progressively sharper intensian [5] (all using 24x24 point
piece-wise affine deformation field and sum of absolute wifiees objective function)
and iii) fluid flow registration (Fluid) [3], using a dense dahation field (defined at
each pixel), sum-squared difference objective functiasgasity coefficientst = 1 and
¢ = 500, tolerance for convergence le-3, two levels of scaletiamel step selected by
Brent minimization.

Table 1 shows that the proposed algorithm outperforms atystems for all metrics
and labels. Figure 5a. shows these results graphicby() including measurement er-
rorbars as well as final intensity means for the PW-opt, GWthagroposed approaches
in comparison to the initial mean. Also shown on Figure 5a.th@sdashed line is
the TOx = 0.717 level obtained for groupwise registration of label ilggin a way
establishing an upper limit on the performance for the chaoegistration approach (de-



Metric PW-rand PW-opt GW Fluid AAF
TOol—all 0.591 0.61 0.646 0.651 0.69

TOu 0.603 0.616 0.652 0.6350.693
TOwm 0.662 0.664 0.696 0.6840.747
TOgm 0.551 0.537 0.59 0.5780.633

TOvewrige  0.596  0.664 0.669 0.685 0.69

Table 1: Quantitative label overlap scores for registratiesults of various approaches
applied to the MR brain data (best score given in bold)
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Figure 5: MR brain analysis resuts: a. Label overld®y,) results for various ap-
proaches, b. initial (non-aligned) mean intensity of thag®s and c-e. final intensities
for the PW-opt, GW and proposed AAF approaches

formation field representation and optimisation schemég fgroposed method achieves
overlaps only 2% lower than this limit and much closer thay ahthe other methods
using the same registration approach (in comparison thivaqut reference value for
the tested fluid registration approachli®a; = 0.672).

4 Discussion

We have demonstrated a powerful algorithm for automatetysisaf deformable struc-
ture in groups of images. By constructing a model of stricttomposition, rather than
intensities, we decouple the model from details of the imgg@irocess, and concentrate on
explicitly learning object structure. The system shoulcthpable of registering images
from different modalities. In evaluations on two challemgdatasets the proposed frame-
work outperforms other state-of-the-art approaches,ittesglying on relatively simple
intensity models for segmentation and a relatively coae$erchation field representation.

Future work will include a full implementation to deal withlf 3D structures (the
extension is natural) and exploring robust segmentatiahititludes spatial as well as
local gradient information. Further consideration wils@lbe given to automating he
optimal choice of intensity models for a given dataset, gisipproaches such as MDL
[10, 11] as well as derivation of generic models capable afidg with various types of
objects and image data.
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